Bovine colostrum, training status, and gastrointestinal permeability during exercise in the heat: a placebo-controlled double-blind study

Heat stress can increase gastrointestinal permeability, allowing ingress of gram-negative bacterial fragments and thus potentially inflammation and ultimately endotoxemia. Permeability may rise with intense exercise, yet some data indicate that endotoxemia may be mitigated with bovine colostrum supp...

Full description

Saved in:
Bibliographic Details
Published in:Applied physiology, nutrition, and metabolism Vol. 39; no. 9; p. 1070
Main Authors: Morrison, Shawnda A, Cheung, Stephen S, Cotter, James D
Format: Journal Article
Language:English
Published: Canada 01-09-2014
Subjects:
Online Access:Get more information
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Heat stress can increase gastrointestinal permeability, allowing ingress of gram-negative bacterial fragments and thus potentially inflammation and ultimately endotoxemia. Permeability may rise with intense exercise, yet some data indicate that endotoxemia may be mitigated with bovine colostrum supplementation. Using a double-blind, randomised, placebo-controlled crossover study, we tested whether bovine colostrum (COL; 1.7 g·kg(-1)·day(-1) for 7 days) would attenuate physiological strain and aid exercise capacity in the heat, especially in untrained individuals. Seven trained men (T; peak oxygen uptake 64 ± 4 mL·kg(-1)·min(-1)) and 8 untrained men (UT, peak oxygen uptake 46 ± 4 mL·kg(-1)·min(-1)) exercised for 90 min in 30 °C (50 % relative humidity) after COL or placebo (corn flour). Exercise consisted of 15-min cycling at 50 % heart rate reserve (HRR) before and after 60 min of running (30 min at 80 % HRR then 30-min distance trial). Heart rate, blood pressure (Finometer), esophageal, and skin temperatures were recorded continuously. Gastrointestinal permeability was assessed from urine (double-sugar model, using high-performance liquid chromatography) and blood (intestinal fatty acid-binding protein, I-FABP). The T group ran ∼2.4 km (35%) further than the UT group in the distance trial, and I-FABP increased more in the T group than in the UT group, but physiological and performance outcomes were unaffected by colostrum supplementation, irrespective of fitness. Circulating pro- and anti-inflammatory cytokine concentrations were higher following exercise, but were not modulated by fitness or COL. Despite substantial thermal and cardiovascular strain incurred in environmental conditions in which exertional endotoxemia may occur, bovine colostrum supplementation had no observable benefit on the physiology or performance of either highly trained endurance athletes or untrained individuals.
ISSN:1715-5320
DOI:10.1139/apnm-2013-0583