Release of nonstop ribosomes is essential

Bacterial ribosomes frequently translate to the 3' end of an mRNA without terminating at a stop codon. Almost all bacteria use the transfer-messenger RNA (tmRNA)-based trans-translation pathway to release these "nonstop" ribosomes and maintain protein synthesis capacity. trans-transla...

Full description

Saved in:
Bibliographic Details
Published in:mBio Vol. 5; no. 6; p. e01916
Main Authors: Feaga, Heather A, Viollier, Patrick H, Keiler, Kenneth C
Format: Journal Article
Language:English
Published: United States American Society of Microbiology 11-11-2014
American Society for Microbiology
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Bacterial ribosomes frequently translate to the 3' end of an mRNA without terminating at a stop codon. Almost all bacteria use the transfer-messenger RNA (tmRNA)-based trans-translation pathway to release these "nonstop" ribosomes and maintain protein synthesis capacity. trans-translation is essential in some species, but in others, such as Caulobacter crescentus, trans-translation can be inactivated. To determine why trans-translation is dispensable in C. crescentus, a Tn-seq screen was used to identify genes that specifically alter growth in cells lacking ssrA, the gene encoding tmRNA. One of these genes, CC1214, was essential in ΔssrA cells. Purified CC1214 protein could release nonstop ribosomes in vitro. CC1214 is a homolog of the Escherichia coli ArfB protein, and using the CC1214 sequence, ArfB homologs were identified in the majority of bacterial phyla. Most species in which ssrA has been deleted contain an ArfB homolog, suggesting that release of nonstop ribosomes may be essential in most or all bacteria. Genes that are conserved across large phylogenetic distances are expected to confer a selective advantage. The genes required for trans-translation, ssrA and smpB, have been found in >99% of sequenced bacterial genomes, suggesting that they are broadly important. However, these genes can be deleted in some species without loss of viability. The identification and characterization of C. crescentus ArfB reveals why trans-translation is not essential in C. crescentus and suggests that many other bacteria are likely to use ArfB to survive when trans-translation is compromised.
AbstractList UNLABELLEDBacterial ribosomes frequently translate to the 3' end of an mRNA without terminating at a stop codon. Almost all bacteria use the transfer-messenger RNA (tmRNA)-based trans-translation pathway to release these "nonstop" ribosomes and maintain protein synthesis capacity. trans-translation is essential in some species, but in others, such as Caulobacter crescentus, trans-translation can be inactivated. To determine why trans-translation is dispensable in C. crescentus, a Tn-seq screen was used to identify genes that specifically alter growth in cells lacking ssrA, the gene encoding tmRNA. One of these genes, CC1214, was essential in ΔssrA cells. Purified CC1214 protein could release nonstop ribosomes in vitro. CC1214 is a homolog of the Escherichia coli ArfB protein, and using the CC1214 sequence, ArfB homologs were identified in the majority of bacterial phyla. Most species in which ssrA has been deleted contain an ArfB homolog, suggesting that release of nonstop ribosomes may be essential in most or all bacteria. IMPORTANCEGenes that are conserved across large phylogenetic distances are expected to confer a selective advantage. The genes required for trans-translation, ssrA and smpB, have been found in >99% of sequenced bacterial genomes, suggesting that they are broadly important. However, these genes can be deleted in some species without loss of viability. The identification and characterization of C. crescentus ArfB reveals why trans-translation is not essential in C. crescentus and suggests that many other bacteria are likely to use ArfB to survive when trans-translation is compromised.
Bacterial ribosomes frequently translate to the 3′ end of an mRNA without terminating at a stop codon. Almost all bacteria use the transfer-messenger RNA (tmRNA)-based trans -translation pathway to release these “nonstop” ribosomes and maintain protein synthesis capacity. trans -translation is essential in some species, but in others, such as Caulobacter crescentus , trans -translation can be inactivated. To determine why trans -translation is dispensable in C. crescentus , a Tn-seq screen was used to identify genes that specifically alter growth in cells lacking ssrA , the gene encoding tmRNA. One of these genes, CC1214 , was essential in Δ ssrA cells. Purified CC1214 protein could release nonstop ribosomes in vitro . CC1214 is a homolog of the Escherichia coli ArfB protein, and using the CC1214 sequence, ArfB homologs were identified in the majority of bacterial phyla. Most species in which ssrA has been deleted contain an ArfB homolog, suggesting that release of nonstop ribosomes may be essential in most or all bacteria. Genes that are conserved across large phylogenetic distances are expected to confer a selective advantage. The genes required for trans -translation, ssrA and smpB , have been found in >99% of sequenced bacterial genomes, suggesting that they are broadly important. However, these genes can be deleted in some species without loss of viability. The identification and characterization of C. crescentus ArfB reveals why trans -translation is not essential in C. crescentus and suggests that many other bacteria are likely to use ArfB to survive when trans -translation is compromised.
ABSTRACT Bacterial ribosomes frequently translate to the 3′ end of an mRNA without terminating at a stop codon. Almost all bacteria use the transfer-messenger RNA (tmRNA)-based trans-translation pathway to release these “nonstop” ribosomes and maintain protein synthesis capacity. trans-translation is essential in some species, but in others, such as Caulobacter crescentus, trans-translation can be inactivated. To determine why trans-translation is dispensable in C. crescentus, a Tn-seq screen was used to identify genes that specifically alter growth in cells lacking ssrA, the gene encoding tmRNA. One of these genes, CC1214, was essential in ΔssrA cells. Purified CC1214 protein could release nonstop ribosomes in vitro. CC1214 is a homolog of the Escherichia coli ArfB protein, and using the CC1214 sequence, ArfB homologs were identified in the majority of bacterial phyla. Most species in which ssrA has been deleted contain an ArfB homolog, suggesting that release of nonstop ribosomes may be essential in most or all bacteria. IMPORTANCE Genes that are conserved across large phylogenetic distances are expected to confer a selective advantage. The genes required for trans-translation, ssrA and smpB, have been found in >99% of sequenced bacterial genomes, suggesting that they are broadly important. However, these genes can be deleted in some species without loss of viability. The identification and characterization of C. crescentus ArfB reveals why trans-translation is not essential in C. crescentus and suggests that many other bacteria are likely to use ArfB to survive when trans-translation is compromised.
Bacterial ribosomes frequently translate to the 3′ end of an mRNA without terminating at a stop codon. Almost all bacteria use the transfer-messenger RNA (tmRNA)-based trans -translation pathway to release these “nonstop” ribosomes and maintain protein synthesis capacity. trans -translation is essential in some species, but in others, such as Caulobacter crescentus , trans -translation can be inactivated. To determine why trans -translation is dispensable in C. crescentus , a Tn-seq screen was used to identify genes that specifically alter growth in cells lacking ssrA , the gene encoding tmRNA. One of these genes, CC1214 , was essential in Δ ssrA cells. Purified CC1214 protein could release nonstop ribosomes in vitro . CC1214 is a homolog of the Escherichia coli ArfB protein, and using the CC1214 sequence, ArfB homologs were identified in the majority of bacterial phyla. Most species in which ssrA has been deleted contain an ArfB homolog, suggesting that release of nonstop ribosomes may be essential in most or all bacteria. IMPORTANCE Genes that are conserved across large phylogenetic distances are expected to confer a selective advantage. The genes required for trans -translation, ssrA and smpB , have been found in >99% of sequenced bacterial genomes, suggesting that they are broadly important. However, these genes can be deleted in some species without loss of viability. The identification and characterization of C. crescentus ArfB reveals why trans -translation is not essential in C. crescentus and suggests that many other bacteria are likely to use ArfB to survive when trans -translation is compromised. Genes that are conserved across large phylogenetic distances are expected to confer a selective advantage. The genes required for trans -translation, ssrA and smpB , have been found in >99% of sequenced bacterial genomes, suggesting that they are broadly important. However, these genes can be deleted in some species without loss of viability. The identification and characterization of C. crescentus ArfB reveals why trans -translation is not essential in C. crescentus and suggests that many other bacteria are likely to use ArfB to survive when trans -translation is compromised.
Bacterial ribosomes frequently translate to the 3' end of an mRNA without terminating at a stop codon. Almost all bacteria use the transfer-messenger RNA (tmRNA)-based trans-translation pathway to release these "nonstop" ribosomes and maintain protein synthesis capacity. trans-translation is essential in some species, but in others, such as Caulobacter crescentus, trans-translation can be inactivated. To determine why trans-translation is dispensable in C. crescentus, a Tn-seq screen was used to identify genes that specifically alter growth in cells lacking ssrA, the gene encoding tmRNA. One of these genes, CC1214, was essential in ΔssrA cells. Purified CC1214 protein could release nonstop ribosomes in vitro. CC1214 is a homolog of the Escherichia coli ArfB protein, and using the CC1214 sequence, ArfB homologs were identified in the majority of bacterial phyla. Most species in which ssrA has been deleted contain an ArfB homolog, suggesting that release of nonstop ribosomes may be essential in most or all bacteria. Genes that are conserved across large phylogenetic distances are expected to confer a selective advantage. The genes required for trans-translation, ssrA and smpB, have been found in >99% of sequenced bacterial genomes, suggesting that they are broadly important. However, these genes can be deleted in some species without loss of viability. The identification and characterization of C. crescentus ArfB reveals why trans-translation is not essential in C. crescentus and suggests that many other bacteria are likely to use ArfB to survive when trans-translation is compromised.
Author Viollier, Patrick H
Feaga, Heather A
Keiler, Kenneth C
Author_xml – sequence: 1
  givenname: Heather A
  surname: Feaga
  fullname: Feaga, Heather A
  organization: Department of Biochemistry & Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
– sequence: 2
  givenname: Patrick H
  surname: Viollier
  fullname: Viollier, Patrick H
  organization: Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
– sequence: 3
  givenname: Kenneth C
  surname: Keiler
  fullname: Keiler, Kenneth C
  email: kkeiler@psu.edu
  organization: Department of Biochemistry & Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA kkeiler@psu.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25389176$$D View this record in MEDLINE/PubMed
BookMark eNpVkctLHTEUxoMoPm5ddltm2S7G5uQ1yabQSrXCBUHsOmQyJzYyM7lN5hb8741eK5rNCed8_M7jOyH7c5qRkI9AzwCY_jr1MZ1RMKBaEHvkmIGkbScB9p_-CloGzByR01LuaX2cg-b0kBwxybWBTh2TLzc4oivYpNBUeFnSpsmxTyVNWJpYGiwF5yW68QM5CG4sePoSV-T3xc_b81_t-vry6vz7uvUSzNKqDpnvGSqUQfRKM-DO0T5wPwTRKWa8rGWtqNJaGamd7nhnJB1kGIJhjK_I1Y47JHdvNzlOLj_Y5KJ9TqR8Z11eoh_RBgSpaWC6804MgWtGnWdCahk6Kg2trG871mbbTzj4ukl24zvo-8oc_9i79M8KxmW9XQV8fgHk9HeLZbFTLB7H0c2YtsWCYsJwRYWs0nYn9TmVkjG8tgFqn9yy04-Y7LNbFkTVf3o726v6vzf8EXwykNM
CitedBy_id crossref_primary_10_1038_nrmicro3438
crossref_primary_10_1038_s41467_021_22012_7
crossref_primary_10_1128_mBio_02436_18
crossref_primary_10_1002_2211_5463_13392
crossref_primary_10_2217_fmb_2016_0148
crossref_primary_10_3389_fmicb_2021_652980
crossref_primary_10_1016_j_isci_2021_102985
crossref_primary_10_1038_s41467_019_13408_7
crossref_primary_10_1007_s12104_016_9692_9
crossref_primary_10_3390_microorganisms10010003
crossref_primary_10_1002_mbo3_272
crossref_primary_10_1146_annurev_genet_112414_054804
crossref_primary_10_1128_AAC_01459_17
crossref_primary_10_1080_15476286_2021_2015561
crossref_primary_10_1016_j_cub_2022_04_038
crossref_primary_10_1093_femsle_fnac104
crossref_primary_10_1098_rstb_2016_0081
crossref_primary_10_1146_annurev_genet_120215_035235
crossref_primary_10_1128_AAC_03089_15
crossref_primary_10_1128_AEM_02171_20
crossref_primary_10_3389_fmicb_2015_00498
crossref_primary_10_1007_s00253_015_7037_8
crossref_primary_10_1111_febs_16349
crossref_primary_10_1128_mbio_03469_22
crossref_primary_10_1371_journal_pgen_1005964
crossref_primary_10_7554_eLife_71611
crossref_primary_10_1371_journal_pbio_1002341
Cites_doi 10.1111/j.1365-2958.2011.07638.x
10.1186/1471-2164-14-450
10.1111/j.1365-2958.2010.07467.x
10.3389/fmicb.2014.00421
10.1371/journal.pone.0057537
10.1146/annurev.micro.62.081307.162948
10.1128/jb.132.1.294-301.1977
10.1016/j.jmb.2012.08.007
10.1111/j.1365-2958.2005.04709.x
10.1093/nar/gkm818
10.1128/MMBR.69.1.101-123.2005
10.1126/science.271.5251.990
10.1128/JB.185.6.1825-1830.2003
10.1128/JB.00269-07
10.1016/j.biochi.2009.11.002
10.1093/nar/gkq1097
10.1128/jb.164.2.918-921.1985
10.1371/journal.pbio.1001749
10.1093/nar/gkh924
10.1128/JB.185.2.573-580.2003
10.1128/JB.01490-14
10.1128/JB.184.8.2155-2166.2002
10.1073/pnas.1302816110
10.1046/j.1365-2958.2003.03301.x
10.1111/j.1365-2958.2011.07607.x
10.1371/journal.pgen.1004463
10.1146/annurev.biochem.75.103004.142733
10.1111/j.1365-2958.2012.08190.x
10.1093/nar/gkt1099
10.1016/S0022-2836(05)80360-2
10.1371/journal.pone.0004459
10.1111/j.1365-2958.2010.07375.x
10.1128/jb.173.20.6373-6382.1991
10.1038/emboj.2010.14
10.1093/genetics/87.3.391
10.1074/jbc.M112.374074
10.1038/nature08403
10.1126/science.1228985
10.1073/pnas.052707199
ContentType Journal Article
Copyright Copyright © 2014 Feaga et al.
Copyright © 2014 Feaga et al. 2014 Feaga et al.
Copyright_xml – notice: Copyright © 2014 Feaga et al.
– notice: Copyright © 2014 Feaga et al. 2014 Feaga et al.
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
5PM
DOA
DOI 10.1128/mbio.01916-14
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ (Directory of Open Access Journals)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


CrossRef
MEDLINE
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: http://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: ECM
  name: MEDLINE
  url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate Release of Nonstop Ribosomes Is Essential
EISSN 2150-7511
Editor Gottesman, Susan
Editor_xml – sequence: 1
  givenname: Susan
  surname: Gottesman
  fullname: Gottesman, Susan
EndPage e01916
ExternalDocumentID oai_doaj_org_article_fe1580f287ca4df3820ac24585f70590
10_1128_mBio_01916_14
25389176
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R01 GM068720
– fundername: NIGMS NIH HHS
  grantid: GM68720
GroupedDBID ---
0R~
53G
5VS
AAFWJ
AAUOK
ADBBV
ADRAZ
AENEX
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
BTFSW
CGR
CUY
CVF
DIK
E3Z
EBS
ECM
EIF
EJD
FRP
GROUPED_DOAJ
GX1
H13
HYE
HZ~
KQ8
M48
M~E
NPM
O5R
O5S
O9-
OK1
P2P
PGMZT
RHF
RHI
RNS
RPM
RSF
AAYXX
CITATION
7X8
5PM
AFPKN
ID FETCH-LOGICAL-c519t-67e2cb2e6e5f4b68213aa0bf3cdf47629c5cb28606886958a8737950d5fdf9223
IEDL.DBID RPM
ISSN 2161-2129
IngestDate Tue Oct 22 15:03:15 EDT 2024
Tue Sep 17 21:07:17 EDT 2024
Fri Oct 25 09:04:29 EDT 2024
Thu Nov 21 21:35:53 EST 2024
Wed Oct 16 00:47:14 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License Copyright © 2014 Feaga et al.
This is an open-access article distributed under the terms of the Creative Commons Attribution-Noncommercial-ShareAlike 3.0 Unported license, which permits unrestricted noncommercial use, distribution, and reproduction in any medium, provided the original author and source are credited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c519t-67e2cb2e6e5f4b68213aa0bf3cdf47629c5cb28606886958a8737950d5fdf9223
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Editor Susan Gottesman, National Cancer Institute
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4235212/
PMID 25389176
PQID 1624936045
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_fe1580f287ca4df3820ac24585f70590
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4235212
proquest_miscellaneous_1624936045
crossref_primary_10_1128_mBio_01916_14
pubmed_primary_25389176
PublicationCentury 2000
PublicationDate 20141111
PublicationDateYYYYMMDD 2014-11-11
PublicationDate_xml – month: 11
  year: 2014
  text: 20141111
  day: 11
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: 1752 N St., N.W., Washington, DC
PublicationTitle mBio
PublicationTitleAlternate mBio
PublicationYear 2014
Publisher American Society of Microbiology
American Society for Microbiology
Publisher_xml – name: American Society of Microbiology
– name: American Society for Microbiology
References e_1_3_2_26_2
e_1_3_2_27_2
e_1_3_2_28_2
e_1_3_2_29_2
e_1_3_2_40_2
e_1_3_2_20_2
e_1_3_2_21_2
e_1_3_2_22_2
e_1_3_2_23_2
e_1_3_2_24_2
e_1_3_2_25_2
e_1_3_2_9_2
e_1_3_2_15_2
e_1_3_2_38_2
e_1_3_2_8_2
e_1_3_2_16_2
e_1_3_2_37_2
e_1_3_2_7_2
e_1_3_2_17_2
e_1_3_2_6_2
e_1_3_2_18_2
e_1_3_2_39_2
e_1_3_2_19_2
e_1_3_2_30_2
e_1_3_2_32_2
e_1_3_2_10_2
e_1_3_2_31_2
e_1_3_2_5_2
e_1_3_2_11_2
e_1_3_2_34_2
e_1_3_2_4_2
e_1_3_2_12_2
e_1_3_2_33_2
e_1_3_2_3_2
e_1_3_2_13_2
e_1_3_2_36_2
e_1_3_2_2_2
e_1_3_2_14_2
e_1_3_2_35_2
References_xml – ident: e_1_3_2_13_2
  doi: 10.1111/j.1365-2958.2011.07638.x
– ident: e_1_3_2_30_2
  doi: 10.1186/1471-2164-14-450
– ident: e_1_3_2_15_2
  doi: 10.1111/j.1365-2958.2010.07467.x
– ident: e_1_3_2_7_2
  doi: 10.3389/fmicb.2014.00421
– ident: e_1_3_2_14_2
  doi: 10.1371/journal.pone.0057537
– ident: e_1_3_2_5_2
  doi: 10.1146/annurev.micro.62.081307.162948
– ident: e_1_3_2_39_2
  doi: 10.1128/jb.132.1.294-301.1977
– ident: e_1_3_2_11_2
  doi: 10.1016/j.jmb.2012.08.007
– ident: e_1_3_2_29_2
  doi: 10.1111/j.1365-2958.2005.04709.x
– ident: e_1_3_2_40_2
  doi: 10.1093/nar/gkm818
– ident: e_1_3_2_2_2
  doi: 10.1128/MMBR.69.1.101-123.2005
– ident: e_1_3_2_4_2
  doi: 10.1126/science.271.5251.990
– ident: e_1_3_2_28_2
  doi: 10.1128/JB.185.6.1825-1830.2003
– ident: e_1_3_2_33_2
  doi: 10.1128/JB.00269-07
– ident: e_1_3_2_16_2
  doi: 10.1016/j.biochi.2009.11.002
– ident: e_1_3_2_32_2
  doi: 10.1093/nar/gkq1097
– ident: e_1_3_2_21_2
  doi: 10.1128/jb.164.2.918-921.1985
– ident: e_1_3_2_34_2
  doi: 10.1371/journal.pbio.1001749
– ident: e_1_3_2_18_2
  doi: 10.1093/nar/gkh924
– ident: e_1_3_2_24_2
  doi: 10.1128/JB.185.2.573-580.2003
– ident: e_1_3_2_8_2
  doi: 10.1128/JB.01490-14
– ident: e_1_3_2_35_2
  doi: 10.1128/JB.184.8.2155-2166.2002
– ident: e_1_3_2_37_2
  doi: 10.1073/pnas.1302816110
– ident: e_1_3_2_23_2
  doi: 10.1046/j.1365-2958.2003.03301.x
– ident: e_1_3_2_20_2
  doi: 10.1111/j.1365-2958.2011.07607.x
– ident: e_1_3_2_22_2
  doi: 10.1371/journal.pgen.1004463
– ident: e_1_3_2_6_2
  doi: 10.1146/annurev.biochem.75.103004.142733
– ident: e_1_3_2_10_2
  doi: 10.1111/j.1365-2958.2012.08190.x
– ident: e_1_3_2_38_2
  doi: 10.1093/nar/gkt1099
– ident: e_1_3_2_25_2
  doi: 10.1016/S0022-2836(05)80360-2
– ident: e_1_3_2_27_2
  doi: 10.1371/journal.pone.0004459
– ident: e_1_3_2_9_2
  doi: 10.1111/j.1365-2958.2010.07375.x
– ident: e_1_3_2_26_2
  doi: 10.1128/jb.173.20.6373-6382.1991
– ident: e_1_3_2_31_2
  doi: 10.1038/emboj.2010.14
– ident: e_1_3_2_36_2
  doi: 10.1093/genetics/87.3.391
– ident: e_1_3_2_12_2
  doi: 10.1074/jbc.M112.374074
– ident: e_1_3_2_3_2
  doi: 10.1038/nature08403
– ident: e_1_3_2_17_2
  doi: 10.1126/science.1228985
– ident: e_1_3_2_19_2
  doi: 10.1073/pnas.052707199
SSID ssj0000331830
Score 2.2645879
Snippet Bacterial ribosomes frequently translate to the 3' end of an mRNA without terminating at a stop codon. Almost all bacteria use the transfer-messenger RNA...
Bacterial ribosomes frequently translate to the 3′ end of an mRNA without terminating at a stop codon. Almost all bacteria use the transfer-messenger RNA...
UNLABELLEDBacterial ribosomes frequently translate to the 3' end of an mRNA without terminating at a stop codon. Almost all bacteria use the transfer-messenger...
ABSTRACT Bacterial ribosomes frequently translate to the 3′ end of an mRNA without terminating at a stop codon. Almost all bacteria use the transfer-messenger...
SourceID doaj
pubmedcentral
proquest
crossref
pubmed
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage e01916
SubjectTerms Caulobacter crescentus - genetics
Caulobacter crescentus - metabolism
Gene Deletion
Mutagenesis, Insertional
Protein Biosynthesis
Ribosomes - metabolism
RNA, Messenger - metabolism
Sequence Analysis, DNA
SummonAdditionalLinks – databaseName: DOAJ (Directory of Open Access Journals)
  dbid: DOA
  link: http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3JSsRAEC1UELyIu3Ejgggeoum9c3QZ0YsHF_AW0hvOwUSMc_DvrU5mBkcEL95CukmaV0XXK7rrFcBRyCvunGWZ5g4TFMVtZiw-BVkxSoLLCxdPdG8e1N2zvhpEmZxpq694J6yXB-6BOwueCJ0HJPYWvxoYRqzKUo4sN6hYONntvrn8lkx1ezCLvppPRDWpPnu9GDanyGeIzAifCUKdVv9vBPPnPclvged6BZbHjDE971e6CnO-XoPFvofk5zqc3GPgwFCUNiG9i2SveUvvh6Zpm1ffprdtOmhjfRG62QY8XQ8eL2-ycf-DzCKv-sik8tQa6qUXgRupKWFVlZvArAscN7HCChzWMvaNkYXQlVZMFSJ3IrhQYNzfhIW6qf02pNQYwxyyv2AItzbXinsf1exEZSUXLIHjCSDlWy9zUXbpAdVlRK7skMM8IYGLCNd0UlSn7l6gzcqxzcq_bJbA4QTsEr05HlFUtW9GbUkkpoNMIs9MYKsHf_orKuKZqpIJqBmzzKxldqQevnSK2cgZY43yzn8sfheWkDTxWI9IyB4sfLyP_D7Mt2500PngF_GY32o
  priority: 102
  providerName: Directory of Open Access Journals
Title Release of nonstop ribosomes is essential
URI https://www.ncbi.nlm.nih.gov/pubmed/25389176
https://search.proquest.com/docview/1624936045
https://pubmed.ncbi.nlm.nih.gov/PMC4235212
https://doaj.org/article/fe1580f287ca4df3820ac24585f70590
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9tAEB7qQKGX0qYv9REUKIUeZGufWh2b1CE5NJS0hd6E9tUYaslE8aH_vjNrK9ilp9yEdoWW2WHn-9iZbwDex7KV3jtRGOmRoFTSFdbhU9St4Cz6svZ0o3v-rbr8aT7PSSZHjbUwKWnf2cW0-72cdovrlFu5WrrZmCc2-_rlFCEAlZzOJjBBbLhD0dPxK8hNy1FPk5vZ8mTRTxHKMF0w6sPDFV3OkcrITihKiv3_g5n_ZkvuhJ-zJ_B4ixvzT5v1PYUHoTuEh5tOkn-ewccrDB8YkPI-5pcE-fpVfrWw_dAvw5BfDPl8oCojdLbn8ONs_v30vNh2QSgcoqvbQleBO8uDDipKqw1nom1LG4XzUeJRVjuFw0ZT9xhdK9OaSlS1Kr2KPtYY_V_AQdd34RXk3ForPGLAaJl0rjSVDIE07VTrtFQigw-jQZrVRuyiSSSBm4aM2CQjIlvI4ITMdTeJNKrTi_7mV7PdqSYGpkwZkZI59IcoEGu0jkvkJ7GiktcMjkdjN-jTdFHRdqFfDw3TSAqFRrSZwcuN8e9-NW5eBtXetuytZX8E3SjpZm_d5vW9v3wDjxAvSSpFZOwtHNzerMM7mAx-fZS4_FHyxL8MbOFq
link.rule.ids 230,315,729,782,786,866,887,2106,27933,27934,53800,53802
linkProvider National Library of Medicine
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB7RIgQX3gXzNBJC4uBk314faUmVijZCpUjcVt4XRCJ2VDcH_j2zTlwliFNvlnctr2Zmd77RznwD8D6SWnjveKGFxwClFK6wDp-iqjmj0ZPKpxvd6bdy9kN_niSaHDnUwvRJ-87OR83vxaiZ_-pzK5cLNx7yxMZfz44QAqSS0_Ee3Mb9SshWkN4fwDwZKhkYNZkeLw7n7QjBDFUFTZ14mEzXc4lnZMsZ9Zz9_wOa_-ZLbjmg4wc3XPpDuL9BnPmn9fAjuBWax3Bn3YPyzxP4eI6OB11Z3sZ8lsBiu8zP57bt2kXo8pMun3SpPgnN9Cl8P55cHE2LTf-EwiEuuypUGZizLKggo7BKM8rrmtjInY8CD8HKSRzWKvWdUZXUtS55WUniZfSxQtxwAPtN24TnkDNrLfeIHqOlwjmiSxFCYsOTtVNC8gw-DII0yzVNhunDC6ZNEr7phY9xRgaHSczXkxK7df-ivfxpNoIyMVCpScRgzqElRY4opXZMYGQTy1Qsm8G7QUkGd0O64qib0K46QxWGk1whTs3g2Vpp178alJ5BuaPOnbXsjqAWe8btjdZe3PjLt3B3enF2ak5PZl9ewj1EXSIVNFL6CvavLlfhNex1fvWmt-O_TZT18A
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB6xi0BcWN4EFggSQuKQJn7GOe6j1a6AarWAxM2KX1CJJtVme-DfM06bqkV7glsUO4rlb-z5RvZ8A_AuFDV3zrJMcYcBSsltZiw-BVkzSoIrKhdPdM--lNPv6nQcZXI2pb76S_vWzEbNr_momf3s71Yu5jYf7onlF59PkALElNN84UK-B7dxzRZ0K1DvN2EWjbUYVDWpyufHs3aEhIbIjMRqPFTEI7qoNbLlkHrd_pvI5t93Jrec0OTgP4b_AO6vmWd6tOryEG755hHcWdWi_P0YPlyiA0KXlrYhnUbS2C7Sy5lpu3buu_S8S8ddzFNCc30C3ybjrydn2bqOQmaRn11nsvTUGuqlF4EbqShhdV2YwKwLHDfDygpsVjLWn5GVULUqWVmJwongQoX84SnsN23jn0NKjTHMIYsMhnBrC1Vy76Mqnqit5IIl8H6YTL1YyWXoPsygSkcAdA8AxhsJHMep3nSKKtf9i_bqh15Plg6eCFUEDOosWlRgyFZqSzlGOKGMSbMJvB2A0rgq4lFH3fh22WkiMaxkEvlqAs9WwG1-NQCfQLkD6c5YdlsQyV55e43ci3_-8g3cvTid6E_n048v4R6SLx7zGgk5hP3rq6V_BXudW77uTfkPJ5X4cA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Release+of+nonstop+ribosomes+is+essential&rft.jtitle=mBio&rft.au=Feaga%2C+Heather+A&rft.au=Viollier%2C+Patrick+H&rft.au=Keiler%2C+Kenneth+C&rft.date=2014-11-11&rft.eissn=2150-7511&rft.volume=5&rft.issue=6&rft.spage=e01916&rft.epage=e01916&rft_id=info:doi/10.1128%2FmBio.01916-14&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2161-2129&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2161-2129&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2161-2129&client=summon