Enhanced Aluminum-Ion Storage Properties of N-Doped Titanium Dioxide Electrode in Aqueous Aluminum-Ion Batteries

Aqueous aluminum-ion batteries (AIBs) have great potential as devices for future large-scale energy storage systems due to the cost efficiency, environmentally friendly nature, and impressive theoretical energy density of Al. However, currently, available materials used as anodes for aqueous AIBs ar...

Full description

Saved in:
Bibliographic Details
Published in:Nanomaterials (Basel, Switzerland) Vol. 14; no. 5; p. 472
Main Authors: Jian, Le, Wu, Xibing, Li, Ruichun, Zhao, Fangzheng, Liu, Peng, Wang, Feng, Liu, Daosheng, Yao, Qingrong, Deng, Jianqiu
Format: Journal Article
Language:English
Published: Switzerland MDPI AG 05-03-2024
MDPI
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Aqueous aluminum-ion batteries (AIBs) have great potential as devices for future large-scale energy storage systems due to the cost efficiency, environmentally friendly nature, and impressive theoretical energy density of Al. However, currently, available materials used as anodes for aqueous AIBs are scarce. In this study, a novel sol-gel method was used to synthesize nitrogen-doped titanium dioxide (N-TiO ) as a potential anode material for AIBs in water. The annealed N-TiO showed a high discharge capacity of 43.2 mAh g at a current density of 3 A g . Analysis of the electrode kinetics revealed that the N-TiO anodes exhibited rapid diffusion of aluminum ions, low resistance to charge transfer, and high electronic conductivity, enabling good rate performance. The successful implementation of a nitrogen-doping strategy provides a promising approach to enhance the electrochemical characteristics of electrode materials for aqueous AIBs.
AbstractList Aqueous aluminum-ion batteries (AIBs) have great potential as devices for future large-scale energy storage systems due to the cost efficiency, environmentally friendly nature, and impressive theoretical energy density of Al. However, currently, available materials used as anodes for aqueous AIBs are scarce. In this study, a novel sol-gel method was used to synthesize nitrogen-doped titanium dioxide (N-TiO2) as a potential anode material for AIBs in water. The annealed N-TiO2 showed a high discharge capacity of 43.2 mAh g-1 at a current density of 3 A g-1. Analysis of the electrode kinetics revealed that the N-TiO2 anodes exhibited rapid diffusion of aluminum ions, low resistance to charge transfer, and high electronic conductivity, enabling good rate performance. The successful implementation of a nitrogen-doping strategy provides a promising approach to enhance the electrochemical characteristics of electrode materials for aqueous AIBs.
Aqueous aluminum-ion batteries (AIBs) have great potential as devices for future large-scale energy storage systems due to the cost efficiency, environmentally friendly nature, and impressive theoretical energy density of Al. However, currently, available materials used as anodes for aqueous AIBs are scarce. In this study, a novel sol-gel method was used to synthesize nitrogen-doped titanium dioxide (N-TiO[sub.2] ) as a potential anode material for AIBs in water. The annealed N-TiO[sub.2] showed a high discharge capacity of 43.2 mAh g[sup.−1] at a current density of 3 A g[sup.−1] . Analysis of the electrode kinetics revealed that the N-TiO[sub.2] anodes exhibited rapid diffusion of aluminum ions, low resistance to charge transfer, and high electronic conductivity, enabling good rate performance. The successful implementation of a nitrogen-doping strategy provides a promising approach to enhance the electrochemical characteristics of electrode materials for aqueous AIBs.
Aqueous aluminum-ion batteries (AIBs) have great potential as devices for future large-scale energy storage systems due to the cost efficiency, environmentally friendly nature, and impressive theoretical energy density of Al. However, currently, available materials used as anodes for aqueous AIBs are scarce. In this study, a novel sol-gel method was used to synthesize nitrogen-doped titanium dioxide (N-TiO ) as a potential anode material for AIBs in water. The annealed N-TiO showed a high discharge capacity of 43.2 mAh g at a current density of 3 A g . Analysis of the electrode kinetics revealed that the N-TiO anodes exhibited rapid diffusion of aluminum ions, low resistance to charge transfer, and high electronic conductivity, enabling good rate performance. The successful implementation of a nitrogen-doping strategy provides a promising approach to enhance the electrochemical characteristics of electrode materials for aqueous AIBs.
Aqueous aluminum-ion batteries (AIBs) have great potential as devices for future large-scale energy storage systems due to the cost efficiency, environmentally friendly nature, and impressive theoretical energy density of Al. However, currently, available materials used as anodes for aqueous AIBs are scarce. In this study, a novel sol-gel method was used to synthesize nitrogen-doped titanium dioxide (N-TiO2) as a potential anode material for AIBs in water. The annealed N-TiO2 showed a high discharge capacity of 43.2 mAh g−1 at a current density of 3 A g−1. Analysis of the electrode kinetics revealed that the N-TiO2 anodes exhibited rapid diffusion of aluminum ions, low resistance to charge transfer, and high electronic conductivity, enabling good rate performance. The successful implementation of a nitrogen-doping strategy provides a promising approach to enhance the electrochemical characteristics of electrode materials for aqueous AIBs.
Aqueous aluminum-ion batteries (AIBs) have great potential as devices for future large-scale energy storage systems due to the cost efficiency, environmentally friendly nature, and impressive theoretical energy density of Al. However, currently, available materials used as anodes for aqueous AIBs are scarce. In this study, a novel sol-gel method was used to synthesize nitrogen-doped titanium dioxide (N-TiO 2 ) as a potential anode material for AIBs in water. The annealed N-TiO 2 showed a high discharge capacity of 43.2 mAh g −1 at a current density of 3 A g −1 . Analysis of the electrode kinetics revealed that the N-TiO 2 anodes exhibited rapid diffusion of aluminum ions, low resistance to charge transfer, and high electronic conductivity, enabling good rate performance. The successful implementation of a nitrogen-doping strategy provides a promising approach to enhance the electrochemical characteristics of electrode materials for aqueous AIBs.
Audience Academic
Author Deng, Jianqiu
Liu, Daosheng
Jian, Le
Wu, Xibing
Yao, Qingrong
Liu, Peng
Li, Ruichun
Zhao, Fangzheng
Wang, Feng
AuthorAffiliation Guangxi Key Laboratory of Information Materials, School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, China; jl198717@163.com (L.J.); xibingwu2022@163.com (X.W.); l1534092882@163.com (R.L.); zfz513723@163.com (F.Z.); liupeng@guet.edu.cn (P.L.); wf@guet.edu.cn (F.W.); dawson@guet.edu.cn (D.L.); qingry96@guet.edu.cn (Q.Y.)
AuthorAffiliation_xml – name: Guangxi Key Laboratory of Information Materials, School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, China; jl198717@163.com (L.J.); xibingwu2022@163.com (X.W.); l1534092882@163.com (R.L.); zfz513723@163.com (F.Z.); liupeng@guet.edu.cn (P.L.); wf@guet.edu.cn (F.W.); dawson@guet.edu.cn (D.L.); qingry96@guet.edu.cn (Q.Y.)
Author_xml – sequence: 1
  givenname: Le
  orcidid: 0009-0004-2570-4853
  surname: Jian
  fullname: Jian, Le
  organization: Guangxi Key Laboratory of Information Materials, School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, China
– sequence: 2
  givenname: Xibing
  surname: Wu
  fullname: Wu, Xibing
  organization: Guangxi Key Laboratory of Information Materials, School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, China
– sequence: 3
  givenname: Ruichun
  surname: Li
  fullname: Li, Ruichun
  organization: Guangxi Key Laboratory of Information Materials, School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, China
– sequence: 4
  givenname: Fangzheng
  surname: Zhao
  fullname: Zhao, Fangzheng
  organization: Guangxi Key Laboratory of Information Materials, School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, China
– sequence: 5
  givenname: Peng
  surname: Liu
  fullname: Liu, Peng
  organization: Guangxi Key Laboratory of Information Materials, School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, China
– sequence: 6
  givenname: Feng
  orcidid: 0000-0001-5827-2971
  surname: Wang
  fullname: Wang, Feng
  organization: Guangxi Key Laboratory of Information Materials, School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, China
– sequence: 7
  givenname: Daosheng
  surname: Liu
  fullname: Liu, Daosheng
  organization: Guangxi Key Laboratory of Information Materials, School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, China
– sequence: 8
  givenname: Qingrong
  surname: Yao
  fullname: Yao, Qingrong
  organization: Guangxi Key Laboratory of Information Materials, School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, China
– sequence: 9
  givenname: Jianqiu
  orcidid: 0000-0002-8628-9719
  surname: Deng
  fullname: Deng, Jianqiu
  organization: Guangxi Key Laboratory of Information Materials, School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38470801$$D View this record in MEDLINE/PubMed
BookMark eNpdkktv1DAUhS1UREvpjjWKxIYFKX7HXqGhHWCkCpAoa8uxnalHiT11EgT_njtMqWawF34df9fn-j5HJymngNBLgi8Z0_hdsikTjgXmDX2CzihudM21JicH81N0MY4bDE0TpgR7hk6Z4g1WmJyh7TLd2eSCrxb9PMQ0D_Uqp-r7lItdh-pbydtQphjGKnfVl_oalr66jZNNcR6q65h_RR-qZR_cVDLMYqoW93PI83gM_GCnKRTgvEBPO9uP4eJhPEc_Pi5vrz7XN18_ra4WN7UTRE211UKw4IhoBZGidS1vBfY-YNJKgr0UQlmlOsUU443ymHkBVjkRTgkqqGTnaLXn-mw3ZlviYMtvk200fzdyWRsLxlwfDGCkJLbrlODcO2UlcxDXUoiqIA6w3u9Z27kdgnchTcX2R9DjkxTvzDr_NARrxiknQHjzQCgZ0jNOZoijC31v0y5XhmohJZihHKSv_5Nu8lwS5GqnEqqRmipQXe5VawsOYuoyBHbQfRiigyLpIuwvGiU5_Lls4MLb_QVX8jiW0D0-n2CzqyVzWEsgf3Vo-VH8r3LYH_EsxaI
CitedBy_id crossref_primary_10_3390_coatings14060707
Cites_doi 10.1002/cssc.201903067
10.1039/c2ee22987k
10.1002/smll.202107773
10.1039/C7TA11301C
10.1016/j.pmatsci.2022.100960
10.1016/j.jpowsour.2018.02.088
10.1016/j.ssi.2016.11.028
10.1016/j.ensm.2019.01.022
10.1016/j.electacta.2023.142793
10.1021/acsenergylett.7b00110
10.1016/j.cej.2019.05.085
10.1038/ncomms1563
10.1016/j.electacta.2021.139212
10.1039/C8NR09896D
10.1016/j.electacta.2014.08.016
10.1021/acs.jpcc.7b09494
10.1021/jz2012066
10.1002/adma.201604118
10.1016/j.ensm.2016.09.001
10.1016/j.jechem.2020.03.032
10.1039/c3ee44164d
10.3390/ma11112090
10.1016/j.ijleo.2019.163011
10.1016/j.apsusc.2007.03.047
10.1039/C3TA13906A
10.1016/j.jmst.2016.03.019
10.1016/S0169-4332(99)00117-8
10.1002/adfm.201901928
10.1021/acs.energyfuels.0c03580
10.1016/j.cej.2019.122853
10.1021/ie402820v
10.1002/smll.201600633
10.1126/science.aab1595
10.1021/acsenergylett.0c01138
10.1016/j.ensm.2019.07.033
10.1016/j.mtener.2018.09.009
10.1016/j.enchem.2020.100049
10.1016/j.electacta.2019.04.051
10.1016/j.electacta.2017.06.041
10.1002/smll.201701964
10.1021/acsanm.9b01391
10.1039/C4TA04644G
10.1002/eom2.12218
10.1002/adma.201705644
10.1021/cr500049y
10.1021/acsnano.1c04895
10.1016/j.ensm.2021.04.044
10.1021/acs.jpcc.7b07298
10.1016/j.egypro.2017.03.836
10.1016/j.cej.2013.09.095
10.1016/j.apsusc.2021.149765
10.1002/aenm.201602093
10.3390/molecules25081854
10.1002/celc.201901890
10.1002/aenm.201401410
10.1016/j.gee.2023.02.002
10.1016/j.carbon.2016.08.027
10.1016/j.ensm.2021.02.040
10.1002/cplu.201700258
10.1149/2.1021906jes
10.1002/adma.201706310
10.1021/acsnano.3c06361
10.1016/j.ensm.2022.09.034
10.1016/j.jece.2022.107722
10.1016/j.mtchem.2023.101765
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2024 by the authors. 2024
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2024 by the authors. 2024
DBID NPM
AAYXX
CITATION
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
8FE
8FG
8FH
ABJCF
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
D1I
DWQXO
F28
FR3
GNUQQ
H8D
H8G
HCIFZ
JG9
JQ2
KB.
KR7
L7M
LK8
L~C
L~D
M7P
P64
PDBOC
PIMPY
PQEST
PQQKQ
PQUKI
7X8
5PM
DOA
DOI 10.3390/nano14050472
DatabaseName PubMed
CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
ProQuest Natural Science Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
ProQuest Central Student
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
Materials Science Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Biological Sciences
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biological Science Database
Biotechnology and BioEngineering Abstracts
Materials Science Collection
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals
DatabaseTitle PubMed
CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Central Essentials
Materials Science Collection
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
Materials Business File
ProQuest Central
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Biotechnology Research Abstracts
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
Materials Science Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
ProQuest Materials Science Collection
Civil Engineering Abstracts
Aluminium Industry Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Technology Collection
Ceramic Abstracts
Biological Science Database
ProQuest SciTech Collection
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

PubMed

CrossRef
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: http://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2079-4991
ExternalDocumentID oai_doaj_org_article_8f8661aff8544dc8a63c5b5a2cb4858a
A786438567
10_3390_nano14050472
38470801
Genre Journal Article
GeographicLocations United States--US
Japan
GeographicLocations_xml – name: United States--US
– name: Japan
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 52362029
– fundername: Natural Science Foundation of Guangxi Province
  grantid: 2019GXNSFDA245014
– fundername: Innovation Project of GUET Graduate Education
  grantid: 2023YCXS153
– fundername: Guangxi Key Laboratory of Information Materials and Guilin University of Electronic Technology, China
  grantid: 221005-Z
GroupedDBID 53G
5VS
8FE
8FG
8FH
AADQD
AAFWJ
AAHBH
ABJCF
ADBBV
AENEX
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
CCPQU
D1I
GROUPED_DOAJ
HCIFZ
HYE
I-F
IAO
ITC
KB.
KQ8
LK8
M7P
MODMG
M~E
NPM
OK1
PDBOC
PGMZT
PIMPY
PROAC
RIG
RPM
AAYXX
CITATION
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
ABUWG
AZQEC
DWQXO
F28
FR3
GNUQQ
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
PQEST
PQQKQ
PQUKI
7X8
5PM
ID FETCH-LOGICAL-c518t-a9553ec15b5165bcb4b50dde01b610d6558a88f8383478d03d5991415c8525263
IEDL.DBID RPM
ISSN 2079-4991
IngestDate Tue Oct 22 14:37:36 EDT 2024
Tue Sep 17 21:29:01 EDT 2024
Sat Oct 26 00:46:12 EDT 2024
Tue Nov 05 12:41:33 EST 2024
Tue Nov 12 23:43:12 EST 2024
Thu Nov 21 23:14:42 EST 2024
Sat Nov 02 12:22:09 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords rate performance
anode
titanium dioxide
aqueous aluminum-ion batteries
nitrogen-doping
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c518t-a9553ec15b5165bcb4b50dde01b610d6558a88f8383478d03d5991415c8525263
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0009-0004-2570-4853
0000-0001-5827-2971
0000-0002-8628-9719
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10934241/
PMID 38470801
PQID 2955876928
PQPubID 2032354
ParticipantIDs doaj_primary_oai_doaj_org_article_8f8661aff8544dc8a63c5b5a2cb4858a
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10934241
proquest_miscellaneous_2956683824
proquest_journals_2955876928
gale_infotracacademiconefile_A786438567
crossref_primary_10_3390_nano14050472
pubmed_primary_38470801
PublicationCentury 2000
PublicationDate 20240305
PublicationDateYYYYMMDD 2024-03-05
PublicationDate_xml – month: 3
  year: 2024
  text: 20240305
  day: 5
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Nanomaterials (Basel, Switzerland)
PublicationTitleAlternate Nanomaterials (Basel)
PublicationYear 2024
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Zhu (ref_16) 2020; 51
An (ref_21) 2019; 11
Wang (ref_43) 2013; 52
Deng (ref_54) 2018; 6
Agiorgousis (ref_14) 2017; 2
Joseph (ref_18) 2019; 6
Lu (ref_44) 2017; 33
ref_58
ref_12
Chen (ref_65) 2017; 246
Wang (ref_28) 2019; 373
Pintar (ref_34) 2022; 10
Muldoon (ref_1) 2014; 114
He (ref_36) 2021; 35
He (ref_56) 2014; 2
Ambroz (ref_30) 2017; 7
Ma (ref_47) 2007; 253
Liu (ref_9) 2012; 5
Xiong (ref_61) 2011; 2
Yao (ref_22) 2021; 15
Yu (ref_15) 2017; 29
Wu (ref_7) 2021; 37
Li (ref_10) 2021; 3
Liu (ref_37) 2014; 143
Tong (ref_42) 2023; 463
Jadhav (ref_19) 2020; 5
Walter (ref_31) 2018; 30
Wang (ref_55) 2019; 309
Wessells (ref_29) 2011; 2
Holland (ref_41) 2018; 10
Li (ref_5) 2022; 53
Bitenc (ref_32) 2020; 24
Lahan (ref_38) 2017; 121
Zhao (ref_20) 2019; 22
Forghani (ref_62) 2019; 166
Jia (ref_33) 2022; 18
Xia (ref_63) 2016; 12
Tang (ref_45) 2017; 13
Wang (ref_46) 1999; 147
Zhang (ref_3) 2018; 30
Li (ref_8) 2014; 5
Xiong (ref_27) 2022; 4
Lv (ref_26) 2021; 39
Zhang (ref_24) 2017; 82
Ru (ref_25) 2020; 382
Gao (ref_60) 2020; 13
Tamilarasi (ref_51) 2023; 34
Liu (ref_59) 2015; 3
Ojeda (ref_39) 2017; 105
Kazazi (ref_40) 2017; 300
Suo (ref_2) 2015; 350
Li (ref_48) 2017; 121
Singh (ref_52) 2019; 193
Wang (ref_57) 2019; 2
Augustyn (ref_64) 2014; 7
Jiao (ref_13) 2016; 109
Gu (ref_17) 2017; 6
Nasir (ref_53) 2014; 236
Kong (ref_6) 2021; 395
Tang (ref_35) 2018; 384
Govindan (ref_50) 2021; 556
ref_49
Han (ref_4) 2022; 128
Angell (ref_11) 2019; 30
Li (ref_23) 2023; 17
References_xml – volume: 13
  start-page: 732
  year: 2020
  ident: ref_60
  article-title: The Compensation Effect Mechanism of Fe-Ni Mixed Prussian Blue Analogues in Aqueous Rechargeable Aluminum-Ion Batteries
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201903067
  contributor:
    fullname: Gao
– volume: 5
  start-page: 9743
  year: 2012
  ident: ref_9
  article-title: Aluminum storage behavior of anatase TiO2 nanotube arrays in aqueous solution for aluminum ion batteries
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c2ee22987k
  contributor:
    fullname: Liu
– volume: 18
  start-page: e2107773
  year: 2022
  ident: ref_33
  article-title: Rechargeable Aqueous Aluminum-Ion Battery: Progress and Outlook
  publication-title: Small
  doi: 10.1002/smll.202107773
  contributor:
    fullname: Jia
– volume: 6
  start-page: 4013
  year: 2018
  ident: ref_54
  article-title: Oxygen-deficient anatase TiO2@C nanospindles with pseudocapacitive contribution for enhancing lithium storage
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA11301C
  contributor:
    fullname: Deng
– volume: 128
  start-page: 100960
  year: 2022
  ident: ref_4
  article-title: Electrolytes for rechargeable aluminum batteries
  publication-title: Prog. Mater. Sci.
  doi: 10.1016/j.pmatsci.2022.100960
  contributor:
    fullname: Han
– volume: 384
  start-page: 249
  year: 2018
  ident: ref_35
  article-title: First-principles investigation of aluminum intercalation and diffusion in TiO2 materials: Anatase versus rutile
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2018.02.088
  contributor:
    fullname: Tang
– volume: 300
  start-page: 32
  year: 2017
  ident: ref_40
  article-title: High surface area TiO2 nanospheres as a high-rate anode material for aqueous aluminium-ion batteries
  publication-title: Solid. State Ion.
  doi: 10.1016/j.ssi.2016.11.028
  contributor:
    fullname: Kazazi
– volume: 22
  start-page: 228
  year: 2019
  ident: ref_20
  article-title: Tailoring multi-layer architectured FeS2@C hybrids for superior sodium-, potassium- and aluminum-ion storage
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2019.01.022
  contributor:
    fullname: Zhao
– volume: 463
  start-page: 142793
  year: 2023
  ident: ref_42
  article-title: Synchronous electrochemical anodization: A novel strategy for preparing cerium doped TiO2 nanotube arrays toward visible-light PEC water splitting
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2023.142793
  contributor:
    fullname: Tong
– volume: 2
  start-page: 689
  year: 2017
  ident: ref_14
  article-title: The Role of Ionic Liquid Electrolyte in an Aluminum–Graphite Electrochemical Cell
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.7b00110
  contributor:
    fullname: Agiorgousis
– volume: 373
  start-page: 580
  year: 2019
  ident: ref_28
  article-title: A flexible aqueous Al ion rechargeable full battery
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.05.085
  contributor:
    fullname: Wang
– volume: 2
  start-page: 550
  year: 2011
  ident: ref_29
  article-title: Copper hexacyanoferrate battery electrodes with long cycle life and high power
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms1563
  contributor:
    fullname: Wessells
– volume: 395
  start-page: 139212
  year: 2021
  ident: ref_6
  article-title: Realizing a long lifespan aluminum-ion battery through the anchoring effect between Polythiophene and carboxyl modified carbon nanotube
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2021.139212
  contributor:
    fullname: Kong
– volume: 11
  start-page: 3741
  year: 2019
  ident: ref_21
  article-title: Large-scale Co9S8@C hybrids with tunable carbon thickness for high-rate and long-term performances of an aqueous battery
  publication-title: Nanoscale
  doi: 10.1039/C8NR09896D
  contributor:
    fullname: An
– volume: 143
  start-page: 340
  year: 2014
  ident: ref_37
  article-title: The electrochemical behavior of Cl− assisted Al3+ insertion into titanium dioxide nanotube arrays in aqueous solution for aluminum ion batteries
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2014.08.016
  contributor:
    fullname: Liu
– volume: 121
  start-page: 26241
  year: 2017
  ident: ref_38
  article-title: Anatase TiO2 as an Anode Material for Rechargeable Aqueous Aluminum-Ion Batteries: Remarkable Graphene Induced Aluminum Ion Storage Phenomenon
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.7b09494
  contributor:
    fullname: Lahan
– volume: 2
  start-page: 2560
  year: 2011
  ident: ref_61
  article-title: Amorphous TiO2 Nanotube Anode for Rechargeable Sodium Ion Batteries
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz2012066
  contributor:
    fullname: Xiong
– volume: 29
  start-page: 1604118
  year: 2017
  ident: ref_15
  article-title: Graphene Nanoribbons on Highly Porous 3D Graphene for High-Capacity and Ultrastable Al-Ion Batteries
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201604118
  contributor:
    fullname: Yu
– volume: 6
  start-page: 9
  year: 2017
  ident: ref_17
  article-title: Confirming reversible Al3+ storage mechanism through intercalation of Al3+ into V2O5 nanowires in a rechargeable aluminum battery
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2016.09.001
  contributor:
    fullname: Gu
– volume: 51
  start-page: 72
  year: 2020
  ident: ref_16
  article-title: Reversible Al3+ storage mechanism in anatase TiO2 cathode material for ionic liquid electrolyte-based aluminum-ion batteries
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2020.03.032
  contributor:
    fullname: Zhu
– volume: 7
  start-page: 1597
  year: 2014
  ident: ref_64
  article-title: Pseudocapacitive oxide materials for high-rate electrochemical energy storage
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c3ee44164d
  contributor:
    fullname: Augustyn
– ident: ref_58
  doi: 10.3390/ma11112090
– volume: 193
  start-page: 163011
  year: 2019
  ident: ref_52
  article-title: Phase-dependent optical and photocatalytic performance of synthesized titanium dioxide (TiO2) nanoparticles
  publication-title: Optik
  doi: 10.1016/j.ijleo.2019.163011
  contributor:
    fullname: Singh
– volume: 253
  start-page: 7497
  year: 2007
  ident: ref_47
  article-title: Raman study of phase transformation of TiO2 rutile single crystal irradiated by infrared femtosecond laser
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2007.03.047
  contributor:
    fullname: Ma
– volume: 2
  start-page: 1721
  year: 2014
  ident: ref_56
  article-title: Retracted Article: Black mesoporous anatase TiO2 nanoleaves: A high capacity and high rate anode for aqueous Al-ion batteries
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C3TA13906A
  contributor:
    fullname: He
– volume: 33
  start-page: 300
  year: 2017
  ident: ref_44
  article-title: Synthesis of Mesoporous Anatase TiO2 Sphere with High Surface Area and Enhanced Photocatalytic Activity
  publication-title: J. Mater. Sci. Technol.
  doi: 10.1016/j.jmst.2016.03.019
  contributor:
    fullname: Lu
– volume: 147
  start-page: 52
  year: 1999
  ident: ref_46
  article-title: Surface-enhanced Raman scattering effect for Ag/TiO2 composite particles
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/S0169-4332(99)00117-8
  contributor:
    fullname: Wang
– volume: 30
  start-page: 1901928
  year: 2019
  ident: ref_11
  article-title: Ionic Liquid Analogs of AlCl3 with Urea Derivatives as Electrolytes for Aluminum Batteries
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201901928
  contributor:
    fullname: Angell
– volume: 35
  start-page: 2717
  year: 2021
  ident: ref_36
  article-title: Electrochemical Performance Enhancement of Nitrogen-Doped TiO2 for Lithium-Ion Batteries Investigated by a Film Electrode Model
  publication-title: Energy Fuels
  doi: 10.1021/acs.energyfuels.0c03580
  contributor:
    fullname: He
– volume: 382
  start-page: 122853
  year: 2020
  ident: ref_25
  article-title: Potassium cobalt hexacyanoferrate nanocubic assemblies for high-performance aqueous aluminum ion batteries
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.122853
  contributor:
    fullname: Ru
– volume: 52
  start-page: 17140
  year: 2013
  ident: ref_43
  article-title: In Situ Microwave-Assisted Synthesis of Porous N-TiO2/g-C3N4 Heterojunctions with Enhanced Visible-Light Photocatalytic Properties
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie402820v
  contributor:
    fullname: Wang
– volume: 12
  start-page: 3048
  year: 2016
  ident: ref_63
  article-title: Generic Synthesis of Carbon Nanotube Branches on Metal Oxide Arrays Exhibiting Stable High-Rate and Long-Cycle Sodium-Ion Storage
  publication-title: Small
  doi: 10.1002/smll.201600633
  contributor:
    fullname: Xia
– volume: 350
  start-page: 938
  year: 2015
  ident: ref_2
  article-title: “Water-in-salt” electrolyte enables high-voltage aqueous lithium-ion chemistries
  publication-title: Science
  doi: 10.1126/science.aab1595
  contributor:
    fullname: Suo
– volume: 5
  start-page: 2842
  year: 2020
  ident: ref_19
  article-title: Quantitative Molecular-Level Understanding of Electrochemical Aluminum-Ion Intercalation into a Crystalline Battery Electrode
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.0c01138
  contributor:
    fullname: Jadhav
– volume: 24
  start-page: 379
  year: 2020
  ident: ref_32
  article-title: Concept and electrochemical mechanism of an Al metal anode–organic cathode battery
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2019.07.033
  contributor:
    fullname: Bitenc
– volume: 10
  start-page: 208
  year: 2018
  ident: ref_41
  article-title: TiO2 nanopowder as a high rate, long cycle life electrode in aqueous aluminium electrolyte
  publication-title: Mater. Today Energy
  doi: 10.1016/j.mtener.2018.09.009
  contributor:
    fullname: Holland
– volume: 3
  start-page: 100049
  year: 2021
  ident: ref_10
  article-title: Rechargeable Al-ion batteries
  publication-title: EnergyChem
  doi: 10.1016/j.enchem.2020.100049
  contributor:
    fullname: Li
– volume: 309
  start-page: 242
  year: 2019
  ident: ref_55
  article-title: Synergistic effect of N-doping and rich oxygen vacancies induced by nitrogen plasma endows TiO2 superior sodium storage performance
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2019.04.051
  contributor:
    fullname: Wang
– volume: 246
  start-page: 931
  year: 2017
  ident: ref_65
  article-title: Cauliflower-like MnO@C/N composites with multiscale, expanded hierarchical ordered structures as electrode materials for Lithium- and Sodium-ion batteries
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2017.06.041
  contributor:
    fullname: Chen
– volume: 13
  start-page: 1701964
  year: 2017
  ident: ref_45
  article-title: Low Temperature Synthesis of Large-Size Anatase TiO2 Nanosheets with Enhanced Photocatalytic Activities
  publication-title: Small
  doi: 10.1002/smll.201701964
  contributor:
    fullname: Tang
– volume: 2
  start-page: 6428
  year: 2019
  ident: ref_57
  article-title: Anatase TiO2 Nanorods as Cathode Materials for Aluminum-Ion Batteries
  publication-title: ACS Appl. Nano Mater.
  doi: 10.1021/acsanm.9b01391
  contributor:
    fullname: Wang
– volume: 3
  start-page: 959
  year: 2015
  ident: ref_59
  article-title: Copper hexacyanoferrate nanoparticles as cathode material for aqueous Al-ion batteries
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C4TA04644G
  contributor:
    fullname: Liu
– volume: 4
  start-page: e12218
  year: 2022
  ident: ref_27
  article-title: Stretchable fiber-shaped aqueous aluminum ion batteries
  publication-title: EcoMat
  doi: 10.1002/eom2.12218
  contributor:
    fullname: Xiong
– volume: 30
  start-page: e1705644
  year: 2018
  ident: ref_31
  article-title: Polypyrenes as High-Performance Cathode Materials for Aluminum Batteries
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201705644
  contributor:
    fullname: Walter
– volume: 114
  start-page: 11683
  year: 2014
  ident: ref_1
  article-title: Quest for nonaqueous multivalent secondary batteries: Magnesium and beyond
  publication-title: Chem. Rev.
  doi: 10.1021/cr500049y
  contributor:
    fullname: Muldoon
– volume: 15
  start-page: 13662
  year: 2021
  ident: ref_22
  article-title: Spatial Isolation-Inspired Ultrafine CoSe2 for High-Energy Aluminum Batteries with Improved Rate Cyclability
  publication-title: ACS Nano
  doi: 10.1021/acsnano.1c04895
  contributor:
    fullname: Yao
– volume: 39
  start-page: 412
  year: 2021
  ident: ref_26
  article-title: Suppressing passivation layer of Al anode in aqueous electrolytes by complexation of H2PO4− to Al3+ and an electrochromic Al ion battery
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2021.04.044
  contributor:
    fullname: Lv
– volume: 121
  start-page: 25795
  year: 2017
  ident: ref_48
  article-title: Enhanced Visible Light Photocatalytic Hydrogenation of CO2 into Methane over a Pd/Ce-TiO2 Nanocomposition
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.7b07298
  contributor:
    fullname: Li
– volume: 105
  start-page: 3997
  year: 2017
  ident: ref_39
  article-title: A Hydrogel Template Synthesis of TiO2 Nanoparticles for Aluminium-ion Batteries
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2017.03.836
  contributor:
    fullname: Ojeda
– volume: 236
  start-page: 388
  year: 2014
  ident: ref_53
  article-title: Characterization and activity of the Ce and N co-doped TiO2 prepared through hydrothermal method
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2013.09.095
  contributor:
    fullname: Nasir
– volume: 556
  start-page: 149765
  year: 2021
  ident: ref_50
  article-title: Fe3O4 nanorods decorated on polypyrrole/reduced graphene oxide for electrochemical detection of dopamine and photocatalytic degradation of acetaminophen
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2021.149765
  contributor:
    fullname: Govindan
– volume: 7
  start-page: 1602093
  year: 2017
  ident: ref_30
  article-title: Trends in Aluminium-Based Intercalation Batteries
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201602093
  contributor:
    fullname: Ambroz
– ident: ref_49
  doi: 10.3390/molecules25081854
– volume: 6
  start-page: 6002
  year: 2019
  ident: ref_18
  article-title: Hexagonal Molybdenum Trioxide (h-MoO3) as an Electrode Material for Rechargeable Aqueous Aluminum-Ion Batteries
  publication-title: ChemElectroChem
  doi: 10.1002/celc.201901890
  contributor:
    fullname: Joseph
– volume: 5
  start-page: 1401410
  year: 2014
  ident: ref_8
  article-title: Reversible Aluminum-Ion Intercalation in Prussian Blue Analogs and Demonstration of a High-Power Aluminum-Ion Asymmetric Capacitor
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201401410
  contributor:
    fullname: Li
– ident: ref_12
  doi: 10.1016/j.gee.2023.02.002
– volume: 109
  start-page: 276
  year: 2016
  ident: ref_13
  article-title: An industrialized prototype of the rechargeable Al/AlCl3-[EMIm]Cl/graphite battery and recycling of the graphitic cathode into graphene
  publication-title: Carbon
  doi: 10.1016/j.carbon.2016.08.027
  contributor:
    fullname: Jiao
– volume: 37
  start-page: 619
  year: 2021
  ident: ref_7
  article-title: Reversible aluminum ion storage mechanism in Ti-deficient rutile titanium dioxide anode for aqueous aluminum-ion batteries
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2021.02.040
  contributor:
    fullname: Wu
– volume: 82
  start-page: 1170
  year: 2017
  ident: ref_24
  article-title: FeFe(CN)6 Nanocubes as a Bipolar Electrode Material in Aqueous Symmetric Sodium-Ion Batteries
  publication-title: Chempluschem
  doi: 10.1002/cplu.201700258
  contributor:
    fullname: Zhang
– volume: 166
  start-page: A1370
  year: 2019
  ident: ref_62
  article-title: Complications When Differentiating Charge Transfer Processes in Electrochemical Capacitor Materials: Assessment of Cyclic Voltammetry Data
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.1021906jes
  contributor:
    fullname: Forghani
– volume: 30
  start-page: e1706310
  year: 2018
  ident: ref_3
  article-title: Emerging Nonaqueous Aluminum-Ion Batteries: Challenges, Status, and Perspectives
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201706310
  contributor:
    fullname: Zhang
– volume: 17
  start-page: 18507
  year: 2023
  ident: ref_23
  article-title: Phase Engineering of Nonstoichiometric Cu2-xSe as Anode for Aqueous Zn-Ion Batteries
  publication-title: ACS Nano
  doi: 10.1021/acsnano.3c06361
  contributor:
    fullname: Li
– volume: 53
  start-page: 514
  year: 2022
  ident: ref_5
  article-title: Aluminum-ion storage reversibility in a novel spinel Al2/3Li1/3Mn2O4 cathode for aqueous rechargeable aluminum batteries
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2022.09.034
  contributor:
    fullname: Li
– volume: 10
  start-page: 107722
  year: 2022
  ident: ref_34
  article-title: Brookite vs. rutile vs. anatase: What`s behind their various photocatalytic activities?
  publication-title: J. Environ. Chem. Eng.
  doi: 10.1016/j.jece.2022.107722
  contributor:
    fullname: Pintar
– volume: 34
  start-page: 101765
  year: 2023
  ident: ref_51
  article-title: High-performance electrochemical detection of glucose in human blood serum using a hierarchical NiO2 nanostructure supported on phosphorus doped graphene
  publication-title: Mater. Today Chem.
  doi: 10.1016/j.mtchem.2023.101765
  contributor:
    fullname: Tamilarasi
SSID ssj0000913853
Score 2.3141541
Snippet Aqueous aluminum-ion batteries (AIBs) have great potential as devices for future large-scale energy storage systems due to the cost efficiency, environmentally...
SourceID doaj
pubmedcentral
proquest
gale
crossref
pubmed
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 472
SubjectTerms Aluminum
Aluminum-ion batteries
Analysis
anode
Anodes
aqueous aluminum-ion batteries
Aqueous solutions
Batteries
Carbon
Charge transfer
Chemical synthesis
Composite materials
Crystal structure
Discharge capacity
Electric properties
Electrochemistry
Electrode materials
Electrodes
Electrolytes
Electrons
Energy storage
Fourier transforms
Investigations
Ion storage
Lithium
Low resistance
Mechanical properties
Methods
Microscopy
Nanoparticles
Nitrogen
nitrogen-doping
rate performance
Sol-gel processes
Spectrum analysis
Storage systems
Titanium
Titanium dioxide
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELWgJzigQvlIKciVQJyibhI7mRwXdqtyqZBaJG6R7ThqDnWqbiPx83mTpKtEHLhwyyaRNfvmO7afhfhU28ZmmS9j4w3FqvQ-NinvAm68rjUqkmaYMb24Ki5_0WbLNDn7o754TdhIDzwCd0YNIYWYpiGtVO3I5JnTVpvUWUWaxtJolc-aqSEGl0mGRDSudM_Q158FEzo0E5rZERc5aKDq_zsgzzLScrXkLP2cH4oXU90o16O8L8UTH16J5zM2wSNxtw03w3y-XCPitKG_jb93QV6hq0bQkD_4s_s986fKrpGX8QY_a3ndojps-1u5abvfbe3ldjwXB1dtkGsI2fW75YAjJSfGeS1-nm-vv13E04EKsdMJPcSm1DrzLgF-Sa4tELR6hfi2SiyqqDrXwJMAOLpWVVC9ylhbCVK8I53qNM_eiIPQBf-Ot3ob3oRdkEkcOjxFpfMKQ1HhS2ttGYnPjxBXdyNvRoV-g1VRzVURia-M__4dZrsebsAGqskGqn_ZQCS-sPYq9kmoyJlpawFEZXaral0QCi-CuJE4eVRwNTnrrkoBC5JCmVIkTveP4WY8d2IC48zv5DmASVUk3o72sJc5Q4ZH4Z1EghaWsvhTyyehvRmovJnMS6GIOv4fMLwXz-Bmalghp0_EwcN97z-Ip7u6_zh4xx8-yhYx
  priority: 102
  providerName: Directory of Open Access Journals
Title Enhanced Aluminum-Ion Storage Properties of N-Doped Titanium Dioxide Electrode in Aqueous Aluminum-Ion Batteries
URI https://www.ncbi.nlm.nih.gov/pubmed/38470801
https://www.proquest.com/docview/2955876928
https://search.proquest.com/docview/2956683824
https://pubmed.ncbi.nlm.nih.gov/PMC10934241
https://doaj.org/article/8f8661aff8544dc8a63c5b5a2cb4858a
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb5swFH9aepi6w7Tv0XWVJ23aiSaADY9j1qTqDqsqtZN2Q7YxK9JioqRI-_P7bCAC7bZbEoj1_L4ffu8HwOdSVSpJTB5KIzHkuTGhjN0UcGVEKSgjqfyJ6dVtdv0LV2sHk5MOszC-aV-r-tz-2Zzb-t73Vm43ej70ic1vflw4CCROoWc-gxklh6Ma3fvfPEooCHVd7gnV9HMrbUOFhHDIiMfwNCGPTIlSNAlFHrH_X788CkzTpslRFLp8Ac_79JEtOzJfwhNjX8GzEajga9iu7b0_1mdLcjy1bTfh98ayWyquyXewG_f0fedgVFlTsetwRV9LdldTkli3G7aqm791adi6ez0OfaotWxKRTbufLtghc9I6b-Dn5fru4irs36sQahHhQyhzIRKjI6FElAqlFVdiQW5uESlKpspUCJSIFVLxyjMsF4kTWkSRXqOIRZwmb-HINta8dxPf0s1iZygjTYUex1wbTkthZnKlVB7Al4HFxbaDzyio7HBSKcZSCeCb4__hHgd67X9odr-LXvQFkUTZhKwqFJyXGmWaaNqDjGkHSDQH8NVJr3CmSSLSsp8wIFIdyFWxzJDyLyRyAzgdBFz0NrsvYmILxYY8xgA-HS6TtbkjFGkdn909aUqMiXkA7zp9ONA8qFUAONGUyaamV0jBPaL3oNAn___XD3BMNsZ9e5w4haOHXWs-wmxftmf-OcOZN5JHV70XYQ
link.rule.ids 230,315,729,782,786,866,887,2106,27933,27934,53800,53802
linkProvider National Library of Medicine
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-xIcF44HNAYECQQDxlzYedOI9l7dSJrZq0IvFm2Y7DIlGnaheJP5-zk1SJeNtbW6fWne87ufsF4EshS5kkOg-EFiwgudaBiO0UcKlpQTEjKd0T08VNtvzFZnMLk5P2szCuaV_J6tT8WZ-a6tb1Vm7WatL3iU2ur84sBBLB0DM5gIdosGE4qNKdB86jBMNQ2-eeYFU_McLUWEpQi414BI8S9MmYKkWjYOQw-__3zIPQNG6bHMSh82f35eA5PO0yT3_arr-AB9q8hCcDPMJXsJmbW9cR4E_RZ1WmWQcXtfFvsC5Ht-Nf2xv3W4vA6telvwxm-LXwVxXml1Wz9mdV_bcqtD9v36yDnyrjT5G7utmNN2xBPXGfY_h5Pl-dLYLulQyBohG7C0ROaaJVRCWNUiqVJJKG6CHDSGIeVqSUMsFYybDuJRkrwsTKO8IkQTEa0zhNXsOhqY1-a4fFhR3jzpiIFNaIhOVKE9yKZTqXUuYefO1lwzct8gbHisWKkw_F6cF3K7j9NRYv2_1Qb3_z7sw5koSJiChLRgkpFBNpopAHESMHDGn24JsVO7dWjbJVohtOQFItPhafZgxTN4bkenDSawbvzH3HYzwWDCt5zDz4vF9GQ7VPX4Sx52yvSVM8mJh48KZVpD3NvT56wEYqNmJqvIKa5cDAe016d_-_foLHi9XVJb-8WP54D0doqsR12dETOLzbNvoDHOyK5qOzsX__pCwd
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-xIU3jgW9YYICRQDxlaT6cOLyVtdUmoKq0IfFm2Y7DIq1O1S4Sfz5nJ6kS8QZvbeNad77v5O4XgA-FLGUc69wXWjA_ybX2RWSngEtNC4oZSememF5cZcufbDa3MDmf-1kY17SvZHVmbtdnprpxvZWbtQr6PrFg9f3cQiAlGHqCTVEGB3AfjXYSDSp154XzMMZQ1Pa6x1jZB0aYGssJavERj-EoRr-M6VI4CkgOt_9v7zwIT-PWyUEsWjz6Hy4ew8MuAyXTds0TuKfNU3gwwCV8Bpu5uXGdAWSKvqsyzdq_rA25wvoc3Q9Z2Rv4W4vESuqSLP0Zfi3IdYV5ZtWsyayqf1eFJvP2DTv4qTJkihzWzW68YQvuifs8hx-L-fX5hd-9msFXNGR3vsgpjbUKqaRhSqWSiaQT9JSTUGI-VqSUMsFYybD-TTJWTGIr9xCTBcVoRKM0fgGHpjb6xA6NCzvOnTERKqwVE5YrneBWLNO5lDL34GMvH75pETg4Vi5WpHwoUg--WOHt11jcbPdDvf3Fu3PnSBImJKIsGU2SQjGRxgp5EBFywJBmDz5Z0XNr3ShfJbohBSTV4mTxacYwhWNIrgenvXbwzux3PMJjwfCSR8yD9_vLaLD2KYww9pztmjTFg4kSD162yrSnuddJD9hIzUZMja-gdjlQ8F6bXv37X9_B0Wq24N8ul19fwzFabOKa7egpHN5tG_0GDnZF89aZ2R9h5y6d
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+Aluminum-Ion+Storage+Properties+of+N-Doped+Titanium+Dioxide+Electrode+in+Aqueous+Aluminum-Ion+Batteries&rft.jtitle=Nanomaterials+%28Basel%2C+Switzerland%29&rft.au=Le%2C+Jian&rft.au=Wu%2C+Xibing&rft.au=Li%2C+Ruichun&rft.au=Zhao%2C+Fangzheng&rft.date=2024-03-05&rft.pub=MDPI+AG&rft.eissn=2079-4991&rft.volume=14&rft.issue=5&rft.spage=472&rft_id=info:doi/10.3390%2Fnano14050472&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-4991&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-4991&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-4991&client=summon