Large-scale achromatic flat lens by light frequency-domain coherence optimization
Flat lenses, including metalens and diffractive lens, have attracted increasing attention due to their ability to miniaturize the imaging devices. However, realizing a large scale achromatic flat lens with high performance still remains a big challenge. Here, we developed a new framework in designin...
Saved in:
Published in: | Light, science & applications Vol. 11; no. 1; p. 323 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
London
Nature Publishing Group UK
11-11-2022
Springer Nature B.V Nature Publishing Group |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Flat lenses, including metalens and diffractive lens, have attracted increasing attention due to their ability to miniaturize the imaging devices. However, realizing a large scale achromatic flat lens with high performance still remains a big challenge. Here, we developed a new framework in designing achromatic multi-level diffractive lenses by light coherence optimization, which enables the implementation of large-scale flat lenses under non-ideal conditions. As results, a series achromatic polymer lenses with diameter from 1 to 10 mm are successfully designed and fabricated. The subsequent optical characterizations substantially validate our theoretical framework and show relatively good performance of the centimeter-scale achromatic multi-level diffractive lenses with a super broad bandwidth in optical wavelengths (400–1100 nm). After comparing with conventional refractive lens, this achromatic lens shows significant advantages in white-light imaging performance, implying a new strategy in developing practical planar optical devices.
We developed a new framework in designing centimeter-scale achromatic multi-level diffractive lenses by light frequency-domain coherence optimization, which shows significant advantages in white-light imaging performance over the traditional refractive lens. |
---|---|
AbstractList | We developed a new framework in designing centimeter-scale achromatic multi-level diffractive lenses by light frequency-domain coherence optimization, which shows significant advantages in white-light imaging performance over the traditional refractive lens. Flat lenses, including metalens and diffractive lens, have attracted increasing attention due to their ability to miniaturize the imaging devices. However, realizing a large scale achromatic flat lens with high performance still remains a big challenge. Here, we developed a new framework in designing achromatic multi-level diffractive lenses by light coherence optimization, which enables the implementation of large-scale flat lenses under non-ideal conditions. As results, a series achromatic polymer lenses with diameter from 1 to 10 mm are successfully designed and fabricated. The subsequent optical characterizations substantially validate our theoretical framework and show relatively good performance of the centimeter-scale achromatic multi-level diffractive lenses with a super broad bandwidth in optical wavelengths (400–1100 nm). After comparing with conventional refractive lens, this achromatic lens shows significant advantages in white-light imaging performance, implying a new strategy in developing practical planar optical devices. We developed a new framework in designing centimeter-scale achromatic multi-level diffractive lenses by light frequency-domain coherence optimization, which shows significant advantages in white-light imaging performance over the traditional refractive lens. Abstract Flat lenses, including metalens and diffractive lens, have attracted increasing attention due to their ability to miniaturize the imaging devices. However, realizing a large scale achromatic flat lens with high performance still remains a big challenge. Here, we developed a new framework in designing achromatic multi-level diffractive lenses by light coherence optimization, which enables the implementation of large-scale flat lenses under non-ideal conditions. As results, a series achromatic polymer lenses with diameter from 1 to 10 mm are successfully designed and fabricated. The subsequent optical characterizations substantially validate our theoretical framework and show relatively good performance of the centimeter-scale achromatic multi-level diffractive lenses with a super broad bandwidth in optical wavelengths (400–1100 nm). After comparing with conventional refractive lens, this achromatic lens shows significant advantages in white-light imaging performance, implying a new strategy in developing practical planar optical devices. Flat lenses, including metalens and diffractive lens, have attracted increasing attention due to their ability to miniaturize the imaging devices. However, realizing a large scale achromatic flat lens with high performance still remains a big challenge. Here, we developed a new framework in designing achromatic multi-level diffractive lenses by light coherence optimization, which enables the implementation of large-scale flat lenses under non-ideal conditions. As results, a series achromatic polymer lenses with diameter from 1 to 10 mm are successfully designed and fabricated. The subsequent optical characterizations substantially validate our theoretical framework and show relatively good performance of the centimeter-scale achromatic multi-level diffractive lenses with a super broad bandwidth in optical wavelengths (400–1100 nm). After comparing with conventional refractive lens, this achromatic lens shows significant advantages in white-light imaging performance, implying a new strategy in developing practical planar optical devices.We developed a new framework in designing centimeter-scale achromatic multi-level diffractive lenses by light frequency-domain coherence optimization, which shows significant advantages in white-light imaging performance over the traditional refractive lens. |
ArticleNumber | 323 |
Author | Xiao, Xingjian Zhao, Yunwei Ye, Xin Chen, Chen Zhu, Shining Li, Tao Deng, Junhong Lu, Xinmou Li, Guixin Rong, Yansen |
Author_xml | – sequence: 1 givenname: Xingjian surname: Xiao fullname: Xiao, Xingjian organization: National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulations, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University – sequence: 2 givenname: Yunwei surname: Zhao fullname: Zhao, Yunwei organization: National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulations, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University – sequence: 3 givenname: Xin surname: Ye fullname: Ye, Xin organization: National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulations, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University – sequence: 4 givenname: Chen surname: Chen fullname: Chen, Chen organization: National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulations, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University – sequence: 5 givenname: Xinmou surname: Lu fullname: Lu, Xinmou organization: Department of Materials Science and Engineering, Southern University of Science and Technology – sequence: 6 givenname: Yansen surname: Rong fullname: Rong, Yansen organization: Department of Materials Science and Engineering, Southern University of Science and Technology – sequence: 7 givenname: Junhong surname: Deng fullname: Deng, Junhong organization: Department of Materials Science and Engineering, Southern University of Science and Technology – sequence: 8 givenname: Guixin orcidid: 0000-0001-9689-8705 surname: Li fullname: Li, Guixin email: ligx@sustech.edu.cn organization: Department of Materials Science and Engineering, Southern University of Science and Technology – sequence: 9 givenname: Shining orcidid: 0000-0002-3472-6497 surname: Zhu fullname: Zhu, Shining organization: National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulations, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University – sequence: 10 givenname: Tao orcidid: 0000-0003-0049-471X surname: Li fullname: Li, Tao email: taoli@nju.edu.cn organization: National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulations, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University |
BookMark | eNp9kk9r3DAQxUVJadI0X6AnQy-9ONVfS7oUSmibwEIoJGchyyOvF1vaSt6C8-mrjUPb9BBdJEbv_ZgZ3lt0EmIAhN4TfEkwU58yJ0zKGlNaY4Ipr5dX6IxiLmspmDr5532KLnLe4XI0J1jJN-iUNUxI1vAz9GNjUw91dnaEyrptipOdB1f50c7VCCFX7VKNQ7-dK5_g5wGCW-quiIZQubiFVApQxf08TMNDccbwDr32dsxw8XSfo_tvX--uruvN7febqy-b2gki57rjtMECEyh9CCyVxJ54wKwjVGFHVNdKEK4RmnGpdStxR6xvKMGeSt4BZefoZuV20e7MPg2TTYuJdjCPhZh6Y1MZZQTjpbeNYE4rZ3mruRWKUwWksRJbqnVhfV5Z-0M7QecgzMmOz6DPf8KwNX38ZXTDtRS8AD4-AVIsS8qzmYbsYBxtgHjIhkomVKO0OPb94T_pLh5SKKs6qrgSmGpWVHRVuRRzTuD_NEOwOQbArAEwJQDmMQBmKSa2mnIRhx7SX_QLrt_BZbM9 |
CitedBy_id | crossref_primary_10_3788_COL202321_110006 crossref_primary_10_3390_nano14060513 crossref_primary_10_3788_PI_2023_R01 crossref_primary_10_1016_j_optcom_2024_130340 crossref_primary_10_1364_AO_497775 crossref_primary_10_1109_LPT_2023_3326257 crossref_primary_10_1063_5_0177734 crossref_primary_10_1364_OL_482794 crossref_primary_10_1016_j_optlaseng_2023_107955 crossref_primary_10_1002_adom_202300394 crossref_primary_10_1364_OL_501356 crossref_primary_10_1364_OE_501872 crossref_primary_10_1364_OE_493216 crossref_primary_10_37188_lam_2024_005 crossref_primary_10_1186_s43593_023_00057_z crossref_primary_10_1515_nanoph_2023_0850 crossref_primary_10_1021_acsphotonics_2c01990 crossref_primary_10_1515_nanoph_2022_0803 crossref_primary_10_1364_OE_500688 crossref_primary_10_1038_s41377_023_01093_7 crossref_primary_10_1016_j_fmre_2024_03_019 crossref_primary_10_1103_PhysRevLett_131_193801 crossref_primary_10_1021_acs_nanolett_3c03515 crossref_primary_10_29026_oea_2024_230145 crossref_primary_10_1186_s43074_024_00132_9 crossref_primary_10_1364_OE_479137 crossref_primary_10_1364_OE_509946 crossref_primary_10_1002_lpor_202300957 crossref_primary_10_1021_acsphotonics_3c00406 crossref_primary_10_3390_mi14122220 crossref_primary_10_29026_oes_2023_230025 |
Cites_doi | 10.1038/s41565-018-0347-0 10.1038/s41467-020-17015-9 10.1063/5.0012759 10.1364/OE.433017 10.1038/s41377-018-0078-x 10.1126/science.aaa2494 10.1364/OE.423764 10.1038/s41467-021-26443-0 10.1364/PRJ.406197 10.1038/s41377-019-0178-2 10.1021/acsphotonics.9b01809 10.1021/acsphotonics.1c00424 10.1038/s41566-022-00963-7 10.1021/acs.nanolett.9b03333 10.1002/9783527699223 10.1038/s41467-021-25797-9 10.1364/OE.389458 10.1515/nanoph-2021-0748 10.1038/s41565-017-0034-6 10.1116/1.4947586 10.1515/nanoph-2020-0550 10.1364/OPTICA.422843 10.3788/COL202220.013601 10.1145/321062.321069 10.1021/acs.nanolett.1c02612 10.1038/s41377-021-00492-y 10.1002/9780470022658 10.1038/s41467-019-08305-y 10.1038/s41467-020-17646-y 10.1126/science.aaf6644 10.1126/sciadv.abn5644 10.1515/nanoph-2021-0239 10.1364/PRJ.422280 10.1021/acs.nanolett.1c01114 10.1038/s41565-017-0052-4 10.21236/ADA213404 10.1364/OE.26.026866 10.1364/OPTICA.389404 10.1126/sciadv.abe4458 10.1038/s41598-018-21169-4 10.1002/lpor.202100425 10.1117/1.AP.2.6.066004 10.1038/s41467-017-00166-7 10.1364/OPTICA.4.000625 10.1038/srep21545 10.1002/047010628X 10.1145/2897824.2925941 |
ContentType | Journal Article |
Copyright | The Author(s) 2022 The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2022 – notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION 3V. 7X7 7XB 88A 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M2P M7P PIMPY PQEST PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.1038/s41377-022-01024-y |
DatabaseName | Springer Open Access CrossRef ProQuest Central (Corporate) ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central ProQuest Natural Science Collection ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection (Proquest) (PQ_SDU_P3) ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni Edition) ProQuest Science Journals Biological Science Database Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest One Academic ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: http://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2047-7538 |
EndPage | 323 |
ExternalDocumentID | oai_doaj_org_article_f7fa653c98ca4b94a58428e16a70a299 10_1038_s41377_022_01024_y |
GrantInformation_xml | – fundername: The National Key R&D Program of China (2017YFA0303701); Dengfeng Project B of Nanjing University – fundername: Guangdong Provincial Innovation and Entrepreneurship Project (2017ZT07C071); Natural Science Foundation of Shenzhen Innovation Commission (JCYJ20200109140808088) – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: Nos. 91850204, 12174186, 62288101 funderid: https://doi.org/10.13039/501100001809 – fundername: ; – fundername: ; grantid: Nos. 91850204, 12174186, 62288101 |
GroupedDBID | 0R~ 3V. 5VS 7X7 88A 88I 8FE 8FH 8FI 8FJ AAJSJ ABUWG ACGFS ACSMW AFKRA AJTQC ALMA_UNASSIGNED_HOLDINGS ARCSS AZQEC BBNVY BENPR BHPHI BPHCQ BVXVI C6C CCPQU DWQXO EBLON EBS FYUFA GNUQQ GROUPED_DOAJ HCIFZ HMCUK HYE KQ8 LK8 M0L M2P M7P M~E NAO OK1 PIMPY PQQKQ PROAC RNT RNTTT RPM SNYQT UKHRP AAYXX CITATION 7XB 8FK K9. PQEST PQUKI PRINS Q9U 7X8 5PM |
ID | FETCH-LOGICAL-c517t-d4260501e736507870f1fe03d1280c18db7e5c65934799b70d1af6210f274de23 |
IEDL.DBID | RPM |
ISSN | 2047-7538 2095-5545 |
IngestDate | Tue Oct 22 15:07:55 EDT 2024 Tue Sep 17 21:34:57 EDT 2024 Fri Aug 16 04:21:55 EDT 2024 Thu Oct 10 15:39:57 EDT 2024 Fri Aug 23 00:34:15 EDT 2024 Fri Oct 11 20:48:18 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c517t-d4260501e736507870f1fe03d1280c18db7e5c65934799b70d1af6210f274de23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-9689-8705 0000-0002-3472-6497 0000-0003-0049-471X |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9649754/ |
PMID | 36357364 |
PQID | 2734850293 |
PQPubID | 2041947 |
PageCount | 1 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_f7fa653c98ca4b94a58428e16a70a299 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9649754 proquest_miscellaneous_2735868952 proquest_journals_2734850293 crossref_primary_10_1038_s41377_022_01024_y springer_journals_10_1038_s41377_022_01024_y |
PublicationCentury | 2000 |
PublicationDate | 2022-11-11 |
PublicationDateYYYYMMDD | 2022-11-11 |
PublicationDate_xml | – month: 11 year: 2022 text: 2022-11-11 day: 11 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Light, science & applications |
PublicationTitleAbbrev | Light Sci Appl |
PublicationYear | 2022 |
Publisher | Nature Publishing Group UK Springer Nature B.V Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Springer Nature B.V – name: Nature Publishing Group |
References | SunPBroadband achromatic polarization insensitive metalens over 950 nm bandwidth in the visible and near-infraredChin. Opt. Lett.2022200136012022ChOpL..20a3601S10.3788/COL202220.013601 Swanson, G. J. Binary Optics Technology: The Theory and Design of Multi-level Diffractive Optical Elements. (Massachusetts Institute of Technology, Lincoln Laboratory, 1989). WangSMBroadband achromatic optical metasurface devicesNat. Commun.201782017NatCo...8..187W10.1038/s41467-017-00166-7 ArbabiEControlling the sign of chromatic dispersion in diffractive optics with dielectric metasurfacesOptica201746256322017Optic...4..625A10.1364/OPTICA.4.000625 PengYFThe diffractive Achromat full spectrum computational imaging with diffractive opticsACM Trans. Graph.2016353110.1145/2897824.2925941 ChenMKEdge detection with meta-lens: from one dimension to three dimensionsNanophotonics2021103709371510.1515/nanoph-2021-0239 LinRJAchromatic metalens array for full-colour light-field imagingNat. Nanotechnol.2019142272312019NatNa..14..227L10.1038/s41565-018-0347-0 ThompsonARMoranJMSwensonGWJrInterferometry and Synthesis in RadioAstronomy.20173rd edn.ChamSpringer781786 WangSMA broadband achromatic metalens in the visibleNat. Nanotechnol.2018132272322018NatNa..13..227W10.1038/s41565-017-0052-4 XuBBMetalens-integrated compact imaging devices for wide-field microscopyAdv. Photonics202020660042020AdPho...2f6004X10.1117/1.AP.2.6.066004 LuoYVarifocal metalens for optical sectioning fluorescence microscopyNano Lett.202121513351422021NanoL..21.5133L10.1021/acs.nanolett.1c01114 KhorasaninejadMMetalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imagingScience2016352119011942016Sci...352.1190K10.1126/science.aaf6644 TsengMLVacuum ultraviolet nonlinear metalensSci. Adv.20228eabn56442018NatSR...8.5644T10.1126/sciadv.abn5644 AndrénDLarge-scale metasurfaces made by an exposed resistACS Photonics2020788589210.1021/acsphotonics.9b01809 BalliFAn ultrabroadband 3D achromatic metalensNanophotonics2021101259126410.1515/nanoph-2020-0550 LuoYMeta-lens light-sheet fluorescence microscopy for in vivo imagingNanophotonics2022111949195910.1515/nanoph-2021-0748 ChenWTA broadband achromatic metalens for focusing and imaging in the visibleNat. Nanotechnol.2018132202262018NatNa..13..220C10.1038/s41565-017-0034-6 SmithWJModern Lens Design.2004New YorkMcGraw-Hill KressBCMeyrueisPApplied Digital Optics: From Micro-Optics to Nanophotonics.2009West SussexWiley10.1002/9780470022658 ParkJSAll-glass, large metalens at visible wavelength using deep-ultraviolet projection lithographyNano Lett.201919867386822019NanoL..19.8673P10.1021/acs.nanolett.9b03333 ShresthaSBroadband achromatic dielectric metalensesLight Sci. Appl.20187852018LSA.....7...85S10.1038/s41377-018-0078-x EngelbergJLevyUAchromatic flat lens performance limitsOptica202188348452021Optic...8..834E10.1364/OPTICA.422843 WangPMohammadNMenonRChromatic-aberration-corrected diffractive lenses for ultra-broadband focusingSci. Rep.201662016NatSR...621545W10.1038/srep21545 TsengENeural Nano-optics for high-quality thin lens imagingNat. Commun.2021122021NatCo..12.6493T10.1038/s41467-021-26443-0 BornMWolfEPrinciples of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light.20137th edn.CambridgeCambridge University Press0086.41704 MeemMMajumderAMenonRFull-color video and still imaging using two flat lensesOpt. Express20182626866268712018OExpr..2626866M10.1364/OE.26.026866 WangYJHigh-efficiency broadband achromatic metalens for near-IR biological imaging windowNat. Commun.2021122021NatCo..12.5560W10.1038/s41467-021-25797-9 MohammadNBroadband imaging with one planar diffractive lensSci. Rep.201882018NatSR...8.2799M10.1038/s41598-018-21169-4 GoodmanJWIntroduction to Fourier Optics.1968San FranciscoMcGraw-Hill MeemMInverse-designed achromatic flat lens enabling imaging across the visible and near-infrared with diameter > 3 mm and NA=0.3Appl. Phys. Lett.20201170411012020ApPhL.117d1101M10.1063/5.0012759 GrossHHandbook of Optical Systems.2005WeinheimWiley-VCH10.1002/9783527699223 ChenWTA broadband achromatic polarization-insensitive metalens consisting of anisotropic nanostructuresNat. Commun.2019102019NatCo..10..355C10.1038/s41467-019-08305-y HauptRLWernerDHGenetic Algorithms in Electromagnetics.2007HobokenWiley10.1002/047010628X LiuYMeta-objective with sub-micrometer resolution for microendoscopesPhotonics Res.2021910611510.1364/PRJ.406197 FanZBA broadband achromatic metalens array for integral imaging in the visibleLight Sci. Appl.20198672019LSA.....8...67F10.1038/s41377-019-0178-2 ShkondinEFabrication of high aspect ratio TiO2 and Al2O3 nanogratings by atomic layer depositionJ. Vac. Sci. Technol. A20163403160510.1116/1.4947586 AietaFMultiwavelength achromatic metasurfaces by dispersive phase compensationScience2015347134213452015Sci...347.1342A10.1126/science.aaa2494 EngelbergJLevyUStandardizing flat lens characterizationNat. Photonics2022161711732022NaPho..16..171E10.1038/s41566-022-00963-7 LiHMBandpass-filter-integrated multiwavelength achromatic metalensPhotonics Res.202191384139010.1364/PRJ.422280 NdaoAOctave bandwidth photonic fishnet-achromatic-metalensNat. Commun.2020112020NatCo..11.3205N10.1038/s41467-020-17015-9 LimSWDMeretskaMLCapassoFA high aspect ratio inverse-designed holey metalensNano Lett.202121864286492021NanoL..21.8642L10.1021/acs.nanolett.1c02612 LiZYMeta-optics achieves RGB-achromatic focusing for virtual realitySci. Adv.20217eabe44582021SciA....7.4458L10.1126/sciadv.abe4458 DoskolovichLLDesign of diffractive lenses operating at several wavelengthsOpt. Express20202811705117202020OExpr..2811705D10.1364/OE.389458 FanYLExperimental demonstration of genetic algorithm based Metalens design for generating side-lobe-suppressed, large depth-of-focus light sheetLaser Photonics Rev.20221621004252022LPRv...1600425F10.1002/lpor.202100425 ZhengHYLarge-scale metasurfaces based on grayscale nanosphere lithographyACS Photonics202181824183110.1021/acsphotonics.1c00424 ZhaoMXPhase characterisation of metalensesLight Sci. Appl.202110522021LSA....10...52Z10.1038/s41377-021-00492-y NocedalJWrightSJNumerical Optimization.20062nd edn.New YorkSpringer1104.65059 SunTPolarization-insensitive achromatic metalens based on computational wavefront codingOpt. Express20212931902319142021OExpr..2931902S10.1364/OE.433017 HookeRJeevesTA“Direct search” solution of numerical and statistical problemsJ. ACM196182122290111.1250110.1145/321062.321069 BalliFA hybrid achromatic metalensNat. Commun.2020112020NatCo..11.3892B10.1038/s41467-020-17646-y MeemMImaging from the visible to the longwave infrared wavelengths via an inverse-designed flat lensOpt. Express20212920715207232021OExpr..2920715M10.1364/OE.423764 PresuttiFMonticoneFFocusing on bandwidth: achromatic metalens limitsOptica202076246312020Optic...7..624P10.1364/OPTICA.389404 M Meem (1024_CR42) 2020; 117 T Sun (1024_CR29) 2021; 29 F Presutti (1024_CR32) 2020; 7 ZB Fan (1024_CR24) 2019; 8 E Shkondin (1024_CR35) 2016; 34 LL Doskolovich (1024_CR41) 2020; 28 M Born (1024_CR44) 2013 H Gross (1024_CR1) 2005 F Balli (1024_CR25) 2020; 11 SM Wang (1024_CR17) 2017; 8 E Arbabi (1024_CR18) 2017; 4 SM Wang (1024_CR21) 2018; 13 WT Chen (1024_CR22) 2019; 10 P Sun (1024_CR31) 2022; 20 M Meem (1024_CR40) 2018; 26 J Nocedal (1024_CR51) 2006 Y Liu (1024_CR7) 2021; 9 WJ Smith (1024_CR2) 2004 Y Luo (1024_CR8) 2022; 11 1024_CR36 JS Park (1024_CR10) 2019; 19 WT Chen (1024_CR19) 2018; 13 ZY Li (1024_CR15) 2021; 7 S Shrestha (1024_CR20) 2018; 7 F Aieta (1024_CR14) 2015; 347 D Andrén (1024_CR11) 2020; 7 E Tseng (1024_CR52) 2021; 12 RJ Lin (1024_CR23) 2019; 14 J Engelberg (1024_CR47) 2022; 16 YF Peng (1024_CR37) 2016; 35 F Balli (1024_CR30) 2021; 10 ML Tseng (1024_CR9) 2022; 8 N Mohammad (1024_CR39) 2018; 8 BC Kress (1024_CR3) 2009 BB Xu (1024_CR5) 2020; 2 HM Li (1024_CR16) 2021; 9 RL Haupt (1024_CR49) 2007 Y Luo (1024_CR6) 2021; 21 YJ Wang (1024_CR28) 2021; 12 M Khorasaninejad (1024_CR4) 2016; 352 HY Zheng (1024_CR12) 2021; 8 J Engelberg (1024_CR33) 2021; 8 AR Thompson (1024_CR45) 2017 A Ndao (1024_CR26) 2020; 11 YL Fan (1024_CR50) 2022; 16 SWD Lim (1024_CR34) 2021; 21 JW Goodman (1024_CR46) 1968 MK Chen (1024_CR27) 2021; 10 M Meem (1024_CR43) 2021; 29 R Hooke (1024_CR48) 1961; 8 P Wang (1024_CR38) 2016; 6 MX Zhao (1024_CR13) 2021; 10 |
References_xml | – volume: 14 start-page: 227 year: 2019 ident: 1024_CR23 publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-018-0347-0 contributor: fullname: RJ Lin – volume: 11 year: 2020 ident: 1024_CR26 publication-title: Nat. Commun. doi: 10.1038/s41467-020-17015-9 contributor: fullname: A Ndao – volume: 117 start-page: 041101 year: 2020 ident: 1024_CR42 publication-title: Appl. Phys. Lett. doi: 10.1063/5.0012759 contributor: fullname: M Meem – volume: 29 start-page: 31902 year: 2021 ident: 1024_CR29 publication-title: Opt. Express doi: 10.1364/OE.433017 contributor: fullname: T Sun – volume: 7 start-page: 85 year: 2018 ident: 1024_CR20 publication-title: Light Sci. Appl. doi: 10.1038/s41377-018-0078-x contributor: fullname: S Shrestha – volume: 347 start-page: 1342 year: 2015 ident: 1024_CR14 publication-title: Science doi: 10.1126/science.aaa2494 contributor: fullname: F Aieta – volume-title: Introduction to Fourier Optics. year: 1968 ident: 1024_CR46 contributor: fullname: JW Goodman – volume: 29 start-page: 20715 year: 2021 ident: 1024_CR43 publication-title: Opt. Express doi: 10.1364/OE.423764 contributor: fullname: M Meem – volume: 12 year: 2021 ident: 1024_CR52 publication-title: Nat. Commun. doi: 10.1038/s41467-021-26443-0 contributor: fullname: E Tseng – volume: 9 start-page: 106 year: 2021 ident: 1024_CR7 publication-title: Photonics Res. doi: 10.1364/PRJ.406197 contributor: fullname: Y Liu – volume: 8 start-page: 67 year: 2019 ident: 1024_CR24 publication-title: Light Sci. Appl. doi: 10.1038/s41377-019-0178-2 contributor: fullname: ZB Fan – volume: 7 start-page: 885 year: 2020 ident: 1024_CR11 publication-title: ACS Photonics doi: 10.1021/acsphotonics.9b01809 contributor: fullname: D Andrén – volume: 8 start-page: 1824 year: 2021 ident: 1024_CR12 publication-title: ACS Photonics doi: 10.1021/acsphotonics.1c00424 contributor: fullname: HY Zheng – volume: 16 start-page: 171 year: 2022 ident: 1024_CR47 publication-title: Nat. Photonics doi: 10.1038/s41566-022-00963-7 contributor: fullname: J Engelberg – volume: 19 start-page: 8673 year: 2019 ident: 1024_CR10 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.9b03333 contributor: fullname: JS Park – volume-title: Handbook of Optical Systems. year: 2005 ident: 1024_CR1 doi: 10.1002/9783527699223 contributor: fullname: H Gross – volume: 12 year: 2021 ident: 1024_CR28 publication-title: Nat. Commun. doi: 10.1038/s41467-021-25797-9 contributor: fullname: YJ Wang – volume: 28 start-page: 11705 year: 2020 ident: 1024_CR41 publication-title: Opt. Express doi: 10.1364/OE.389458 contributor: fullname: LL Doskolovich – volume: 11 start-page: 1949 year: 2022 ident: 1024_CR8 publication-title: Nanophotonics doi: 10.1515/nanoph-2021-0748 contributor: fullname: Y Luo – volume: 13 start-page: 220 year: 2018 ident: 1024_CR19 publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-017-0034-6 contributor: fullname: WT Chen – volume: 34 start-page: 031605 year: 2016 ident: 1024_CR35 publication-title: J. Vac. Sci. Technol. A doi: 10.1116/1.4947586 contributor: fullname: E Shkondin – volume: 10 start-page: 1259 year: 2021 ident: 1024_CR30 publication-title: Nanophotonics doi: 10.1515/nanoph-2020-0550 contributor: fullname: F Balli – volume: 8 start-page: 834 year: 2021 ident: 1024_CR33 publication-title: Optica doi: 10.1364/OPTICA.422843 contributor: fullname: J Engelberg – volume: 20 start-page: 013601 year: 2022 ident: 1024_CR31 publication-title: Chin. Opt. Lett. doi: 10.3788/COL202220.013601 contributor: fullname: P Sun – volume: 8 start-page: 212 year: 1961 ident: 1024_CR48 publication-title: J. ACM doi: 10.1145/321062.321069 contributor: fullname: R Hooke – volume: 21 start-page: 8642 year: 2021 ident: 1024_CR34 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.1c02612 contributor: fullname: SWD Lim – volume: 10 start-page: 52 year: 2021 ident: 1024_CR13 publication-title: Light Sci. Appl. doi: 10.1038/s41377-021-00492-y contributor: fullname: MX Zhao – start-page: 781 volume-title: Astronomy. year: 2017 ident: 1024_CR45 contributor: fullname: AR Thompson – volume-title: Applied Digital Optics: From Micro-Optics to Nanophotonics. year: 2009 ident: 1024_CR3 doi: 10.1002/9780470022658 contributor: fullname: BC Kress – volume: 10 year: 2019 ident: 1024_CR22 publication-title: Nat. Commun. doi: 10.1038/s41467-019-08305-y contributor: fullname: WT Chen – volume: 11 year: 2020 ident: 1024_CR25 publication-title: Nat. Commun. doi: 10.1038/s41467-020-17646-y contributor: fullname: F Balli – volume-title: Numerical Optimization. year: 2006 ident: 1024_CR51 contributor: fullname: J Nocedal – volume: 352 start-page: 1190 year: 2016 ident: 1024_CR4 publication-title: Science doi: 10.1126/science.aaf6644 contributor: fullname: M Khorasaninejad – volume: 8 start-page: eabn5644 year: 2022 ident: 1024_CR9 publication-title: Sci. Adv. doi: 10.1126/sciadv.abn5644 contributor: fullname: ML Tseng – volume-title: Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light. year: 2013 ident: 1024_CR44 contributor: fullname: M Born – volume: 10 start-page: 3709 year: 2021 ident: 1024_CR27 publication-title: Nanophotonics doi: 10.1515/nanoph-2021-0239 contributor: fullname: MK Chen – volume: 9 start-page: 1384 year: 2021 ident: 1024_CR16 publication-title: Photonics Res. doi: 10.1364/PRJ.422280 contributor: fullname: HM Li – volume: 21 start-page: 5133 year: 2021 ident: 1024_CR6 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.1c01114 contributor: fullname: Y Luo – volume: 13 start-page: 227 year: 2018 ident: 1024_CR21 publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-017-0052-4 contributor: fullname: SM Wang – ident: 1024_CR36 doi: 10.21236/ADA213404 – volume: 26 start-page: 26866 year: 2018 ident: 1024_CR40 publication-title: Opt. Express doi: 10.1364/OE.26.026866 contributor: fullname: M Meem – volume: 7 start-page: 624 year: 2020 ident: 1024_CR32 publication-title: Optica doi: 10.1364/OPTICA.389404 contributor: fullname: F Presutti – volume: 7 start-page: eabe4458 year: 2021 ident: 1024_CR15 publication-title: Sci. Adv. doi: 10.1126/sciadv.abe4458 contributor: fullname: ZY Li – volume: 8 year: 2018 ident: 1024_CR39 publication-title: Sci. Rep. doi: 10.1038/s41598-018-21169-4 contributor: fullname: N Mohammad – volume: 16 start-page: 2100425 year: 2022 ident: 1024_CR50 publication-title: Laser Photonics Rev. doi: 10.1002/lpor.202100425 contributor: fullname: YL Fan – volume: 2 start-page: 066004 year: 2020 ident: 1024_CR5 publication-title: Adv. Photonics doi: 10.1117/1.AP.2.6.066004 contributor: fullname: BB Xu – volume-title: Modern Lens Design. year: 2004 ident: 1024_CR2 contributor: fullname: WJ Smith – volume: 8 year: 2017 ident: 1024_CR17 publication-title: Nat. Commun. doi: 10.1038/s41467-017-00166-7 contributor: fullname: SM Wang – volume: 4 start-page: 625 year: 2017 ident: 1024_CR18 publication-title: Optica doi: 10.1364/OPTICA.4.000625 contributor: fullname: E Arbabi – volume: 6 year: 2016 ident: 1024_CR38 publication-title: Sci. Rep. doi: 10.1038/srep21545 contributor: fullname: P Wang – volume-title: Genetic Algorithms in Electromagnetics. year: 2007 ident: 1024_CR49 doi: 10.1002/047010628X contributor: fullname: RL Haupt – volume: 35 start-page: 31 year: 2016 ident: 1024_CR37 publication-title: ACM Trans. Graph. doi: 10.1145/2897824.2925941 contributor: fullname: YF Peng |
SSID | ssj0000941087 ssib052855617 ssib026596979 ssib038074990 ssib054953849 |
Score | 2.5050223 |
Snippet | Flat lenses, including metalens and diffractive lens, have attracted increasing attention due to their ability to miniaturize the imaging devices. However,... Abstract Flat lenses, including metalens and diffractive lens, have attracted increasing attention due to their ability to miniaturize the imaging devices.... We developed a new framework in designing centimeter-scale achromatic multi-level diffractive lenses by light frequency-domain coherence optimization, which... |
SourceID | doaj pubmedcentral proquest crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Publisher |
StartPage | 323 |
SubjectTerms | 639/624/1107/510 639/624/400/1113 Lasers Microwaves Optical and Electronic Materials Optical Devices Optics Optimization Photonics Physics Physics and Astronomy RF and Optical Engineering |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Li9UwFD7ogOBGfGJ1lAjuNEzbvJejzjALEUQFdyHNgzsytnJ77-L--8lJe692QNy4bVKafifJyeF85wvAa8kDcyZEyqLHNKNntGMhUM5kDoiCY0xh7fDFF_Xpu_5whjI5h6u-kBM2yQNPwJ0klZwUzBvtHe8Md9ljtjo20qna5b207L61-SOY-jHx5Zpaq7lKpmb6ZOSorUeRvI4yapzuFp6oCPYvTpk3OZI3EqXF_5zfh3vzwZGcTgN-ALdi_xDuFAKnHx_B549I6aZjhjwS51froWixknTlNiR7lpF0O3KFkThJ64k-vaMhd7rsiR9WU9EfGfIG8nOuzHwM387Pvr6_oPN1CdSLRm1oQLF5UTdRsXzswoWYmhRrFrILqn2jUUhZeCkMFo-aTtWhcUlm8FKOTENs2RM46oc-PgVinM-uXKO6XeKyM13UmuVXk0ysbo2v4M0eOvtrUsWwJZvNtJ2AthloW4C2uwreIbqHnqhoXR5kO9vZzvZfdq7geG8bOy-z0RZtHpFHxCp4dWjOCwSzHq6Pw7b0EVpqI9oK1MKmiwEtW_rLVZHaNpIbJXgFb_fW__3xv__ws__xw8_hbouzFSmHzTEcbdbb-AJuj2H7ssz1a3A9AZQ priority: 102 providerName: Directory of Open Access Journals |
Title | Large-scale achromatic flat lens by light frequency-domain coherence optimization |
URI | https://link.springer.com/article/10.1038/s41377-022-01024-y https://www.proquest.com/docview/2734850293 https://search.proquest.com/docview/2735868952 https://pubmed.ncbi.nlm.nih.gov/PMC9649754 https://doaj.org/article/f7fa653c98ca4b94a58428e16a70a299 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELbYSqBeEE8RKFWQuIG7SfyIfYTSqgdAIEDiFjl-sFvtJtVm97D_nhkn2SqVuHCNnTgejzMzmW8-E_JWcseMdp4ybzHNaBmtmXOUMwkBkTOMlVg7fPWj_PpbfbpAmhwx1sJE0L6tl2fNan3WLBcRW3mztvMRJzb_9uVcS65LweczMgMFnYbohRRa6tvUExKqg1d_UEpRKDwR8mBzBQIs1RCDXPdQuzyLB-sV4H5QMLdiKLaBZ807jhR9FDHwyMbG6f6YPGBI6sYkn9i2eATAxG-9i7q8k3qNFu3yEXk4uKLph37Kj8k93zwh9yMk1HZPyffPCBKnHSyiT41dbNrI7pqGldmmYKu6tN6nK4zt07DpAdl76qDTskltu-jLCNMWPknrodbzGfl1efHz_IoOBzBQK_JySx3S14ss9zA58Btha4c8-Iw5MGqZzRVSMwsLAsdyVF2XmctNkBBEBoh1nS_Yc3LUtI1_QVJtLDgHCvnyApe1rr1SDG4NMrCs0DYh70bRVTc9z0YV8-NMVb3MK5B5FWVe7RPyEaV76Ikc2fFCu_lTDZpShTIYKZjVyhpea27A1yqUz6UpMwNWOCEn49pUw8btqsj2I-CNWELeHJphy2EexTS-3cU-QkmlRZGQcrKmkxeatoAuR_LuQXcT8n5c_dvB_z3hl_890CtyXKC2InIxPyFH283Ovyazzu1O4_-H07h7_gKBAhOd |
link.rule.ids | 230,315,730,783,787,867,888,2109,27936,27937,53804,53806 |
linkProvider | National Library of Medicine |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZoEdALzyICBYLEDdxN4kfsI5RWi9hWIIrEzXL8YBftJtVm97D_nrGT3SqVuPQaOy9_dmYm881nhN5zaomW1mHiTEgzGoIrYi2mhENAZDUhZagdHv8sL36LL6dBJodta2Eiad9Us-N6vjiuZ9PIrbxamNGWJzb6fn4iOZUlo6M9dBfWa0aHQXrBmeTyOvkUJNXBr99NS1aIsCfkzuqyQLEUfRTytyPb5VncWq8ABwSDwWV9uQ1ca9TSINKHAws-6LFRvDlA90mQdSOcDqxb3ARg4Lne5F3eSL5Gm3b26Jaj8Rg97J3Y9FPX_ATdcfVTdC-SSU37DP2YBHo5bgF-l2ozXTZRFzb1c71Kwcq1abVJ5-GvQOqXHZV7gy10mtWpaaZdAWLawMds0VeJHqJfZ6eXJ2Pcb92ADcvLFbZB-J5luYNBAY8TPgo-9y4jFsxhZnIRRJ2ZAaBCIausyszm2nMIPz1EydYV5Dnar5vavUCp1AbcChGU9jzllaycEARO9dyTrJAmQR-2Q66uOoUOFTPrRKgOKwVYqYiV2iToc0Bl1zOoa8cDzfKP6kdV-dJrzoiRwmhaSarBSyuEy7kuMw32O0FHW0xVv-RbFXWCGDwRSdC7XTMs1pCB0bVr1rEPE1xIViSoHMyFwQMNWwD3KPvd45ygj9tZc33z_7_wy1vf6C16ML48n6jJ14tvr9BBEWZ84D_mR2h_tVy712ivtes3ce39A2TBKEg |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZoEVUvvCsCBYLEDdw8HDv2EdquiihVESBxsxw_2EW7yWqze9h_z9jJpkolLnCNnZdnnJnJfPMNQm9ZYYgSxmJitU8zaoIrYgwuCIOAyChCSl87fPGtvPrJz849Tc7Q6iuA9nU1O6nni5N6Ng3YyuVCJzucWHL95VSwQpS0SJbGJXvoLuzZlI0D9ZxRwcRNAsrTqoNvP6gmzbnvCzlYXuphlryPRH53gLssDe31cnBCMBhd2pfcwLWStvBEfdgj4T0nW4G3h-iAeGo3woqRhQuNAEbe623s5a0EbLBrkwf_sSIP0f3emY0_dFMeoTu2fozuBVCpbp-gr5ceZo5bUAMbKz1dNYEfNnZztY7B2rVxtY3n_u9A7FYdpHuLDUya1bFupl0hYtzAR23RV4s-RT8m599PL3DfwgFrmpVrbDwBPk0zCwsDnid8HFzmbEoMmMVUZ9yTO1MNwvIFraIqU5MpxyAMdRAtG5uTI7RfN7V9hmKhNLgX3DPuuYJVorKcEzjVMUfSXOgIvdstu1x2TB0yZNgJl528JMhLBnnJbYQ-eskMMz3LdjjQrH7JfmWlK51ilGjBtSoqUSjw1nJuM6bKVIEdj9DxTq6y3_qtDHxBFJ6IROjNMAyb1mdiVG2bTZhDOeOC5hEqR_oweqDxCMg-0H_3so7Q-53m3Nz87y_8_J9v9BodXJ9N5OWnq88v0GHuld7DILNjtL9ebexLtNeazauw_f4A36AqyA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Large-scale+achromatic+flat+lens+by+light+frequency-domain+coherence+optimization&rft.jtitle=Light%2C+science+%26+applications&rft.au=Xiao%2C+Xingjian&rft.au=Zhao%2C+Yunwei&rft.au=Ye%2C+Xin&rft.au=Chen%2C+Chen&rft.date=2022-11-11&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2047-7538&rft.volume=11&rft.issue=1&rft_id=info:doi/10.1038%2Fs41377-022-01024-y&rft.externalDocID=10_1038_s41377_022_01024_y |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2047-7538&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2047-7538&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2047-7538&client=summon |