COVID-19 epidemic prediction and the impact of public health interventions: A review of COVID-19 epidemic models
The coronavirus disease outbreak of 2019 (COVID-19) has been spreading rapidly to all corners of the word, in a very complex manner. A key research focus is in predicting the development trend of COVID-19 scientifically through mathematical modelling. We conducted a systematic review of epidemic pre...
Saved in:
Published in: | Infectious disease modelling Vol. 6; pp. 324 - 342 |
---|---|
Main Authors: | , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
China
Elsevier B.V
01-01-2021
KeAi Publishing KeAi Communications Co., Ltd |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | The coronavirus disease outbreak of 2019 (COVID-19) has been spreading rapidly to all corners of the word, in a very complex manner. A key research focus is in predicting the development trend of COVID-19 scientifically through mathematical modelling. We conducted a systematic review of epidemic prediction models of COVID-19 and the public health intervention strategies by searching the Web of Science database. 55 studies of the COVID-19 epidemic model were reviewed systematically. It was found that the COVID-19 epidemic models were different in the model type, acquisition method, hypothesis and distribution of key input parameters. Most studies used the gamma distribution to describe the key time period of COVID-19 infection, and some studies used the lognormal distribution, the Erlang distribution, and the Weibull distribution. The setting ranges of the incubation period, serial interval, infectious period and generation time were 4.9–7 days, 4.41–8.4 days, 2.3–10 days and 4.4–7.5 days, respectively, and more than half of the incubation periods were set to 5.1 or 5.2 days. Most models assumed that the latent period was consistent with the incubation period. Some models assumed that asymptomatic infections were infectious or pre-symptomatic transmission was possible, which overestimated the value of R0. For the prediction differences under different public health strategies, the most significant effect was in travel restrictions. There were different studies on the impact of contact tracking and social isolation, but it was considered that improving the quarantine rate and reporting rate, and the use of protective face mask were essential for epidemic prevention and control. The input epidemiological parameters of the prediction models had significant differences in the prediction of the severity of the epidemic spread. Therefore, prevention and control institutions should be cautious when formulating public health strategies by based on the prediction results of mathematical models. |
---|---|
AbstractList | The coronavirus disease outbreak of 2019 (COVID-19) has been spreading rapidly to all corners of the word, in a very complex manner. A key research focus is in predicting the development trend of COVID-19 scientifically through mathematical modelling. We conducted a systematic review of epidemic prediction models of COVID-19 and the public health intervention strategies by searching the Web of Science database. 55 studies of the COVID-19 epidemic model were reviewed systematically. It was found that the COVID-19 epidemic models were different in the model type, acquisition method, hypothesis and distribution of key input parameters. Most studies used the gamma distribution to describe the key time period of COVID-19 infection, and some studies used the lognormal distribution, the Erlang distribution, and the Weibull distribution. The setting ranges of the incubation period, serial interval, infectious period and generation time were 4.9-7 days, 4.41-8.4 days, 2.3-10 days and 4.4-7.5 days, respectively, and more than half of the incubation periods were set to 5.1 or 5.2 days. Most models assumed that the latent period was consistent with the incubation period. Some models assumed that asymptomatic infections were infectious or pre-symptomatic transmission was possible, which overestimated the value of R0. For the prediction differences under different public health strategies, the most significant effect was in travel restrictions. There were different studies on the impact of contact tracking and social isolation, but it was considered that improving the quarantine rate and reporting rate, and the use of protective face mask were essential for epidemic prevention and control. The input epidemiological parameters of the prediction models had significant differences in the prediction of the severity of the epidemic spread. Therefore, prevention and control institutions should be cautious when formulating public health strategies by based on the prediction results of mathematical models. |
Author | Guo, Lei Xiang, Yue Jia, Yonghong Chen, Linlin Shu, Bizhen Long, Enshen |
Author_xml | – sequence: 1 givenname: Yue surname: Xiang fullname: Xiang, Yue organization: MOE Key Laboratory of Deep Earth Science and Engineering, Institute of Disaster Management and Reconstruction, Sichuan University, Chengdu, China – sequence: 2 givenname: Yonghong surname: Jia fullname: Jia, Yonghong organization: College of Architecture and Environment, Sichuan University, Chengdu, China – sequence: 3 givenname: Linlin surname: Chen fullname: Chen, Linlin organization: MOE Key Laboratory of Deep Earth Science and Engineering, Institute of Disaster Management and Reconstruction, Sichuan University, Chengdu, China – sequence: 4 givenname: Lei surname: Guo fullname: Guo, Lei organization: MOE Key Laboratory of Deep Earth Science and Engineering, Institute of Disaster Management and Reconstruction, Sichuan University, Chengdu, China – sequence: 5 givenname: Bizhen surname: Shu fullname: Shu, Bizhen organization: Key Laboratory of Birth Defects and Related Diseases of Women and Children, West China Second Hospital of Sichuan University, Chengdu, China – sequence: 6 givenname: Enshen orcidid: 0000-0003-0774-4275 surname: Long fullname: Long, Enshen email: longes2@163.com organization: MOE Key Laboratory of Deep Earth Science and Engineering, Institute of Disaster Management and Reconstruction, Sichuan University, Chengdu, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33437897$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kV2L1DAUhoOsuB_uD_BGculNxyRNe1oFYRlXHVjYG_U2pMnJToa2qUlnxH9v6qzLLoIQSDh58iQn7zk5GcOIhLzibMUZr9_uVt4OK8EEX7E8GH9GzoSsm4JJASeP1qfkMqUdy0QjgJXyBTktS1lC08IZmda33zcfC95SnLzFwRs6RbTezD6MVI-Wzlukfpi0mWlwdNp3fWa2qPt5S_04YzzguMDpHb2iEQ8efy7gv94hWOzTS_Lc6T7h5f18Qb59uv66_lLc3H7erK9uClNxmIvWydICCMN1V3e8ak0nwLbG1cYJhhahkk0uauhMoyVrbK1LZLUDsK6psLwgm6PXBr1TU_SDjr9U0F79KYR4p3ScvelRVeBkp2WpoXRSC9CVk7bjLYjGSMtldn04unL3A1qTG466fyJ9ujP6rboLBwXQMlnxLHhzL4jhxx7TrAafDPa9HjHskxISoOIVZ01G-RE1MaQU0T1cw5laglc7lYNXS_CK5cEW_evH73s48TfmDLw_AjmAJaGokvE4mhx0RDPnL_H_0f8GPbrAQQ |
CitedBy_id | crossref_primary_10_1109_TCSS_2024_3362885 crossref_primary_10_1109_ACCESS_2023_3327101 crossref_primary_10_1007_s10729_023_09632_9 crossref_primary_10_1371_journal_pone_0278515 crossref_primary_10_1038_s41598_021_01119_3 crossref_primary_10_7759_cureus_42208 crossref_primary_10_1155_2023_9962100 crossref_primary_10_7759_cureus_17055 crossref_primary_10_1016_j_eswa_2023_120103 crossref_primary_10_1016_j_heliyon_2024_e33850 crossref_primary_10_1038_s41598_021_01407_y crossref_primary_10_1016_j_heliyon_2023_e17625 crossref_primary_10_1038_s41598_022_07371_5 crossref_primary_10_3390_ijerph181910548 crossref_primary_10_3390_covid2060059 crossref_primary_10_2196_47219 crossref_primary_10_1371_journal_pgph_0000980 crossref_primary_10_1186_s12889_024_18203_8 crossref_primary_10_1038_s41598_023_30800_y crossref_primary_10_1111_sapm_12479 crossref_primary_10_3390_tropicalmed7090227 crossref_primary_10_1002_mma_10165 crossref_primary_10_1007_s10389_023_02014_z crossref_primary_10_1155_2022_6500446 crossref_primary_10_2196_29957 crossref_primary_10_1177_03611981231156588 crossref_primary_10_1061__ASCE_ME_1943_5479_0001033 crossref_primary_10_1109_LCSYS_2022_3199165 crossref_primary_10_1007_s00285_022_01765_9 crossref_primary_10_1016_j_rinp_2021_104484 crossref_primary_10_1016_j_ejor_2021_12_044 crossref_primary_10_4236_jcc_2024_123010 crossref_primary_10_3934_mbe_2023616 crossref_primary_10_1080_20477724_2024_2313787 crossref_primary_10_1109_TCSS_2022_3225639 crossref_primary_10_1186_s12879_022_07302_9 crossref_primary_10_1016_j_cie_2022_108031 crossref_primary_10_1371_journal_pone_0283517 |
Cites_doi | 10.1016/S1473-3099(20)30162-6 10.1016/S0140-6736(20)30567-5 10.1016/j.chaos.2020.109889 10.1016/j.chaos.2020.109761 10.3390/jcm9020462 10.3390/jcm9020388 10.1126/science.abb6105 10.1002/jmv.25827 10.3201/eid2607.200282 10.1126/science.aba9757 10.1016/S0140-6736(20)30260-9 10.1016/S2214-109X(20)30074-7 10.3390/jcm9020498 10.1016/S1473-3099(20)30144-4 10.1016/S1473-3099(20)30230-9 10.1016/j.idm.2020.03.004 10.1186/s41256-020-00137-4 10.1016/j.ijid.2020.01.050 10.3201/eid2608.200536 10.1016/j.chaos.2020.109829 10.1016/j.ijid.2020.04.021 10.1371/journal.pone.0230405 10.1126/science.abb5793 10.1016/j.mbs.2020.108364 10.1016/j.ijid.2020.04.010 10.1016/j.chaos.2020.109846 10.1002/cplx.21694 10.1016/j.csbj.2019.01.003 10.3390/jcm9020596 10.21037/jtd.2020.02.64 10.1126/science.aaa4339 10.4178/epih.e2020011 10.1126/science.abb4218 10.1126/science.abb4557 10.1002/jmv.25939 10.1126/science.abb6936 10.3390/jcm9020571 10.1016/j.mbs.2020.108370 |
ContentType | Journal Article |
Copyright | 2021 The Authors 2021 The Authors. 2021 The Authors 2021 |
Copyright_xml | – notice: 2021 The Authors – notice: 2021 The Authors. – notice: 2021 The Authors 2021 |
DBID | 6I. AAFTH NPM AAYXX CITATION 7X8 5PM DOA |
DOI | 10.1016/j.idm.2021.01.001 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access PubMed CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) Directory of Open Access Journals |
DatabaseTitle | PubMed CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: http://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2468-0427 |
EndPage | 342 |
ExternalDocumentID | oai_doaj_org_article_57f4ba43a73f4a27a5f4db19728c4d14 10_1016_j_idm_2021_01_001 33437897 S2468042721000038 |
Genre | Journal Article |
GroupedDBID | 0SF 53G 6I. AACTN AAEDW AAFTH AALRI AAXUO ABDBF ABMAC ACGFS ADBBV AEXQZ AFTJW AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS BCNDV EBS EJD FDB GROUPED_DOAJ HYE NCXOZ OK1 ROL RPM SSZ 0R~ ADVLN AKRWK NPM AAYXX CITATION 7X8 5PM |
ID | FETCH-LOGICAL-c517t-9f43d772c1ab6b159cb27d9cf6cf20ede75489cba7bc8a408d6a3e06f77df85e3 |
IEDL.DBID | RPM |
ISSN | 2468-0427 2468-2152 |
IngestDate | Tue Oct 22 15:08:04 EDT 2024 Tue Sep 17 21:23:46 EDT 2024 Fri Oct 25 06:17:58 EDT 2024 Fri Aug 23 02:49:27 EDT 2024 Sat Sep 28 08:36:05 EDT 2024 Tue May 16 22:39:49 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | COVID-19 Public health intervention Compartmental model Epidemic model Reproduction number |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. 2021 The Authors. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c517t-9f43d772c1ab6b159cb27d9cf6cf20ede75489cba7bc8a408d6a3e06f77df85e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-0774-4275 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7790451/ |
PMID | 33437897 |
PQID | 2477515108 |
PQPubID | 23479 |
PageCount | 19 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_57f4ba43a73f4a27a5f4db19728c4d14 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7790451 proquest_miscellaneous_2477515108 crossref_primary_10_1016_j_idm_2021_01_001 pubmed_primary_33437897 elsevier_sciencedirect_doi_10_1016_j_idm_2021_01_001 |
PublicationCentury | 2000 |
PublicationDate | 2021-01-01 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | China |
PublicationPlace_xml | – name: China |
PublicationTitle | Infectious disease modelling |
PublicationTitleAlternate | Infect Dis Model |
PublicationYear | 2021 |
Publisher | Elsevier B.V KeAi Publishing KeAi Communications Co., Ltd |
Publisher_xml | – name: Elsevier B.V – name: KeAi Publishing – name: KeAi Communications Co., Ltd |
References | Choi, Ki (bib10) 2020; 42 Yang, Zeng, Wang, Wong, Liang, Zanin (bib64) 2020; 12 Mandal, Jana, Nandi, Khatua, Adak, Kar (bib38) 2020 Tang, Bragazzi, Li, Tang, Xiao, Wu (bib52) 2020; 5 Schuster (bib49) 2015; 20 Tang, Wang, Li, Bragazzi, Tang, Xiao (bib53) 2020; 9 Boldog, Tekeli, Vizi, Denes, Bartha, Rost (bib5) 2020; 9 WHO (bib58) 2020 Ferretti, Wymant, Kendall, Zhao, Nurtay, Abeler-Dorner (bib13) 2020; 368 Liu, Magal, Seydi, Webb (bib31) 2020 Wu, Leung, Leung (bib63) 2020; 395 WHO (bib59) 2020 Heesterbeek, Anderson, Andreasen, Bansal, De Angelis, Dye (bib18) 2015; 347 Kissler, Tedijanto, Goldstein, Grad, Lipsitch (bib23) 2020; 368 Kucharski, Russell, Diamond, Liu, Edmunds, Funk (bib26) 2020 Zhu, Chen (bib70) 2020 Sun, Weng (bib51) 2020 Zhao, Stone, Gao (bib69) 2020 Koo, Cook, Park, Sun (bib24) 2020 Mandal, Bhatnagar, Arinaminpathy (bib37) 2020 Anderson (bib3) 1992 Anastassopoulou, Russo, Tsakris, Siettos (bib2) 2020; 15 Chen, Yu (bib7) 2020; 5 CDC (bib6) 2020 Zhao, Lin, Ran, Musa, Yang, Wang (bib67) 2020; 92 Liu, Magal, Seydi, Webb (bib32) 2020 Muniz-Rodriguez, Fung, Ferdosi, Ofori, Lee, Tariq (bib40) 2020; 26 Sanche, Lin, Xu, Romero-Severson, Hengartner, Ke (bib47) 2020; 26 Li, Pei, Chen, Song, Zhang, Yang (bib30) 2020 Nelson, Wiliams (bib42) 2014 Zhao, Musa, Lin, Ran, Yang, Wang (bib68) 2020; 9 Thompson (bib54) 2020; 9 Shim, Tariq, Choi, Lee, Chowell (bib50) 2020; Vol. 93 WHO (bib61) 2020 Kai, Guy-PhilippeGoldstein (bib22) 2020 Anderson, Heesterbeek, Klinkenberg, Hollingsworth (bib4) 2020; 395 Hu, Cui, Han, Wang, Sha, Teng (bib21) 2020; 95 Zhang, Litvinova, Wang, Wang, Deng, Chen (bib65) 2020 Liu, Magal, Seydi, Webb (bib33) 2020 Roosa, Lee, Luo, Kirpich, Rothenberg, Hyman (bib46) 2020; 9 Verity, Okell, Dorigatti, Winskill (bib56) 2020 Zhang, Ma, Wang (bib66) 2020; 135 (bib8) 2020 Omori, Mizumoto, Chowell (bib44) 2020; 94 WHO (bib60) 2020 Fanelli, Piazza (bib12) 2020 Kraemer, Yang, Gutierrez, Wu, Klein, Pigott (bib25) 2020; 368 Wang, Liu (bib57) 2020 Hauser, Counotte, Margossian, Konstantinoudis, Low, Althaus (bib17) 2020 Maier, Brockmann (bib36) 2020; 368 Ganyani, Kremer, Chen, Torneri, Faes, Wallinga (bib15) 2020; 25 Hou, Chen, Zhou, Hua, Yuan, He (bib20) 2020 Roosa, Lee, Luo, Kirpich, Rothenberg, Hyman (bib45) 2020; 5 Li, Yang, Dang, Meng, Huang, Meng (bib34) 2020; 5 WHO (bib62) 2020 Scarabel, Pellis, Bragazzi, Wu (bib48) 2020 Halloran (bib16) 2001 Foppa (bib14) 2017 Ndaïrou, Area, Nieto, Torres (bib41) 2020; 135 Tian, Liu, Li (bib55) 2020 Munayco, Tariq, Rothenberg, Soto-Cabezas, Reyes, Valle, Peru (bib39) 2020 Ngonghala, Iboi, Eikenberry, Scotch, MacIntyre, Bonds (bib43) 2020; 325 Kuniya (bib27) 2020 Acuna-Zegarra, Santana-Cibrian, Velasco-Hernandez (bib1) 2020; 325 Kwok, Tang, Wei, Park, Yeoh, Riley (bib28) 2019; 17 Chinazzi, Davis (bib9) 2020; 368 Hellewell, Abbott, Gimma, Bosse, Jarvis, Russell (bib19) 2020; 8 Li, Guan, Wu, Wang, Zhou, Tong (bib29) 2020; Vol. 382 Magal, Webb (bib35) 2020 Eikenberry, Mancuso, Iboi, Phan, Eikenberry, Kuang (bib11) 2020; 5 Kai (10.1016/j.idm.2021.01.001_bib22) 2020 Zhang (10.1016/j.idm.2021.01.001_bib65) 2020 Koo (10.1016/j.idm.2021.01.001_bib24) 2020 Kraemer (10.1016/j.idm.2021.01.001_bib25) 2020; 368 Hou (10.1016/j.idm.2021.01.001_bib20) 2020 WHO (10.1016/j.idm.2021.01.001_bib59) Magal (10.1016/j.idm.2021.01.001_bib35) 2020 Munayco (10.1016/j.idm.2021.01.001_bib39) 2020 Choi (10.1016/j.idm.2021.01.001_bib10) 2020; 42 Fanelli (10.1016/j.idm.2021.01.001_bib12) 2020 Li (10.1016/j.idm.2021.01.001_bib30) 2020 Wu (10.1016/j.idm.2021.01.001_bib63) 2020; 395 Ganyani (10.1016/j.idm.2021.01.001_bib15) 2020; 25 CDC (10.1016/j.idm.2021.01.001_bib6) Hauser (10.1016/j.idm.2021.01.001_bib17) 2020 Zhao (10.1016/j.idm.2021.01.001_bib68) 2020; 9 Liu (10.1016/j.idm.2021.01.001_bib31) 2020 Omori (10.1016/j.idm.2021.01.001_bib44) 2020; 94 Scarabel (10.1016/j.idm.2021.01.001_bib48) 2020 Yang (10.1016/j.idm.2021.01.001_bib64) 2020; 12 Tang (10.1016/j.idm.2021.01.001_bib52) 2020; 5 Halloran (10.1016/j.idm.2021.01.001_bib16) 2001 Boldog (10.1016/j.idm.2021.01.001_bib5) 2020; 9 Schuster (10.1016/j.idm.2021.01.001_bib49) 2015; 20 Acuna-Zegarra (10.1016/j.idm.2021.01.001_bib1) 2020; 325 Liu (10.1016/j.idm.2021.01.001_bib33) 2020 Zhao (10.1016/j.idm.2021.01.001_bib69) 2020 Zhu (10.1016/j.idm.2021.01.001_bib70) 2020 Zhang (10.1016/j.idm.2021.01.001_bib66) 2020; 135 Ferretti (10.1016/j.idm.2021.01.001_bib13) 2020; 368 Tian (10.1016/j.idm.2021.01.001_bib55) 2020 Nelson (10.1016/j.idm.2021.01.001_bib42) 2014 Kwok (10.1016/j.idm.2021.01.001_bib28) 2019; 17 Wang (10.1016/j.idm.2021.01.001_bib57) 2020 Kuniya (10.1016/j.idm.2021.01.001_bib27) 2020 Thompson (10.1016/j.idm.2021.01.001_bib54) 2020; 9 Kucharski (10.1016/j.idm.2021.01.001_bib26) 2020 Tang (10.1016/j.idm.2021.01.001_bib53) 2020; 9 Foppa (10.1016/j.idm.2021.01.001_bib14) 2017 Li (10.1016/j.idm.2021.01.001_bib29) 2020; Vol. 382 Verity (10.1016/j.idm.2021.01.001_bib56) 2020 Roosa (10.1016/j.idm.2021.01.001_bib46) 2020; 9 WHO (10.1016/j.idm.2021.01.001_bib61) Hu (10.1016/j.idm.2021.01.001_bib21) 2020; 95 Kissler (10.1016/j.idm.2021.01.001_bib23) 2020; 368 Zhao (10.1016/j.idm.2021.01.001_bib67) 2020; 92 Eikenberry (10.1016/j.idm.2021.01.001_bib11) 2020; 5 Anderson (10.1016/j.idm.2021.01.001_bib4) 2020; 395 Mandal (10.1016/j.idm.2021.01.001_bib38) 2020 Ngonghala (10.1016/j.idm.2021.01.001_bib43) 2020; 325 Shim (10.1016/j.idm.2021.01.001_bib50) 2020; Vol. 93 Li (10.1016/j.idm.2021.01.001_bib34) 2020; 5 Anderson (10.1016/j.idm.2021.01.001_bib3) 1992 Chen (10.1016/j.idm.2021.01.001_bib7) 2020; 5 Hellewell (10.1016/j.idm.2021.01.001_bib19) 2020; 8 WHO (10.1016/j.idm.2021.01.001_bib60) Anastassopoulou (10.1016/j.idm.2021.01.001_bib2) 2020; 15 Ndaïrou (10.1016/j.idm.2021.01.001_bib41) 2020; 135 Sun (10.1016/j.idm.2021.01.001_bib51) 2020 Roosa (10.1016/j.idm.2021.01.001_bib45) 2020; 5 Heesterbeek (10.1016/j.idm.2021.01.001_bib18) 2015; 347 WHO (10.1016/j.idm.2021.01.001_bib62) Maier (10.1016/j.idm.2021.01.001_bib36) 2020; 368 Sanche (10.1016/j.idm.2021.01.001_bib47) 2020; 26 WHO (10.1016/j.idm.2021.01.001_bib58) Mandal (10.1016/j.idm.2021.01.001_bib37) 2020 Liu (10.1016/j.idm.2021.01.001_bib32) 2020 Chinazzi (10.1016/j.idm.2021.01.001_bib9) 2020; 368 Muniz-Rodriguez (10.1016/j.idm.2021.01.001_bib40) 2020; 26 |
References_xml | – volume: 5 start-page: 282 year: 2020 end-page: 292 ident: bib34 article-title: Propagation analysis and prediction of the COVID-19 publication-title: Infect Dis Model contributor: fullname: Meng – volume: 8 start-page: E488 year: 2020 end-page: E496 ident: bib19 article-title: Feasibility of controlling COVID-19 outbreaks by isolation of cases and contacts publication-title: Lancet Global Health contributor: fullname: Russell – year: 2020 ident: bib26 article-title: Early dynamics of transmission and control of COVID-19: A mathematical modelling study publication-title: The Lancet Infect contributor: fullname: Funk – volume: 20 year: 2015 ident: bib49 article-title: Ebola-challenge and revival of theoretical epidemiology why extrapolations from early phases of epidemics are problematic publication-title: Complexity contributor: fullname: Schuster – volume: 368 start-page: 742 year: 2020 end-page: 746 ident: bib36 article-title: Effective containment explains subexponential growth in recent confirmed COVID-19 cases in China publication-title: Science contributor: fullname: Brockmann – volume: 95 start-page: 231 year: 2020 end-page: 240 ident: bib21 article-title: Evaluation and prediction of the COVID-19 variations at different input population and quarantine strategies, a case study in Guangdong province, China publication-title: International Journal of Infectious Diseases contributor: fullname: Teng – year: 2020 ident: bib24 article-title: Interventions to mitigate early spread of SARS-CoV-2 in Singapore: A modelling study publication-title: The Lancet Infect contributor: fullname: Sun – volume: 135 year: 2020 ident: bib41 article-title: Mathematical modeling of COVID-19 transmission dynamics with a case study of Wuhan publication-title: Chaos, Solitons & Fractals contributor: fullname: Torres – volume: 9 year: 2020 ident: bib68 article-title: Estimating the unreported number of novel coronavirus (2019-nCoV) cases in China in the first half of January 2020: A data-driven modelling analysis of the early outbreak publication-title: Journal of Clinical Medicine contributor: fullname: Wang – year: 2020 ident: bib35 article-title: Predicting the number of reported and unreported cases for the COVID-19 epidemic in South Korea contributor: fullname: Webb – year: 2020 ident: bib39 article-title: Early transmission dynamics of COVID-19 in a southern hemisphere setting: Lima-Peru: February 29th-March 30th, 2020 publication-title: Infect Dis Model contributor: fullname: Peru – year: 1992 ident: bib3 article-title: Infectious diseases of humans: Dynamics and control contributor: fullname: Anderson – volume: 25 year: 2020 ident: bib15 article-title: Estimating the generation interval for coronavirus disease (COVID-19) based on symptom onset data, March 2020 publication-title: Euro Surveillance contributor: fullname: Wallinga – year: 2020 ident: bib20 article-title: The effectiveness of quarantine of Wuhan city against the corona virus disease 2019 (COVID-19): A well-mixed SEIR model analysis publication-title: Journal of Medical Virology contributor: fullname: He – volume: 325 start-page: 108370 year: 2020 ident: bib1 article-title: Modeling behavioral change and COVID-19 containment in Mexico: A trade-off between lockdown and compliance publication-title: Mathematical Biosciences contributor: fullname: Velasco-Hernandez – volume: 347 start-page: aaa4339 year: 2015 ident: bib18 article-title: Modeling infectious disease dynamics in the complex landscape of global health publication-title: Science contributor: fullname: Dye – year: 2020 ident: bib58 article-title: Advice on the use of masks in the context of COVID-19 contributor: fullname: WHO – volume: 325 start-page: 108364 year: 2020 ident: bib43 article-title: Mathematical assessment of the impact of non-pharmaceutical interventions on curtailing the 2019 novel Coronavirus publication-title: Mathematical Biosciences contributor: fullname: Bonds – year: 2014 ident: bib42 article-title: Infectious disease epidemiology publication-title: Theory and practice contributor: fullname: Wiliams – year: 2020 ident: bib51 article-title: Estimating the effects of asymptomatic and imported patients on COVID-19 epidemic using mathematical modeling publication-title: Journal of Medical Virology contributor: fullname: Weng – year: 2020 ident: bib59 article-title: Coronavirus disease 2019 (COVID-19) situation report - 51 contributor: fullname: WHO – volume: 42 year: 2020 ident: bib10 article-title: Estimating the reproductive number and the outbreak size of COVID-19 in Korea publication-title: Epidemiol Health contributor: fullname: Ki – volume: 9 year: 2020 ident: bib54 article-title: Novel coronavirus outbreak in Wuhan, China, 2020: Intense surveillance is vital for preventing sustained transmission in new locations publication-title: Journal of Clinical Medicine contributor: fullname: Thompson – year: 2020 ident: bib62 article-title: WHO coronavirus disease (COVID-19) dashboard contributor: fullname: WHO – year: 2020 ident: bib55 article-title: An investigation of transmission control measures during the first 50 days of the COVID-19 epidemic in China publication-title: Science contributor: fullname: Li – volume: 5 start-page: 248 year: 2020 end-page: 255 ident: bib52 article-title: An updated estimation of the risk of transmission of the novel coronavirus (2019-nCov) publication-title: Infect Dis Model contributor: fullname: Wu – year: 2020 ident: bib27 article-title: Prediction of the epidemic peak of coronavirus disease in Japan, 2020 publication-title: Clinical Medicine contributor: fullname: Kuniya – volume: 395 start-page: 931 year: 2020 end-page: 934 ident: bib4 article-title: How will country-based mitigation measures influence the course of the COVID-19 epidemic? publication-title: The Lancet contributor: fullname: Hollingsworth – year: 2020 ident: bib30 article-title: Substantial undocumented infection facilitates the rapid dissemination of novel coronavirus (COVID-19) contributor: fullname: Yang – start-page: 56 year: 2001 end-page: 85 ident: bib16 article-title: Concepts of transmission and dynamics publication-title: Epidemiol methods for the study of infectious diseases contributor: fullname: Halloran – year: 2020 ident: bib17 article-title: Estimation of SARS-CoV-2 mortality during the early stages of an epidemic: A modelling study in Hubei, China and northern Italy contributor: fullname: Althaus – volume: 5 start-page: 7 year: 2020 ident: bib7 article-title: First two months of the 2019 coronavirus disease (COVID-19) epidemic in China: Real-time surveillance and evaluation with a second derivative model publication-title: Glob Health Res Policy contributor: fullname: Yu – volume: 368 start-page: eaba9757 year: 2020 ident: bib9 article-title: The effect of travel restrictions on the spread of the 2019 novel coronavirus (COVID-19) outbreak publication-title: Science contributor: fullname: Davis – volume: 5 start-page: 293 year: 2020 end-page: 308 ident: bib11 article-title: To mask or not to mask: Modeling the potential for face mask use by the general public to curtail the COVID-19 pandemic publication-title: Infect Dis Model contributor: fullname: Kuang – year: 2020 ident: bib32 article-title: Predicting the cumulative number of cases for the COVID-19 contributor: fullname: Webb – year: 2020 ident: bib61 article-title: Novel coronavirus (2019-nCoV) situation report - 11 (2020) contributor: fullname: WHO – volume: 5 start-page: 256 year: 2020 end-page: 263 ident: bib45 article-title: Real-time forecasts of the COVID-19 epidemic in China from february 5th to february 24th, 2020 publication-title: Infect Dis Model contributor: fullname: Hyman – year: 2020 ident: bib8 article-title: The result of Wuhan’s centralized nucleic acid detection: No confirmed cases found – start-page: 59 year: 2017 end-page: 87 ident: bib14 article-title: 4 - W.O. Kermack and A.G. McKendrick: A seminal contribution to the mathematical theory of epidemics (1927) publication-title: A historical introduction to mathematical modeling of infectious diseases contributor: fullname: Foppa – year: 2020 ident: bib56 article-title: Estimates of the severity of COVID-19 disease contributor: fullname: Winskill – volume: 368 start-page: 860 year: 2020 end-page: 868 ident: bib23 article-title: Projecting the transmission dynamics of SARS-CoV-2 through the postpandemic period publication-title: Science contributor: fullname: Lipsitch – year: 2020 ident: bib33 article-title: Understanding unreported cases in the 2019-nCov epidemic outbreak in Wuhan contributor: fullname: Webb – year: 2020 ident: bib65 article-title: Evolving epidemiology and transmission dynamics of coronavirus disease 2019 outside Hubei province, China: A descriptive and modelling study publication-title: The Lancet Infectious Diseases contributor: fullname: Chen – volume: 395 start-page: 689 year: 2020 end-page: 697 ident: bib63 article-title: Nowcasting and forecasting the potential domestic and international spread of the 2019-nCoV outbreak originating in Wuhan, China: A modelling study publication-title: The Lancet contributor: fullname: Leung – volume: 26 year: 2020 ident: bib40 article-title: Severe acute respiratory syndrome coronavirus 2 transmission potential, Iran, 2020 publication-title: Emerging Infectious Diseases contributor: fullname: Tariq – year: 2020 ident: bib70 article-title: On a statistical transmission model in analysis of the early phase of COVID-19 outbreak publication-title: Statistics in Biosciences contributor: fullname: Chen – volume: Vol. 93 start-page: 339 year: 2020 end-page: 344 ident: bib50 publication-title: Transmission potential and severity of COVID-19 in South Korea. International journal of infectious diseases : IJID contributor: fullname: Chowell – year: 2020 ident: bib12 article-title: Analysis and forecast of COVID-19 spreading in China, Italy and France publication-title: Chaos, Solitons & Fractals contributor: fullname: Piazza – volume: 9 start-page: 462 year: 2020 ident: bib53 article-title: Estimation of the transmission risk of the 2019-nCoV and its implication for public health interventions publication-title: Journal of Clinical Medicine contributor: fullname: Xiao – year: 2020 ident: bib37 article-title: Prudent public health intervention strategies to control the coronavirus disease 2019 transmission in India A mathematical model-based approach contributor: fullname: Arinaminpathy – volume: 15 year: 2020 ident: bib2 article-title: Data-based analysis, modelling and forecasting of the COVID-19 outbreak publication-title: PloS One contributor: fullname: Siettos – year: 2020 ident: bib22 article-title: Universal masking is urgent in the COVID-19 pandemic: SEIR and agent based models, empirical Validation,Policy recommendations contributor: fullname: Guy-PhilippeGoldstein – year: 2020 ident: bib38 article-title: A model based study on the dynamics of COVID-19: Prediction and control publication-title: Chaos, Solitons, and Fractals contributor: fullname: Kar – volume: 12 start-page: 165 year: 2020 ident: bib64 article-title: Modified SEIR and AI prediction of the epidemics trend of COVID-19 in China under public health interventions publication-title: Journal of Thoracic Disease contributor: fullname: Zanin – year: 2020 ident: bib48 article-title: Canada needs to rapidly escalate public health interventions for its COVID-19 mitigation strategies publication-title: Infectious Disease Modelling contributor: fullname: Wu – year: 2020 ident: bib57 article-title: Evolving epidemiology and impact of non-pharmaceutical interventions on the outbreak of coronavirus disease 2019 in wuhan, China contributor: fullname: Liu – volume: 135 start-page: 109829 year: 2020 ident: bib66 article-title: Predicting turning point, duration and attack rate of COVID-19 outbreaks in major Western countries publication-title: Chaos, Solitons & Fractals contributor: fullname: Wang – volume: 94 start-page: 116 year: 2020 end-page: 118 ident: bib44 article-title: Changes in testing rates could mask the novel coronavirus disease (COVID-19) growth rate publication-title: International Journal of Infectious Diseases contributor: fullname: Chowell – volume: 92 start-page: 214 year: 2020 end-page: 217 ident: bib67 article-title: Preliminary estimation of the basic reproduction number of novel coronavirus (2019-nCoV) in China, from 2019 to 2020: A data-driven analysis in the early phase of the outbreak publication-title: International Journal of Infectious Diseases contributor: fullname: Wang – year: 2020 ident: bib69 article-title: Imitation dynamics in the mitigation of the novel coronavirus disease (COVID-19) outbreak in Wuhan, China from 2019 to 2020 contributor: fullname: Gao – volume: 368 start-page: 493 year: 2020 end-page: 497 ident: bib25 article-title: The effect of human mobility and control measures on the COVID-19 epidemic in China publication-title: Science contributor: fullname: Pigott – volume: Vol. 382 start-page: 1199 year: 2020 end-page: 1207 ident: bib29 publication-title: Early transmission dynamics in Wuhan, China, of novel coronavirus–infected pneumonia contributor: fullname: Tong – year: 2020 ident: bib31 article-title: A COVID-19 epidemic model with latency period publication-title: Infect Dis Model contributor: fullname: Webb – volume: 9 year: 2020 ident: bib46 article-title: Short-term forecasts of the COVID-19 epidemic in Guangdong and Zhejiang, China: February 13–23, 2020 publication-title: Journal of Clinical Medicine contributor: fullname: Hyman – volume: 17 start-page: 186 year: 2019 end-page: 194 ident: bib28 article-title: Epidemic models of contact tracing: Systematic review of transmission studies of severe acute respiratory syndrome and Middle East respiratory syndrome publication-title: Computational and Structural Biotechnology Journal contributor: fullname: Riley – year: 2020 ident: bib6 article-title: Coronavirus disease 2019 (COVID-19)-Cases, data & surveillance contributor: fullname: CDC – volume: 368 year: 2020 ident: bib13 article-title: Quantifying SARS-CoV-2 transmission suggests epidemic control with digital contact tracing publication-title: Science contributor: fullname: Abeler-Dorner – year: 2020 ident: bib60 article-title: Coronavirus disease (COVID-19) situation report– 137 contributor: fullname: WHO – volume: 9 year: 2020 ident: bib5 article-title: Risk assessment of novel coronavirus COVID-19 outbreaks outside China publication-title: Journal of Clinical Medicine contributor: fullname: Rost – volume: 26 year: 2020 ident: bib47 article-title: High contagiousness and rapid spread of severe acute respiratory syndrome coronavirus 2 publication-title: Emerging Infectious Diseases contributor: fullname: Ke – year: 2020 ident: 10.1016/j.idm.2021.01.001_bib24 article-title: Interventions to mitigate early spread of SARS-CoV-2 in Singapore: A modelling study publication-title: The Lancet Infect doi: 10.1016/S1473-3099(20)30162-6 contributor: fullname: Koo – year: 2020 ident: 10.1016/j.idm.2021.01.001_bib69 contributor: fullname: Zhao – volume: 395 start-page: 931 issue: 10228 year: 2020 ident: 10.1016/j.idm.2021.01.001_bib4 article-title: How will country-based mitigation measures influence the course of the COVID-19 epidemic? publication-title: The Lancet doi: 10.1016/S0140-6736(20)30567-5 contributor: fullname: Anderson – ident: 10.1016/j.idm.2021.01.001_bib6 contributor: fullname: CDC – year: 2020 ident: 10.1016/j.idm.2021.01.001_bib38 article-title: A model based study on the dynamics of COVID-19: Prediction and control publication-title: Chaos, Solitons, and Fractals doi: 10.1016/j.chaos.2020.109889 contributor: fullname: Mandal – year: 2020 ident: 10.1016/j.idm.2021.01.001_bib12 article-title: Analysis and forecast of COVID-19 spreading in China, Italy and France publication-title: Chaos, Solitons & Fractals doi: 10.1016/j.chaos.2020.109761 contributor: fullname: Fanelli – volume: 9 start-page: 462 issue: 2 year: 2020 ident: 10.1016/j.idm.2021.01.001_bib53 article-title: Estimation of the transmission risk of the 2019-nCoV and its implication for public health interventions publication-title: Journal of Clinical Medicine doi: 10.3390/jcm9020462 contributor: fullname: Tang – volume: 9 issue: 2 year: 2020 ident: 10.1016/j.idm.2021.01.001_bib68 article-title: Estimating the unreported number of novel coronavirus (2019-nCoV) cases in China in the first half of January 2020: A data-driven modelling analysis of the early outbreak publication-title: Journal of Clinical Medicine doi: 10.3390/jcm9020388 contributor: fullname: Zhao – year: 2020 ident: 10.1016/j.idm.2021.01.001_bib55 article-title: An investigation of transmission control measures during the first 50 days of the COVID-19 epidemic in China publication-title: Science doi: 10.1126/science.abb6105 contributor: fullname: Tian – year: 2020 ident: 10.1016/j.idm.2021.01.001_bib20 article-title: The effectiveness of quarantine of Wuhan city against the corona virus disease 2019 (COVID-19): A well-mixed SEIR model analysis publication-title: Journal of Medical Virology doi: 10.1002/jmv.25827 contributor: fullname: Hou – year: 2020 ident: 10.1016/j.idm.2021.01.001_bib17 contributor: fullname: Hauser – volume: 25 issue: 17 year: 2020 ident: 10.1016/j.idm.2021.01.001_bib15 article-title: Estimating the generation interval for coronavirus disease (COVID-19) based on symptom onset data, March 2020 publication-title: Euro Surveillance contributor: fullname: Ganyani – volume: 26 issue: 7 year: 2020 ident: 10.1016/j.idm.2021.01.001_bib47 article-title: High contagiousness and rapid spread of severe acute respiratory syndrome coronavirus 2 publication-title: Emerging Infectious Diseases doi: 10.3201/eid2607.200282 contributor: fullname: Sanche – volume: 368 start-page: eaba9757 issue: 6489 year: 2020 ident: 10.1016/j.idm.2021.01.001_bib9 article-title: The effect of travel restrictions on the spread of the 2019 novel coronavirus (COVID-19) outbreak publication-title: Science doi: 10.1126/science.aba9757 contributor: fullname: Chinazzi – volume: 395 start-page: 689 issue: 10225 year: 2020 ident: 10.1016/j.idm.2021.01.001_bib63 article-title: Nowcasting and forecasting the potential domestic and international spread of the 2019-nCoV outbreak originating in Wuhan, China: A modelling study publication-title: The Lancet doi: 10.1016/S0140-6736(20)30260-9 contributor: fullname: Wu – volume: 8 start-page: E488 issue: 4 year: 2020 ident: 10.1016/j.idm.2021.01.001_bib19 article-title: Feasibility of controlling COVID-19 outbreaks by isolation of cases and contacts publication-title: Lancet Global Health doi: 10.1016/S2214-109X(20)30074-7 contributor: fullname: Hellewell – volume: 9 issue: 2 year: 2020 ident: 10.1016/j.idm.2021.01.001_bib54 article-title: Novel coronavirus outbreak in Wuhan, China, 2020: Intense surveillance is vital for preventing sustained transmission in new locations publication-title: Journal of Clinical Medicine doi: 10.3390/jcm9020498 contributor: fullname: Thompson – volume: 5 start-page: 293 year: 2020 ident: 10.1016/j.idm.2021.01.001_bib11 article-title: To mask or not to mask: Modeling the potential for face mask use by the general public to curtail the COVID-19 pandemic publication-title: Infect Dis Model contributor: fullname: Eikenberry – year: 2020 ident: 10.1016/j.idm.2021.01.001_bib26 article-title: Early dynamics of transmission and control of COVID-19: A mathematical modelling study publication-title: The Lancet Infect doi: 10.1016/S1473-3099(20)30144-4 contributor: fullname: Kucharski – year: 2020 ident: 10.1016/j.idm.2021.01.001_bib65 article-title: Evolving epidemiology and transmission dynamics of coronavirus disease 2019 outside Hubei province, China: A descriptive and modelling study publication-title: The Lancet Infectious Diseases doi: 10.1016/S1473-3099(20)30230-9 contributor: fullname: Zhang – start-page: 59 year: 2017 ident: 10.1016/j.idm.2021.01.001_bib14 article-title: 4 - W.O. Kermack and A.G. McKendrick: A seminal contribution to the mathematical theory of epidemics (1927) contributor: fullname: Foppa – year: 2020 ident: 10.1016/j.idm.2021.01.001_bib48 article-title: Canada needs to rapidly escalate public health interventions for its COVID-19 mitigation strategies publication-title: Infectious Disease Modelling doi: 10.1016/j.idm.2020.03.004 contributor: fullname: Scarabel – volume: 5 start-page: 282 year: 2020 ident: 10.1016/j.idm.2021.01.001_bib34 article-title: Propagation analysis and prediction of the COVID-19 publication-title: Infect Dis Model contributor: fullname: Li – ident: 10.1016/j.idm.2021.01.001_bib59 contributor: fullname: WHO – volume: 5 start-page: 7 year: 2020 ident: 10.1016/j.idm.2021.01.001_bib7 article-title: First two months of the 2019 coronavirus disease (COVID-19) epidemic in China: Real-time surveillance and evaluation with a second derivative model publication-title: Glob Health Res Policy doi: 10.1186/s41256-020-00137-4 contributor: fullname: Chen – volume: 92 start-page: 214 year: 2020 ident: 10.1016/j.idm.2021.01.001_bib67 article-title: Preliminary estimation of the basic reproduction number of novel coronavirus (2019-nCoV) in China, from 2019 to 2020: A data-driven analysis in the early phase of the outbreak publication-title: International Journal of Infectious Diseases doi: 10.1016/j.ijid.2020.01.050 contributor: fullname: Zhao – volume: 26 issue: 8 year: 2020 ident: 10.1016/j.idm.2021.01.001_bib40 article-title: Severe acute respiratory syndrome coronavirus 2 transmission potential, Iran, 2020 publication-title: Emerging Infectious Diseases doi: 10.3201/eid2608.200536 contributor: fullname: Muniz-Rodriguez – volume: 135 start-page: 109829 year: 2020 ident: 10.1016/j.idm.2021.01.001_bib66 article-title: Predicting turning point, duration and attack rate of COVID-19 outbreaks in major Western countries publication-title: Chaos, Solitons & Fractals doi: 10.1016/j.chaos.2020.109829 contributor: fullname: Zhang – volume: 94 start-page: 116 year: 2020 ident: 10.1016/j.idm.2021.01.001_bib44 article-title: Changes in testing rates could mask the novel coronavirus disease (COVID-19) growth rate publication-title: International Journal of Infectious Diseases doi: 10.1016/j.ijid.2020.04.021 contributor: fullname: Omori – start-page: 56 year: 2001 ident: 10.1016/j.idm.2021.01.001_bib16 article-title: Concepts of transmission and dynamics contributor: fullname: Halloran – volume: 15 issue: 3 year: 2020 ident: 10.1016/j.idm.2021.01.001_bib2 article-title: Data-based analysis, modelling and forecasting of the COVID-19 outbreak publication-title: PloS One doi: 10.1371/journal.pone.0230405 contributor: fullname: Anastassopoulou – volume: Vol. 93 start-page: 339 year: 2020 ident: 10.1016/j.idm.2021.01.001_bib50 contributor: fullname: Shim – volume: 5 start-page: 248 year: 2020 ident: 10.1016/j.idm.2021.01.001_bib52 article-title: An updated estimation of the risk of transmission of the novel coronavirus (2019-nCov) publication-title: Infect Dis Model contributor: fullname: Tang – year: 2014 ident: 10.1016/j.idm.2021.01.001_bib42 article-title: Infectious disease epidemiology contributor: fullname: Nelson – year: 2020 ident: 10.1016/j.idm.2021.01.001_bib33 contributor: fullname: Liu – volume: 368 start-page: 860 issue: 6493 year: 2020 ident: 10.1016/j.idm.2021.01.001_bib23 article-title: Projecting the transmission dynamics of SARS-CoV-2 through the postpandemic period publication-title: Science doi: 10.1126/science.abb5793 contributor: fullname: Kissler – volume: 325 start-page: 108364 year: 2020 ident: 10.1016/j.idm.2021.01.001_bib43 article-title: Mathematical assessment of the impact of non-pharmaceutical interventions on curtailing the 2019 novel Coronavirus publication-title: Mathematical Biosciences doi: 10.1016/j.mbs.2020.108364 contributor: fullname: Ngonghala – volume: 95 start-page: 231 year: 2020 ident: 10.1016/j.idm.2021.01.001_bib21 article-title: Evaluation and prediction of the COVID-19 variations at different input population and quarantine strategies, a case study in Guangdong province, China publication-title: International Journal of Infectious Diseases doi: 10.1016/j.ijid.2020.04.010 contributor: fullname: Hu – year: 2020 ident: 10.1016/j.idm.2021.01.001_bib32 contributor: fullname: Liu – volume: 135 year: 2020 ident: 10.1016/j.idm.2021.01.001_bib41 article-title: Mathematical modeling of COVID-19 transmission dynamics with a case study of Wuhan publication-title: Chaos, Solitons & Fractals doi: 10.1016/j.chaos.2020.109846 contributor: fullname: Ndaïrou – volume: 20 year: 2015 ident: 10.1016/j.idm.2021.01.001_bib49 article-title: Ebola-challenge and revival of theoretical epidemiology why extrapolations from early phases of epidemics are problematic publication-title: Complexity doi: 10.1002/cplx.21694 contributor: fullname: Schuster – year: 1992 ident: 10.1016/j.idm.2021.01.001_bib3 contributor: fullname: Anderson – year: 2020 ident: 10.1016/j.idm.2021.01.001_bib30 contributor: fullname: Li – year: 2020 ident: 10.1016/j.idm.2021.01.001_bib35 contributor: fullname: Magal – year: 2020 ident: 10.1016/j.idm.2021.01.001_bib31 article-title: A COVID-19 epidemic model with latency period publication-title: Infect Dis Model contributor: fullname: Liu – year: 2020 ident: 10.1016/j.idm.2021.01.001_bib56 contributor: fullname: Verity – ident: 10.1016/j.idm.2021.01.001_bib62 contributor: fullname: WHO – year: 2020 ident: 10.1016/j.idm.2021.01.001_bib27 article-title: Prediction of the epidemic peak of coronavirus disease in Japan, 2020 publication-title: Clinical Medicine contributor: fullname: Kuniya – volume: 17 start-page: 186 year: 2019 ident: 10.1016/j.idm.2021.01.001_bib28 article-title: Epidemic models of contact tracing: Systematic review of transmission studies of severe acute respiratory syndrome and Middle East respiratory syndrome publication-title: Computational and Structural Biotechnology Journal doi: 10.1016/j.csbj.2019.01.003 contributor: fullname: Kwok – volume: 9 issue: 2 year: 2020 ident: 10.1016/j.idm.2021.01.001_bib46 article-title: Short-term forecasts of the COVID-19 epidemic in Guangdong and Zhejiang, China: February 13–23, 2020 publication-title: Journal of Clinical Medicine doi: 10.3390/jcm9020596 contributor: fullname: Roosa – volume: 5 start-page: 256 year: 2020 ident: 10.1016/j.idm.2021.01.001_bib45 article-title: Real-time forecasts of the COVID-19 epidemic in China from february 5th to february 24th, 2020 publication-title: Infect Dis Model contributor: fullname: Roosa – volume: 12 start-page: 165 issue: 3 year: 2020 ident: 10.1016/j.idm.2021.01.001_bib64 article-title: Modified SEIR and AI prediction of the epidemics trend of COVID-19 in China under public health interventions publication-title: Journal of Thoracic Disease doi: 10.21037/jtd.2020.02.64 contributor: fullname: Yang – volume: 347 start-page: aaa4339 issue: 6227 year: 2015 ident: 10.1016/j.idm.2021.01.001_bib18 article-title: Modeling infectious disease dynamics in the complex landscape of global health publication-title: Science doi: 10.1126/science.aaa4339 contributor: fullname: Heesterbeek – year: 2020 ident: 10.1016/j.idm.2021.01.001_bib57 contributor: fullname: Wang – ident: 10.1016/j.idm.2021.01.001_bib58 contributor: fullname: WHO – year: 2020 ident: 10.1016/j.idm.2021.01.001_bib22 contributor: fullname: Kai – ident: 10.1016/j.idm.2021.01.001_bib61 contributor: fullname: WHO – year: 2020 ident: 10.1016/j.idm.2021.01.001_bib37 contributor: fullname: Mandal – ident: 10.1016/j.idm.2021.01.001_bib60 contributor: fullname: WHO – volume: 42 year: 2020 ident: 10.1016/j.idm.2021.01.001_bib10 article-title: Estimating the reproductive number and the outbreak size of COVID-19 in Korea publication-title: Epidemiol Health doi: 10.4178/epih.e2020011 contributor: fullname: Choi – volume: Vol. 382 start-page: 1199 year: 2020 ident: 10.1016/j.idm.2021.01.001_bib29 contributor: fullname: Li – volume: 368 start-page: 493 issue: 6490 year: 2020 ident: 10.1016/j.idm.2021.01.001_bib25 article-title: The effect of human mobility and control measures on the COVID-19 epidemic in China publication-title: Science doi: 10.1126/science.abb4218 contributor: fullname: Kraemer – volume: 368 start-page: 742 issue: 6492 year: 2020 ident: 10.1016/j.idm.2021.01.001_bib36 article-title: Effective containment explains subexponential growth in recent confirmed COVID-19 cases in China publication-title: Science doi: 10.1126/science.abb4557 contributor: fullname: Maier – year: 2020 ident: 10.1016/j.idm.2021.01.001_bib51 article-title: Estimating the effects of asymptomatic and imported patients on COVID-19 epidemic using mathematical modeling publication-title: Journal of Medical Virology doi: 10.1002/jmv.25939 contributor: fullname: Sun – volume: 368 issue: 6491 year: 2020 ident: 10.1016/j.idm.2021.01.001_bib13 article-title: Quantifying SARS-CoV-2 transmission suggests epidemic control with digital contact tracing publication-title: Science doi: 10.1126/science.abb6936 contributor: fullname: Ferretti – year: 2020 ident: 10.1016/j.idm.2021.01.001_bib39 article-title: Early transmission dynamics of COVID-19 in a southern hemisphere setting: Lima-Peru: February 29th-March 30th, 2020 publication-title: Infect Dis Model contributor: fullname: Munayco – volume: 9 issue: 2 year: 2020 ident: 10.1016/j.idm.2021.01.001_bib5 article-title: Risk assessment of novel coronavirus COVID-19 outbreaks outside China publication-title: Journal of Clinical Medicine doi: 10.3390/jcm9020571 contributor: fullname: Boldog – year: 2020 ident: 10.1016/j.idm.2021.01.001_bib70 article-title: On a statistical transmission model in analysis of the early phase of COVID-19 outbreak publication-title: Statistics in Biosciences contributor: fullname: Zhu – volume: 325 start-page: 108370 year: 2020 ident: 10.1016/j.idm.2021.01.001_bib1 article-title: Modeling behavioral change and COVID-19 containment in Mexico: A trade-off between lockdown and compliance publication-title: Mathematical Biosciences doi: 10.1016/j.mbs.2020.108370 contributor: fullname: Acuna-Zegarra |
SSID | ssj0001827034 ssib044739657 |
Score | 2.5332224 |
Snippet | The coronavirus disease outbreak of 2019 (COVID-19) has been spreading rapidly to all corners of the word, in a very complex manner. A key research focus is in... |
SourceID | doaj pubmedcentral proquest crossref pubmed elsevier |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 324 |
SubjectTerms | Compartmental model COVID-19 Epidemic model Public health intervention Reproduction number Special issue on Modelling and Forecasting the 2019 Novel Coronavirus (2019-nCoV) Transmission; Edited by Prof. Carlos Castillo-Chavez, Prof. Gerardo Chowell-Puente, Prof. Ping Yan, Prof. Jianhong Wu |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZKT70gKiiEFuRKnCpF8mtjm1vpQ-0FDtCKm-X4IRaJ7Krb_f_M2Mlql0pw4epYju0Zaz57Zr4h5EPHkvVgNlqYpW9BQ3jrjbBt6DwYY5F9LOXbbr7qz9_N5RXS5GxKfWFMWKUHrhsHF_aseq-k1zIrL7SfZRV7LJZlgoq8MoEyu3WZKq8rRoAqo0tZYGoRFpSYXJoluGseMQtd8ELZORaEmYxS4e7fsU1PseefIZRbNun6BXk-gkl6XhdxSPbS8JIsL77c31623NJUq78GunxAdwyKgPohUsB8tGZH0kWmleia1oRIOt-KgVx9pOe05rZgx6fjljI6q1fk7vrq28VNO9ZVaMOM68fWZiUjoOrAfd_1gGdCL3S0IXchC5Zi0nCNgUav-2C8YiZ2XibWZa1jNrMkj8j-sBjSG0KDtIz1sUf6X8VtsiqpFLX1ISYAg6ohZ9PGumWlz3BTXNlPOHe_HErBMY6xdQ35hFu_6YjM16UB9MGN-uD-pQ8NUZPg3AgiKjiAoeZ_-_fpJGQHBwy9Jn5Ii_XKCaU1gD7OTENeV6FvZiilktpY3RC9ow47S9j9Msx_FBJv5HlUM_72f6z5mBzgUurL0AnZf3xYp3fk2Squ35dj8RtU0RBR priority: 102 providerName: Directory of Open Access Journals |
Title | COVID-19 epidemic prediction and the impact of public health interventions: A review of COVID-19 epidemic models |
URI | https://dx.doi.org/10.1016/j.idm.2021.01.001 https://www.ncbi.nlm.nih.gov/pubmed/33437897 https://search.proquest.com/docview/2477515108 https://pubmed.ncbi.nlm.nih.gov/PMC7790451 https://doaj.org/article/57f4ba43a73f4a27a5f4db19728c4d14 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELbYnrggEK_lURmJE1K68SNxzK1sW5UDD4mHuEV-Qio2u9rt_n9m7KTaUIkDVyfxa8aaL56Zbwh5XZdBGzAbBczSFKAhrDAN14WrDRhjHo1P5dsuv6iPP5qzc6TJqcZcmBS072x30v9enfTdrxRbuVm5xRgntvj8YYkcebJiixmZgYJOf9GlVEKPrrx00dJw0Gr0LnPMMsI6rqN3M8V5dR4T0jlL7J0lVo4RQgrVIA3UgalKjP4Ti3Ubkf4dWHlgqS7uk3sDxKSneSkPyJ3QPySb5afv788KpmnINWEd3WzRSYOCoab3FJAgzTmTdB1ppr-mOU2SdgeRkbu39JTmjBd88Xa_qbjO7hH5dnH-dXlZDNUWClcxdV3oKIUHrO2YsbUFlOMsV167WLvIy-CDgp8baDTKusbIsvG1EaGso1I-NlUQj8lRv-7DU0Kd0GVpvUVSYMl00DLI4JU2zgeAiHJO3owb224yqUY7RptdwWlctSiQtmQYcTcn73Drb15EPuzUsN7-bAetaCsVpTVSGCWiNFyZKkpvsaRa46RnMKIcBdcO0CJDBuiq-9fYr0Yht3Ds0Jdi-rDe71oulQIoyMpmTp5kod_McNSfOVETdZgsYfoEND1Rew-a_ey_v3xO7uL88yXRC3J0vd2Hl2S28_vjdN1wnA7LH_lwFU4 |
link.rule.ids | 230,315,730,783,787,867,888,2109,27936,27937,53804,53806 |
linkProvider | National Library of Medicine |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZoOcClBfFankbihJSuHTtxzK1sW21FW5AoiJvl-EFTdbOr3e7_r8dOqg2VOPTqOH5kxprPmZlvEPpUEid1MBtZWKXOgobQTFe5zEypgzHOvbaxfNv0pzj7Ux0cAk1O0efCxKB9Uzd77dVsr20uYmzlYmbGfZzY-MfpBDjyeEHHW-hhOK-EDy_pnAsme2de_NVS5UGvwb-cQ54RVHLt_Zsx0quxkJKe08jfSaB2DGOciQqIoDaMVeT0H9isu5j039DKDVt1tHvPXT5BOx04xfvp8VP0wLXP0GLy_ffxQUYldqmarMGLJbh3QKRYtxYHDIlTtiWee5yIs3FKsMTNRkzl6gvexylXBjreHTeW5Vk9R7-ODs8n06yr05CZgorrTHrObEDphuq6rAM-MnUurDS-ND4nzjoRrkWhUYvaVJqTypaaOVJ6IayvCsdeoO123rpXCBsmCaltDXTCnEonuePOCqmNdQFc8hH63AtELRIdh-rj1C7DOZ4pEKQiFGL1RugriOy2IzBpx4b58q_qvrQqhOe15kwL5rnOhS48tzUUY6sMtzTMyHuBqw6UJLARhmr-N_fHXjlUOLDghdGtm69XKudCBBBJSTVCL5Oy3K6w17sREgM1Gmxh-CRoTyQF77Tl9b3f_IAeTc9PT9TJ8dm3N-gx7CX9anqLtq-Xa_cOba3s-n08ajeLcinu |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELbYRUJceIhXeRqJE1K2duzEMbel3WpXwLISD3GzHD8giKZRu_3_eOykaliJA1wdx44zY81nz8w3CL0qiZM6mI0sfKXOgobQTFe5zEypgzHOvbaxfNvpJ3H-rZqfAE3OrtRXDNo3dXPU_loetc2PGFvZLc10iBObXnyYAUceL-i0s356gK6HPUvK8UGdc8Hk4NCL1y1VHnQbfMw55BpBNdfBxxmjvRoLaek5jRyeBOrHMMaZqIAMas9gRV7_kd26ikv_DK_cs1eL2_-x0jvoVg9S8XHqchddc-091M0-fj2bZ1Ril6rKGtytwc0DosW6tThgSZyyLvHK40SgjVOiJW72Yis3b_AxTjkz0PHquLE8z-Y--rI4-Tw7zfp6DZkpqLjMpOfMBrRuqK7LOuAkU-fCSuNL43PirBPheBQatahNpTmpbKmZI6UXwvqqcOwBOmxXrXuEsGGSkNrWQCvMqXSSO-6skNpYF0Amn6DXg1BUl2g51BCv9jPs56UCYSpCIWZvgt6C2HYdgVE7NqzW31X_t1UhPK81Z1owz3UudOG5raEoW2W4pWFGPghd9eAkgY4wVPO3uV8OCqLCxgVvjG7dartRORcigElKqgl6mBRm94WD7k2QGKnSaAnjJ0GDIjl4rzGP__nNF-jGxXyh3p-dv3uCbsJS0o3TU3R4ud66Z-hgY7fP4277DeogLG4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=COVID-19+epidemic+prediction+and+the+impact+of+public+health+interventions%3A+A+review+of+COVID-19+epidemic+models&rft.jtitle=Infectious+disease+modelling&rft.au=Xiang%2C+Yue&rft.au=Jia%2C+Yonghong&rft.au=Chen%2C+Linlin&rft.au=Guo%2C+Lei&rft.date=2021-01-01&rft.pub=Elsevier+B.V&rft.issn=2468-0427&rft.eissn=2468-0427&rft.volume=6&rft.spage=324&rft.epage=342&rft_id=info:doi/10.1016%2Fj.idm.2021.01.001&rft.externalDocID=S2468042721000038 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2468-0427&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2468-0427&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2468-0427&client=summon |