Progressive Decrease of Mitochondrial Motility during Maturation of Cortical Axons In Vitro and In Vivo

The importance of mitochondria for neuronal function is evident by the large number of neurodegenerative diseases that have been associated with a disruption of mitochondrial function or transport (reviewed in [1, 2]). Mitochondria are essential for proper biological function as a result of their ab...

Full description

Saved in:
Bibliographic Details
Published in:Current biology Vol. 26; no. 19; pp. 2602 - 2608
Main Authors: Lewis, Tommy L., Turi, Gergely F., Kwon, Seok-Kyu, Losonczy, Attila, Polleux, Franck
Format: Journal Article
Language:English
Published: England Elsevier Ltd 10-10-2016
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The importance of mitochondria for neuronal function is evident by the large number of neurodegenerative diseases that have been associated with a disruption of mitochondrial function or transport (reviewed in [1, 2]). Mitochondria are essential for proper biological function as a result of their ability to produce ATP through oxidative phosphorylation, buffer cytoplasmic calcium, regulate lipid biosynthesis, and trigger apoptosis (reviewed in [2]). Efficient transport of mitochondria is thought to be particularly important in neurons in light of their compartmentalization, length of axonal processes, and high-energy requirements (reviewed in [3]). However, the majority of these results were obtained using short-term, in vitro neuronal culture models, and very little is currently known about mitochondrial dynamics in mature axons of the mammalian CNS in vitro or in vivo. Furthermore, recent evidence has demonstrated that mitochondrial immobilization at specific points along the axon, such as presynaptic boutons, play critical roles in axon morphogenesis [4, 5]. We report that as cortical axons mature, motility of mitochondria (but not other cargoes) is dramatically reduced and this coincides with increased localization to presynaptic sites. We also demonstrate using photo-conversion that in vitro mature axons display surprisingly limited long-range mitochondrial transport. Finally, using in vivo two-photon microscopy in anesthetized or awake-behaving mice, we document for the first time that mitochondrial motility is also remarkably low in distal cortical axons in vivo. These results argue that mitochondrial immobilization and presynaptic localization are important hallmarks of mature CNS axons both in vitro and in vivo. •Mitochondrial motility is greatly reduced during cortical axon maturation in vitro•Mitochondrial immobilization correlates with their capture at presynaptic boutons•Axonal mitochondria remain immobilized over long time periods in mature neurons•Mitochondrial motility is very limited in adult cortical axons in vivo Lewis et al. demonstrate that mitochondrial motility is extremely low in mature cortical axons in vitro and in vivo using two-photon microscopy in awake-behaving mice. These results establish that the identification of the molecular mechanisms underlying mitochondrial immobilization at specific points along the axon is becoming critical.
AbstractList The importance of mitochondria for neuronal function is evident by the large number of neurodegenerative diseases that have been associated with a disruption of mitochondrial function or transport (reviewed in [1, 2]). Mitochondria are essential for proper biological function as a result of their ability to produce ATP through oxidative phosphorylation, buffer cytoplasmic calcium, regulate lipid biosynthesis, and trigger apoptosis (reviewed in [2]). Efficient transport of mitochondria is thought to be particularly important in neurons in light of their compartmentalization, length of axonal processes, and high-energy requirements (reviewed in [3]). However, the majority of these results were obtained using short-term, in vitro neuronal culture models, and very little is currently known about mitochondrial dynamics in mature axons of the mammalian CNS in vitro or in vivo. Furthermore, recent evidence has demonstrated that mitochondrial immobilization at specific points along the axon, such as presynaptic boutons, play critical roles in axon morphogenesis [4, 5]. We report that as cortical axons mature, motility of mitochondria (but not other cargoes) is dramatically reduced and this coincides with increased localization to presynaptic sites. We also demonstrate using photo-conversion that in vitro mature axons display surprisingly limited long-range mitochondrial transport. Finally, using in vivo two-photon microscopy in anesthetized or awake-behaving mice, we document for the first time that mitochondrial motility is also remarkably low in distal cortical axons in vivo. These results argue that mitochondrial immobilization and presynaptic localization are important hallmarks of mature CNS axons both in vitro and in vivo.
The importance of mitochondria for neuronal function is evident by the large number of neurodegenerative diseases that have been associated with a disruption of mitochondrial function or transport (reviewed in [1, 2]). Mitochondria are essential for proper biological function as a result of their ability to produce ATP through oxidative phosphorylation, buffer cytoplasmic calcium, regulate lipid biosynthesis, and trigger apoptosis (reviewed in [2]). Efficient transport of mitochondria is thought to be particularly important in neurons in light of their compartmentalization, length of axonal processes, and high-energy requirements (reviewed in [3]). However, the majority of these results were obtained using short-term, in vitro neuronal culture models, and very little is currently known about mitochondrial dynamics in mature axons of the mammalian CNS in vitro or in vivo. Furthermore, recent evidence has demonstrated that mitochondrial immobilization at specific points along the axon, such as presynaptic boutons, play critical roles in axon morphogenesis [4, 5]. We report that as cortical axons mature, motility of mitochondria (but not other cargoes) is dramatically reduced and this coincides with increased localization to presynaptic sites. We also demonstrate using photo-conversion that in vitro mature axons display surprisingly limited long-range mitochondrial transport. Finally, using in vivo two-photon microscopy in anesthetized or awake-behaving mice, we document for the first time that mitochondrial motility is also remarkably low in distal cortical axons in vivo. These results argue that mitochondrial immobilization and presynaptic localization are important hallmarks of mature CNS axons both in vitro and in vivo. •Mitochondrial motility is greatly reduced during cortical axon maturation in vitro•Mitochondrial immobilization correlates with their capture at presynaptic boutons•Axonal mitochondria remain immobilized over long time periods in mature neurons•Mitochondrial motility is very limited in adult cortical axons in vivo Lewis et al. demonstrate that mitochondrial motility is extremely low in mature cortical axons in vitro and in vivo using two-photon microscopy in awake-behaving mice. These results establish that the identification of the molecular mechanisms underlying mitochondrial immobilization at specific points along the axon is becoming critical.
Author Lewis, Tommy L.
Kwon, Seok-Kyu
Turi, Gergely F.
Losonczy, Attila
Polleux, Franck
Author_xml – sequence: 1
  givenname: Tommy L.
  surname: Lewis
  fullname: Lewis, Tommy L.
  organization: Department of Neuroscience, Columbia University Medical Center, Mortimer B. Zuckerman Mind Brain Behavior Institute, Kavli Institute for Brain Science, 550 West 120th Street, 1103 NWC Building, New York, NY 10027, USA
– sequence: 2
  givenname: Gergely F.
  surname: Turi
  fullname: Turi, Gergely F.
  organization: Department of Neuroscience, Columbia University Medical Center, Mortimer B. Zuckerman Mind Brain Behavior Institute, Kavli Institute for Brain Science, 550 West 120th Street, 1103 NWC Building, New York, NY 10027, USA
– sequence: 3
  givenname: Seok-Kyu
  surname: Kwon
  fullname: Kwon, Seok-Kyu
  organization: Department of Neuroscience, Columbia University Medical Center, Mortimer B. Zuckerman Mind Brain Behavior Institute, Kavli Institute for Brain Science, 550 West 120th Street, 1103 NWC Building, New York, NY 10027, USA
– sequence: 4
  givenname: Attila
  surname: Losonczy
  fullname: Losonczy, Attila
  organization: Department of Neuroscience, Columbia University Medical Center, Mortimer B. Zuckerman Mind Brain Behavior Institute, Kavli Institute for Brain Science, 550 West 120th Street, 1103 NWC Building, New York, NY 10027, USA
– sequence: 5
  givenname: Franck
  surname: Polleux
  fullname: Polleux, Franck
  email: fp2304@cumc.columbia.edu
  organization: Department of Neuroscience, Columbia University Medical Center, Mortimer B. Zuckerman Mind Brain Behavior Institute, Kavli Institute for Brain Science, 550 West 120th Street, 1103 NWC Building, New York, NY 10027, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27641765$$D View this record in MEDLINE/PubMed
BookMark eNp9kctu1DAUhi1URKeFB2CDsmSTYDvxTUhI1XCr1FG7ALaW45xMPcrYxXZG9G14Fp4Mj2ZalQ0r2zrf-e3j7wyd-OABodcENwQT_m7T2LlvaNk2WDSYd8_Qgkihatx17AQtsOK4VpLSU3SW0gZjQqXiL9ApFbwjgrMFcjcxrCOk5HZQfQQbwSSowlitXA72NvghOjNVq5Dd5PJ9NczR-XW1MnmOJrvg9-wyxOxswS5-BZ-qS__n9w-XY6iMH46nXXiJno9mSvDquJ6j758_fVt-ra-uv1wuL65qy4jINaOi52TEVknFRoEVVoS0dMB86Hg3KkOJVHKwnVGqZ7RnpAwjQJIWKysFac_Rh0Pu3dxvYbDgczSTvotua-K9Dsbpfyve3ep12GlGW9a2sgS8PQbE8HOGlPXWJQvTZDyEOWkiW9bhTnJRUHJAbQwpRRgfryFY7xXpjS6K9F6RxkIXRaXnzdP3PXY8OCnA-wMA5Zd2DqJO1oG3MLgINushuP_E_wVSO6Wt
CitedBy_id crossref_primary_10_1002_cnm_3696
crossref_primary_10_1186_s13024_023_00634_3
crossref_primary_10_1083_jcb_201804101
crossref_primary_10_12688_f1000research_10433_1
crossref_primary_10_1007_s12035_024_04049_z
crossref_primary_10_1016_j_cmet_2020_02_002
crossref_primary_10_1016_j_conb_2019_02_001
crossref_primary_10_1002_pro_3839
crossref_primary_10_1016_j_mcn_2022_103704
crossref_primary_10_1523_JNEUROSCI_1157_19_2019
crossref_primary_10_1038_s41467_018_07416_2
crossref_primary_10_1002_dneu_22608
crossref_primary_10_1038_s41556_018_0133_0
crossref_primary_10_1002_dneu_22627
crossref_primary_10_1002_dneu_22748
crossref_primary_10_3389_fnmol_2022_1042616
crossref_primary_10_1016_j_ceb_2024_102383
crossref_primary_10_1016_j_celrep_2024_114218
crossref_primary_10_1002_adbi_202100663
crossref_primary_10_1021_acs_analchem_9b04775
crossref_primary_10_1523_JNEUROSCI_1316_20_2020
crossref_primary_10_1016_j_acthis_2018_09_001
crossref_primary_10_1016_j_neuron_2020_11_012
crossref_primary_10_1016_j_neulet_2023_137300
crossref_primary_10_1016_j_nbd_2024_106454
crossref_primary_10_1016_j_celrep_2021_108953
crossref_primary_10_1152_japplphysiol_00611_2022
crossref_primary_10_3389_fncel_2019_00393
crossref_primary_10_1016_j_nbd_2018_07_005
crossref_primary_10_3389_fncel_2024_1366098
crossref_primary_10_1016_j_mito_2021_02_008
crossref_primary_10_1016_j_nbd_2018_04_017
crossref_primary_10_1038_s41467_022_32130_5
crossref_primary_10_1016_j_neuron_2020_11_007
crossref_primary_10_15252_embj_2021110486
crossref_primary_10_1016_j_neuron_2017_09_055
crossref_primary_10_1111_tra_12710
crossref_primary_10_1126_science_aaw9997
crossref_primary_10_1016_j_nbd_2021_105370
crossref_primary_10_1002_glia_23252
crossref_primary_10_1126_science_aan6009
crossref_primary_10_3389_fnmol_2022_726962
crossref_primary_10_1523_ENEURO_0390_17_2018
crossref_primary_10_1016_j_celrep_2019_08_035
crossref_primary_10_1016_j_pneurobio_2023_102500
crossref_primary_10_1083_jcb_202305105
crossref_primary_10_1038_s41583_021_00535_8
crossref_primary_10_7554_eLife_46059
crossref_primary_10_1111_tra_12701
crossref_primary_10_1002_cnm_3648
crossref_primary_10_1083_jcb_201702187
crossref_primary_10_1083_jcb_202208121
crossref_primary_10_3389_fncel_2019_00373
crossref_primary_10_1016_j_cmet_2022_10_008
crossref_primary_10_1016_j_cub_2018_02_048
crossref_primary_10_1016_j_xpro_2020_100131
crossref_primary_10_1016_j_cag_2018_04_007
crossref_primary_10_7554_eLife_62091
crossref_primary_10_1002_cm_21585
crossref_primary_10_3390_ijms24054356
crossref_primary_10_1523_JNEUROSCI_3882_16_2017
crossref_primary_10_1002_dneu_22776
crossref_primary_10_1002_cnm_3770
crossref_primary_10_1016_j_neuron_2021_07_006
crossref_primary_10_3390_ijms22041798
crossref_primary_10_1016_j_tcb_2017_01_005
crossref_primary_10_1002_jnr_24411
crossref_primary_10_1016_j_cell_2018_12_013
crossref_primary_10_1016_j_mcn_2017_03_006
crossref_primary_10_3389_fnmol_2020_599948
crossref_primary_10_3389_fnagi_2021_650038
crossref_primary_10_1080_10255842_2023_2226787
crossref_primary_10_1111_brv_12487
crossref_primary_10_1038_s41598_018_31759_x
crossref_primary_10_1371_journal_pcbi_1009073
crossref_primary_10_3389_fncel_2022_959598
crossref_primary_10_15252_embr_201744045
crossref_primary_10_1002_dneu_22546
crossref_primary_10_1038_s41467_023_44233_8
crossref_primary_10_1038_nrn_2017_170
crossref_primary_10_1016_j_jmb_2019_06_031
crossref_primary_10_1016_j_jneumeth_2021_109351
crossref_primary_10_3390_biom13111638
crossref_primary_10_1073_pnas_2122477119
crossref_primary_10_1038_s41582_019_0257_2
crossref_primary_10_1096_fj_201902141R
crossref_primary_10_1115_1_4065743
crossref_primary_10_1017_erm_2022_31
crossref_primary_10_3390_biology8020038
crossref_primary_10_1016_j_jad_2017_09_053
crossref_primary_10_3389_fnins_2020_589319
crossref_primary_10_1186_s13024_023_00690_9
crossref_primary_10_1038_s41467_024_46463_w
crossref_primary_10_1016_j_cophys_2018_03_003
crossref_primary_10_1083_jcb_201912077
crossref_primary_10_1016_j_cophys_2018_03_009
crossref_primary_10_1016_j_isci_2023_105925
crossref_primary_10_1523_ENEURO_0304_21_2021
crossref_primary_10_3390_ijms222313059
crossref_primary_10_1016_j_cub_2021_04_079
crossref_primary_10_1126_sciadv_abo7956
crossref_primary_10_1073_pnas_2121273119
crossref_primary_10_1016_j_mad_2020_111216
crossref_primary_10_1038_s42255_022_00594_w
crossref_primary_10_1523_ENEURO_0026_19_2019
crossref_primary_10_1016_j_celrep_2024_114190
crossref_primary_10_1016_j_neuron_2022_03_015
crossref_primary_10_1042_BST20170023
Cites_doi 10.1016/j.cell.2013.05.021
10.1523/JNEUROSCI.3510-13.2014
10.1038/nmeth1055
10.1016/j.mcn.2008.10.016
10.1523/JNEUROSCI.2614-08.2008
10.1371/journal.pbio.1001754
10.1073/pnas.1106862108
10.1126/science.282.5395.1904
10.1371/journal.pbio.1002516
10.1073/pnas.0808953105
10.1097/ALN.0b013e3182303a63
10.1111/ejn.12263
10.1038/nn.3482
10.1074/jbc.M111.236018
10.1016/j.devcel.2014.06.001
10.1523/JNEUROSCI.1327-12.2012
10.1016/j.neuron.2011.06.003
10.1083/jcb.201401070
10.1016/j.neuron.2010.09.039
10.1213/00000539-200202000-00015
10.1038/nmeth.1296
10.7554/eLife.11583
10.1007/s11011-011-9234-1
10.1016/j.neuron.2015.12.034
10.1523/JNEUROSCI.0095-11.2011
10.1126/science.1194653
10.1371/journal.pone.0038435
10.1016/j.neuron.2014.11.006
10.1083/jcb.201106120
10.1038/35007001
10.1097/00000542-200207000-00004
10.1016/j.cell.2007.11.024
10.1016/j.cell.2008.11.046
10.1016/j.cell.2011.10.018
10.1523/JNEUROSCI.0529-10.2010
10.1016/j.celrep.2013.11.022
10.1073/pnas.1509879112
10.1093/hmg/ddp326
ContentType Journal Article
Copyright 2016 Elsevier Ltd
Copyright © 2016 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2016 Elsevier Ltd
– notice: Copyright © 2016 Elsevier Ltd. All rights reserved.
DBID 6I.
AAFTH
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
5PM
DOI 10.1016/j.cub.2016.07.064
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: ECM
  name: MEDLINE
  url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1879-0445
EndPage 2608
ExternalDocumentID 10_1016_j_cub_2016_07_064
27641765
S0960982216308582
Genre Journal Article
GrantInformation_xml – fundername: NINDS NIH HHS
  grantid: K99 NS091526
– fundername: NINDS NIH HHS
  grantid: F32 NS080464
– fundername: NINDS NIH HHS
  grantid: R01 NS089456
GroupedDBID ---
--K
-DZ
-~X
0R~
1RT
1~5
2WC
4.4
457
4G.
53G
5GY
62-
6I.
6J9
7-5
AACTN
AAEDW
AAFTH
AAFWJ
AAIAV
AAKRW
AALRI
AAUCE
AAVLU
AAXJY
AAXUO
ABJNI
ABMAC
ABMWF
ABVKL
ACGFO
ACGFS
ADBBV
ADEZE
ADJPV
AEFWE
AENEX
AEXQZ
AFTJW
AGHSJ
AGKMS
AGUBO
AHHHB
AITUG
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AZFZN
BAWUL
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FCP
FDB
FIRID
IHE
IXB
J1W
JIG
LX5
M3Z
M41
NCXOZ
O-L
O9-
OK1
P2P
RCE
RIG
ROL
RPZ
SCP
SDG
SES
SSZ
TR2
WQ6
ZA5
0SF
AAEDT
AAMRU
ADVLN
AKAPO
AKRWK
CGR
CUY
CVF
ECM
EIF
NPM
29F
5VS
AAIKJ
AAQFI
AAQXK
AAYXX
ADMUD
AGHFR
ASPBG
AVWKF
CAG
CITATION
COF
FEDTE
FGOYB
G-2
HVGLF
HZ~
OZT
R2-
SEW
UHS
XIH
XPP
Y6R
ZGI
7X8
5PM
ID FETCH-LOGICAL-c517t-527b61f0c9895f709091132d06d464f9a21898dc4a99b52b512767e81309c8713
ISSN 0960-9822
IngestDate Tue Sep 17 20:51:30 EDT 2024
Thu Oct 24 23:32:27 EDT 2024
Thu Sep 26 19:59:09 EDT 2024
Wed Oct 16 00:59:58 EDT 2024
Fri Feb 23 02:28:29 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 19
Language English
License This article is made available under the Elsevier license.
Copyright © 2016 Elsevier Ltd. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c517t-527b61f0c9895f709091132d06d464f9a21898dc4a99b52b512767e81309c8713
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://dx.doi.org/10.1016/j.cub.2016.07.064
PMID 27641765
PQID 1835404867
PQPubID 23479
PageCount 7
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5235338
proquest_miscellaneous_1835404867
crossref_primary_10_1016_j_cub_2016_07_064
pubmed_primary_27641765
elsevier_sciencedirect_doi_10_1016_j_cub_2016_07_064
PublicationCentury 2000
PublicationDate 2016-10-10
PublicationDateYYYYMMDD 2016-10-10
PublicationDate_xml – month: 10
  year: 2016
  text: 2016-10-10
  day: 10
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Current biology
PublicationTitleAlternate Curr Biol
PublicationYear 2016
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Plucińska, Paquet, Hruscha, Godinho, Haass, Schmid, Misgeld (bib30) 2012; 32
Schon, Przedborski (bib2) 2011; 70
Obashi, Okabe (bib10) 2013; 38
Maday, Wallace, Holzbaur (bib13) 2012; 196
Shidara, Hollenbeck (bib38) 2010; 30
Verburg, Hollenbeck (bib14) 2008; 28
Sorbara, Wagner, Ladwig, Nikić, Merkler, Kleele, Marinković, Naumann, Godinho, Bareyre (bib32) 2014; 84
Kwon, Sando, Lewis, Hirabayashi, Maximov, Polleux (bib16) 2016; 14
Hara, Harris (bib25) 2002; 94
Saotome, Safiulina, Szabadkai, Das, Fransson, Aspenstrom, Rizzuto, Hajnóczky (bib19) 2008; 105
Chen, Chan (bib1) 2009; 18
Kaifosh, Lovett-Barron, Turi, Reardon, Losonczy (bib24) 2013; 16
Zaugg, Lucchinetti, Spahn, Pasch, Garcia, Schaub (bib26) 2002; 97
McKinney, Murphy, Hazelwood, Davidson, Looger (bib21) 2009; 6
Wang, Schwarz (bib8) 2009; 136
Ohno, Kidd, Mahad, Kiryu-Seo, Avishai, Komuro, Trapp (bib34) 2011; 31
Spillane, Ketschek, Merianda, Twiss, Gallo (bib5) 2013; 5
Kang, Tian, Pan, Zald, Li, Deng, Sheng (bib33) 2008; 132
Sanchez, Feinstein, Lunardi, Joksovic, Boscolo, Todorovic, Jevtovic-Todorovic (bib28) 2011; 115
Vossel, Zhang, Brodbeck, Daub, Sharma, Finkbeiner, Cui, Mucke (bib9) 2010; 330
Faits, Zhang, Soto, Kerschensteiner (bib37) 2016; 5
Misgeld, Kerschensteiner, Bareyre, Burgess, Lichtman (bib29) 2007; 4
Jackson, O’Donnell, Takano, Coulter, Robinson (bib36) 2014; 34
de Oliveira, Fraga, De Luca, Canever, Ghedim, Matos, Streck, Quevedo, Zugno (bib27) 2011; 26
Takihara, Inatani, Eto, Inoue, Kreymerman, Miyake, Ueno, Nagaya, Nakanishi, Iwao (bib35) 2015; 112
Gazit, Vertkin, Shapira, Helm, Slomowitz, Sheiba, Mor, Rizzoli, Slutsky (bib15) 2016; 89
Polleux, Morrow, Ghosh (bib23) 2000; 404
Hirokawa, Niwa, Tanaka (bib3) 2010; 68
Sajic, Mastrolia, Lee, Trigo, Sadeghian, Mosley, Gregson, Duchen, Smith (bib31) 2013; 11
Maday, Holzbaur (bib12) 2014; 30
Owens, Walcott (bib20) 2012; 7
Ashrafi, Schlehe, LaVoie, Schwarz (bib11) 2014; 206
Chang, Niescier, Min (bib17) 2011; 108
Brickley, Stephenson (bib7) 2011; 286
MacAskill, Brickley, Stephenson, Kittler (bib18) 2009; 40
Courchet, Lewis, Lee, Courchet, Liou, Aizawa, Polleux (bib4) 2013; 153
Wang, Winter, Ashrafi, Schlehe, Wong, Selkoe, Rice, Steen, LaVoie, Schwarz (bib6) 2011; 147
Polleux, Giger, Ginty, Kolodkin, Ghosh (bib22) 1998; 282
26240337 - Proc Natl Acad Sci U S A. 2015 Aug 18;112(33):10515-20
21689593 - Neuron. 2011 Jun 23;70(6):1033-53
21909020 - Anesthesiology. 2011 Nov;115(5):992-1002
18191227 - Cell. 2008 Jan 11;132(1):137-48
18701693 - J Neurosci. 2008 Aug 13;28(33):8306-15
21454691 - J Biol Chem. 2011 May 20;286(20):18079-92
9836643 - Science. 1998 Dec 4;282(5395):1904-6
21876166 - Proc Natl Acad Sci U S A. 2011 Sep 13;108(37):15456-61
17558414 - Nat Methods. 2007 Jul;4(7):559-61
10766232 - Nature. 2000 Apr 6;404(6778):567-73
11812690 - Anesth Analg. 2002 Feb;94(2):313-8, table of contents
19169260 - Nat Methods. 2009 Feb;6(2):131-3
25433639 - Neuron. 2014 Dec 17;84(6):1183-90
26804996 - Neuron. 2016 Feb 3;89(3):583-97
21331561 - Metab Brain Dis. 2011 Mar;26(1):69-77
19098100 - Proc Natl Acad Sci U S A. 2008 Dec 30;105(52):20728-33
20739558 - J Neurosci. 2010 Aug 25;30(34):11369-78
19103291 - Mol Cell Neurosci. 2009 Mar;40(3):301-12
23791179 - Cell. 2013 Jun 20;153(7):1510-25
25026034 - Dev Cell. 2014 Jul 14;30(1):71-85
23152604 - J Neurosci. 2012 Nov 14;32(46):16203-12
23912949 - Nat Neurosci. 2013 Sep;16(9):1182-4
24332852 - Cell Rep. 2013 Dec 26;5(6):1564-75
23725294 - Eur J Neurosci. 2013 Aug;38(3):2350-63
22078885 - Cell. 2011 Nov 11;147(4):893-906
24478345 - J Neurosci. 2014 Jan 29;34(5):1613-24
22701641 - PLoS One. 2012;7(6):e38435
27429220 - PLoS Biol. 2016 Jul 18;14(7):e1002516
22331844 - J Cell Biol. 2012 Feb 20;196 (4):407-17
20829454 - Science. 2010 Oct 8;330(6001):198
19808793 - Hum Mol Genet. 2009 Oct 15;18(R2):R169-76
25154397 - J Cell Biol. 2014 Sep 1;206(5):655-70
26742087 - Elife. 2016 Jan 07;5:e11583
21092854 - Neuron. 2010 Nov 18;68(4):610-38
19135897 - Cell. 2009 Jan 9;136(1):163-74
24391474 - PLoS Biol. 2013 Dec;11(12):e1001754
21593309 - J Neurosci. 2011 May 18;31(20):7249-58
12131099 - Anesthesiology. 2002 Jul;97(1):15-23
Misgeld (10.1016/j.cub.2016.07.064_bib29) 2007; 4
Polleux (10.1016/j.cub.2016.07.064_bib22) 1998; 282
Sorbara (10.1016/j.cub.2016.07.064_bib32) 2014; 84
Brickley (10.1016/j.cub.2016.07.064_bib7) 2011; 286
Chang (10.1016/j.cub.2016.07.064_bib17) 2011; 108
Polleux (10.1016/j.cub.2016.07.064_bib23) 2000; 404
Vossel (10.1016/j.cub.2016.07.064_bib9) 2010; 330
Kwon (10.1016/j.cub.2016.07.064_bib16) 2016; 14
Obashi (10.1016/j.cub.2016.07.064_bib10) 2013; 38
Verburg (10.1016/j.cub.2016.07.064_bib14) 2008; 28
Ohno (10.1016/j.cub.2016.07.064_bib34) 2011; 31
Takihara (10.1016/j.cub.2016.07.064_bib35) 2015; 112
Hirokawa (10.1016/j.cub.2016.07.064_bib3) 2010; 68
Maday (10.1016/j.cub.2016.07.064_bib12) 2014; 30
Saotome (10.1016/j.cub.2016.07.064_bib19) 2008; 105
Wang (10.1016/j.cub.2016.07.064_bib6) 2011; 147
McKinney (10.1016/j.cub.2016.07.064_bib21) 2009; 6
Wang (10.1016/j.cub.2016.07.064_bib8) 2009; 136
Courchet (10.1016/j.cub.2016.07.064_bib4) 2013; 153
Maday (10.1016/j.cub.2016.07.064_bib13) 2012; 196
Chen (10.1016/j.cub.2016.07.064_bib1) 2009; 18
Spillane (10.1016/j.cub.2016.07.064_bib5) 2013; 5
Hara (10.1016/j.cub.2016.07.064_bib25) 2002; 94
de Oliveira (10.1016/j.cub.2016.07.064_bib27) 2011; 26
Schon (10.1016/j.cub.2016.07.064_bib2) 2011; 70
Kang (10.1016/j.cub.2016.07.064_bib33) 2008; 132
Kaifosh (10.1016/j.cub.2016.07.064_bib24) 2013; 16
Gazit (10.1016/j.cub.2016.07.064_bib15) 2016; 89
Sajic (10.1016/j.cub.2016.07.064_bib31) 2013; 11
Faits (10.1016/j.cub.2016.07.064_bib37) 2016; 5
Shidara (10.1016/j.cub.2016.07.064_bib38) 2010; 30
Jackson (10.1016/j.cub.2016.07.064_bib36) 2014; 34
Ashrafi (10.1016/j.cub.2016.07.064_bib11) 2014; 206
MacAskill (10.1016/j.cub.2016.07.064_bib18) 2009; 40
Sanchez (10.1016/j.cub.2016.07.064_bib28) 2011; 115
Owens (10.1016/j.cub.2016.07.064_bib20) 2012; 7
Zaugg (10.1016/j.cub.2016.07.064_bib26) 2002; 97
Plucińska (10.1016/j.cub.2016.07.064_bib30) 2012; 32
References_xml – volume: 70
  start-page: 1033
  year: 2011
  end-page: 1053
  ident: bib2
  article-title: Mitochondria: the next (neurode)generation
  publication-title: Neuron
  contributor:
    fullname: Przedborski
– volume: 94
  start-page: 313
  year: 2002
  end-page: 318
  ident: bib25
  article-title: The anesthetic mechanism of urethane: the effects on neurotransmitter-gated ion channels
  publication-title: Anesth. Analg.
  contributor:
    fullname: Harris
– volume: 84
  start-page: 1183
  year: 2014
  end-page: 1190
  ident: bib32
  article-title: Pervasive axonal transport deficits in multiple sclerosis models
  publication-title: Neuron
  contributor:
    fullname: Bareyre
– volume: 14
  start-page: e1002516
  year: 2016
  ident: bib16
  article-title: LKB1 regulates mitochondria-dependent presynaptic calcium clearance and neurotransmitter release properties at excitatory synapses along cortical axons
  publication-title: PLoS Biol.
  contributor:
    fullname: Polleux
– volume: 132
  start-page: 137
  year: 2008
  end-page: 148
  ident: bib33
  article-title: Docking of axonal mitochondria by syntaphilin controls their mobility and affects short-term facilitation
  publication-title: Cell
  contributor:
    fullname: Sheng
– volume: 26
  start-page: 69
  year: 2011
  end-page: 77
  ident: bib27
  article-title: Behavioral changes and mitochondrial dysfunction in a rat model of schizophrenia induced by ketamine
  publication-title: Metab. Brain Dis.
  contributor:
    fullname: Zugno
– volume: 330
  start-page: 198
  year: 2010
  ident: bib9
  article-title: Tau reduction prevents Abeta-induced defects in axonal transport
  publication-title: Science
  contributor:
    fullname: Mucke
– volume: 6
  start-page: 131
  year: 2009
  end-page: 133
  ident: bib21
  article-title: A bright and photostable photoconvertible fluorescent protein
  publication-title: Nat. Methods
  contributor:
    fullname: Looger
– volume: 115
  start-page: 992
  year: 2011
  end-page: 1002
  ident: bib28
  article-title: General anesthesia causes long-term impairment of mitochondrial morphogenesis and synaptic transmission in developing rat brain
  publication-title: Anesthesiology
  contributor:
    fullname: Jevtovic-Todorovic
– volume: 136
  start-page: 163
  year: 2009
  end-page: 174
  ident: bib8
  article-title: The mechanism of Ca2+-dependent regulation of kinesin-mediated mitochondrial motility
  publication-title: Cell
  contributor:
    fullname: Schwarz
– volume: 30
  start-page: 71
  year: 2014
  end-page: 85
  ident: bib12
  article-title: Autophagosome biogenesis in primary neurons follows an ordered and spatially regulated pathway
  publication-title: Dev. Cell
  contributor:
    fullname: Holzbaur
– volume: 153
  start-page: 1510
  year: 2013
  end-page: 1525
  ident: bib4
  article-title: Terminal axon branching is regulated by the LKB1-NUAK1 kinase pathway via presynaptic mitochondrial capture
  publication-title: Cell
  contributor:
    fullname: Polleux
– volume: 68
  start-page: 610
  year: 2010
  end-page: 638
  ident: bib3
  article-title: Molecular motors in neurons: transport mechanisms and roles in brain function, development, and disease
  publication-title: Neuron
  contributor:
    fullname: Tanaka
– volume: 34
  start-page: 1613
  year: 2014
  end-page: 1624
  ident: bib36
  article-title: Neuronal activity and glutamate uptake decrease mitochondrial mobility in astrocytes and position mitochondria near glutamate transporters
  publication-title: J. Neurosci.
  contributor:
    fullname: Robinson
– volume: 31
  start-page: 7249
  year: 2011
  end-page: 7258
  ident: bib34
  article-title: Myelination and axonal electrical activity modulate the distribution and motility of mitochondria at CNS nodes of Ranvier
  publication-title: J. Neurosci.
  contributor:
    fullname: Trapp
– volume: 97
  start-page: 15
  year: 2002
  end-page: 23
  ident: bib26
  article-title: Differential effects of anesthetics on mitochondrial K(ATP) channel activity and cardiomyocyte protection
  publication-title: Anesthesiology
  contributor:
    fullname: Schaub
– volume: 38
  start-page: 2350
  year: 2013
  end-page: 2363
  ident: bib10
  article-title: Regulation of mitochondrial dynamics and distribution by synapse position and neuronal activity in the axon
  publication-title: Eur. J. Neurosci.
  contributor:
    fullname: Okabe
– volume: 112
  start-page: 10515
  year: 2015
  end-page: 10520
  ident: bib35
  article-title: In vivo imaging of axonal transport of mitochondria in the diseased and aged mammalian CNS
  publication-title: Proc. Natl. Acad. Sci. USA
  contributor:
    fullname: Iwao
– volume: 40
  start-page: 301
  year: 2009
  end-page: 312
  ident: bib18
  article-title: GTPase dependent recruitment of Grif-1 by Miro1 regulates mitochondrial trafficking in hippocampal neurons
  publication-title: Mol. Cell. Neurosci.
  contributor:
    fullname: Kittler
– volume: 5
  start-page: 1564
  year: 2013
  end-page: 1575
  ident: bib5
  article-title: Mitochondria coordinate sites of axon branching through localized intra-axonal protein synthesis
  publication-title: Cell Rep.
  contributor:
    fullname: Gallo
– volume: 18
  start-page: R169
  year: 2009
  end-page: R176
  ident: bib1
  article-title: Mitochondrial dynamics--fusion, fission, movement, and mitophagy--in neurodegenerative diseases
  publication-title: Hum. Mol. Genet.
  contributor:
    fullname: Chan
– volume: 89
  start-page: 583
  year: 2016
  end-page: 597
  ident: bib15
  article-title: IGF-1 receptor differentially regulates spontaneous and evoked transmission via mitochondria at hippocampal synapses
  publication-title: Neuron
  contributor:
    fullname: Slutsky
– volume: 282
  start-page: 1904
  year: 1998
  end-page: 1906
  ident: bib22
  article-title: Patterning of cortical efferent projections by semaphorin-neuropilin interactions
  publication-title: Science
  contributor:
    fullname: Ghosh
– volume: 30
  start-page: 11369
  year: 2010
  end-page: 11378
  ident: bib38
  article-title: Defects in mitochondrial axonal transport and membrane potential without increased reactive oxygen species production in a Drosophila model of Friedreich ataxia
  publication-title: J. Neurosci.
  contributor:
    fullname: Hollenbeck
– volume: 196
  start-page: 407
  year: 2012
  end-page: 417
  ident: bib13
  article-title: Autophagosomes initiate distally and mature during transport toward the cell soma in primary neurons
  publication-title: J. Cell Biol.
  contributor:
    fullname: Holzbaur
– volume: 7
  start-page: e38435
  year: 2012
  ident: bib20
  article-title: Extensive fusion of mitochondria in spinal cord motor neurons
  publication-title: PLoS ONE
  contributor:
    fullname: Walcott
– volume: 11
  start-page: e1001754
  year: 2013
  ident: bib31
  article-title: Impulse conduction increases mitochondrial transport in adult mammalian peripheral nerves in vivo
  publication-title: PLoS Biol.
  contributor:
    fullname: Smith
– volume: 404
  start-page: 567
  year: 2000
  end-page: 573
  ident: bib23
  article-title: Semaphorin 3A is a chemoattractant for cortical apical dendrites
  publication-title: Nature
  contributor:
    fullname: Ghosh
– volume: 28
  start-page: 8306
  year: 2008
  end-page: 8315
  ident: bib14
  article-title: Mitochondrial membrane potential in axons increases with local nerve growth factor or semaphorin signaling
  publication-title: J. Neurosci.
  contributor:
    fullname: Hollenbeck
– volume: 105
  start-page: 20728
  year: 2008
  end-page: 20733
  ident: bib19
  article-title: Bidirectional Ca2+-dependent control of mitochondrial dynamics by the Miro GTPase
  publication-title: Proc. Natl. Acad. Sci. USA
  contributor:
    fullname: Hajnóczky
– volume: 286
  start-page: 18079
  year: 2011
  end-page: 18092
  ident: bib7
  article-title: Trafficking kinesin protein (TRAK)-mediated transport of mitochondria in axons of hippocampal neurons
  publication-title: J. Biol. Chem.
  contributor:
    fullname: Stephenson
– volume: 16
  start-page: 1182
  year: 2013
  end-page: 1184
  ident: bib24
  article-title: Septo-hippocampal GABAergic signaling across multiple modalities in awake mice
  publication-title: Nat. Neurosci.
  contributor:
    fullname: Losonczy
– volume: 5
  start-page: e11583
  year: 2016
  ident: bib37
  article-title: Dendritic mitochondria reach stable positions during circuit development
  publication-title: eLife
  contributor:
    fullname: Kerschensteiner
– volume: 4
  start-page: 559
  year: 2007
  end-page: 561
  ident: bib29
  article-title: Imaging axonal transport of mitochondria in vivo
  publication-title: Nat. Methods
  contributor:
    fullname: Lichtman
– volume: 147
  start-page: 893
  year: 2011
  end-page: 906
  ident: bib6
  article-title: PINK1 and Parkin target Miro for phosphorylation and degradation to arrest mitochondrial motility
  publication-title: Cell
  contributor:
    fullname: Schwarz
– volume: 206
  start-page: 655
  year: 2014
  end-page: 670
  ident: bib11
  article-title: Mitophagy of damaged mitochondria occurs locally in distal neuronal axons and requires PINK1 and Parkin
  publication-title: J. Cell Biol.
  contributor:
    fullname: Schwarz
– volume: 108
  start-page: 15456
  year: 2011
  end-page: 15461
  ident: bib17
  article-title: Mitochondrial matrix Ca2+ as an intrinsic signal regulating mitochondrial motility in axons
  publication-title: Proc. Natl. Acad. Sci. USA
  contributor:
    fullname: Min
– volume: 32
  start-page: 16203
  year: 2012
  end-page: 16212
  ident: bib30
  article-title: In vivo imaging of disease-related mitochondrial dynamics in a vertebrate model system
  publication-title: J. Neurosci.
  contributor:
    fullname: Misgeld
– volume: 153
  start-page: 1510
  year: 2013
  ident: 10.1016/j.cub.2016.07.064_bib4
  article-title: Terminal axon branching is regulated by the LKB1-NUAK1 kinase pathway via presynaptic mitochondrial capture
  publication-title: Cell
  doi: 10.1016/j.cell.2013.05.021
  contributor:
    fullname: Courchet
– volume: 34
  start-page: 1613
  year: 2014
  ident: 10.1016/j.cub.2016.07.064_bib36
  article-title: Neuronal activity and glutamate uptake decrease mitochondrial mobility in astrocytes and position mitochondria near glutamate transporters
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.3510-13.2014
  contributor:
    fullname: Jackson
– volume: 4
  start-page: 559
  year: 2007
  ident: 10.1016/j.cub.2016.07.064_bib29
  article-title: Imaging axonal transport of mitochondria in vivo
  publication-title: Nat. Methods
  doi: 10.1038/nmeth1055
  contributor:
    fullname: Misgeld
– volume: 40
  start-page: 301
  year: 2009
  ident: 10.1016/j.cub.2016.07.064_bib18
  article-title: GTPase dependent recruitment of Grif-1 by Miro1 regulates mitochondrial trafficking in hippocampal neurons
  publication-title: Mol. Cell. Neurosci.
  doi: 10.1016/j.mcn.2008.10.016
  contributor:
    fullname: MacAskill
– volume: 28
  start-page: 8306
  year: 2008
  ident: 10.1016/j.cub.2016.07.064_bib14
  article-title: Mitochondrial membrane potential in axons increases with local nerve growth factor or semaphorin signaling
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.2614-08.2008
  contributor:
    fullname: Verburg
– volume: 11
  start-page: e1001754
  year: 2013
  ident: 10.1016/j.cub.2016.07.064_bib31
  article-title: Impulse conduction increases mitochondrial transport in adult mammalian peripheral nerves in vivo
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.1001754
  contributor:
    fullname: Sajic
– volume: 108
  start-page: 15456
  year: 2011
  ident: 10.1016/j.cub.2016.07.064_bib17
  article-title: Mitochondrial matrix Ca2+ as an intrinsic signal regulating mitochondrial motility in axons
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1106862108
  contributor:
    fullname: Chang
– volume: 282
  start-page: 1904
  year: 1998
  ident: 10.1016/j.cub.2016.07.064_bib22
  article-title: Patterning of cortical efferent projections by semaphorin-neuropilin interactions
  publication-title: Science
  doi: 10.1126/science.282.5395.1904
  contributor:
    fullname: Polleux
– volume: 14
  start-page: e1002516
  year: 2016
  ident: 10.1016/j.cub.2016.07.064_bib16
  article-title: LKB1 regulates mitochondria-dependent presynaptic calcium clearance and neurotransmitter release properties at excitatory synapses along cortical axons
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.1002516
  contributor:
    fullname: Kwon
– volume: 105
  start-page: 20728
  year: 2008
  ident: 10.1016/j.cub.2016.07.064_bib19
  article-title: Bidirectional Ca2+-dependent control of mitochondrial dynamics by the Miro GTPase
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0808953105
  contributor:
    fullname: Saotome
– volume: 115
  start-page: 992
  year: 2011
  ident: 10.1016/j.cub.2016.07.064_bib28
  article-title: General anesthesia causes long-term impairment of mitochondrial morphogenesis and synaptic transmission in developing rat brain
  publication-title: Anesthesiology
  doi: 10.1097/ALN.0b013e3182303a63
  contributor:
    fullname: Sanchez
– volume: 38
  start-page: 2350
  year: 2013
  ident: 10.1016/j.cub.2016.07.064_bib10
  article-title: Regulation of mitochondrial dynamics and distribution by synapse position and neuronal activity in the axon
  publication-title: Eur. J. Neurosci.
  doi: 10.1111/ejn.12263
  contributor:
    fullname: Obashi
– volume: 16
  start-page: 1182
  year: 2013
  ident: 10.1016/j.cub.2016.07.064_bib24
  article-title: Septo-hippocampal GABAergic signaling across multiple modalities in awake mice
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.3482
  contributor:
    fullname: Kaifosh
– volume: 286
  start-page: 18079
  year: 2011
  ident: 10.1016/j.cub.2016.07.064_bib7
  article-title: Trafficking kinesin protein (TRAK)-mediated transport of mitochondria in axons of hippocampal neurons
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M111.236018
  contributor:
    fullname: Brickley
– volume: 30
  start-page: 71
  year: 2014
  ident: 10.1016/j.cub.2016.07.064_bib12
  article-title: Autophagosome biogenesis in primary neurons follows an ordered and spatially regulated pathway
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2014.06.001
  contributor:
    fullname: Maday
– volume: 32
  start-page: 16203
  year: 2012
  ident: 10.1016/j.cub.2016.07.064_bib30
  article-title: In vivo imaging of disease-related mitochondrial dynamics in a vertebrate model system
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.1327-12.2012
  contributor:
    fullname: Plucińska
– volume: 70
  start-page: 1033
  year: 2011
  ident: 10.1016/j.cub.2016.07.064_bib2
  article-title: Mitochondria: the next (neurode)generation
  publication-title: Neuron
  doi: 10.1016/j.neuron.2011.06.003
  contributor:
    fullname: Schon
– volume: 206
  start-page: 655
  year: 2014
  ident: 10.1016/j.cub.2016.07.064_bib11
  article-title: Mitophagy of damaged mitochondria occurs locally in distal neuronal axons and requires PINK1 and Parkin
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201401070
  contributor:
    fullname: Ashrafi
– volume: 68
  start-page: 610
  year: 2010
  ident: 10.1016/j.cub.2016.07.064_bib3
  article-title: Molecular motors in neurons: transport mechanisms and roles in brain function, development, and disease
  publication-title: Neuron
  doi: 10.1016/j.neuron.2010.09.039
  contributor:
    fullname: Hirokawa
– volume: 94
  start-page: 313
  year: 2002
  ident: 10.1016/j.cub.2016.07.064_bib25
  article-title: The anesthetic mechanism of urethane: the effects on neurotransmitter-gated ion channels
  publication-title: Anesth. Analg.
  doi: 10.1213/00000539-200202000-00015
  contributor:
    fullname: Hara
– volume: 6
  start-page: 131
  year: 2009
  ident: 10.1016/j.cub.2016.07.064_bib21
  article-title: A bright and photostable photoconvertible fluorescent protein
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.1296
  contributor:
    fullname: McKinney
– volume: 5
  start-page: e11583
  year: 2016
  ident: 10.1016/j.cub.2016.07.064_bib37
  article-title: Dendritic mitochondria reach stable positions during circuit development
  publication-title: eLife
  doi: 10.7554/eLife.11583
  contributor:
    fullname: Faits
– volume: 26
  start-page: 69
  year: 2011
  ident: 10.1016/j.cub.2016.07.064_bib27
  article-title: Behavioral changes and mitochondrial dysfunction in a rat model of schizophrenia induced by ketamine
  publication-title: Metab. Brain Dis.
  doi: 10.1007/s11011-011-9234-1
  contributor:
    fullname: de Oliveira
– volume: 89
  start-page: 583
  year: 2016
  ident: 10.1016/j.cub.2016.07.064_bib15
  article-title: IGF-1 receptor differentially regulates spontaneous and evoked transmission via mitochondria at hippocampal synapses
  publication-title: Neuron
  doi: 10.1016/j.neuron.2015.12.034
  contributor:
    fullname: Gazit
– volume: 31
  start-page: 7249
  year: 2011
  ident: 10.1016/j.cub.2016.07.064_bib34
  article-title: Myelination and axonal electrical activity modulate the distribution and motility of mitochondria at CNS nodes of Ranvier
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.0095-11.2011
  contributor:
    fullname: Ohno
– volume: 330
  start-page: 198
  year: 2010
  ident: 10.1016/j.cub.2016.07.064_bib9
  article-title: Tau reduction prevents Abeta-induced defects in axonal transport
  publication-title: Science
  doi: 10.1126/science.1194653
  contributor:
    fullname: Vossel
– volume: 7
  start-page: e38435
  year: 2012
  ident: 10.1016/j.cub.2016.07.064_bib20
  article-title: Extensive fusion of mitochondria in spinal cord motor neurons
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0038435
  contributor:
    fullname: Owens
– volume: 84
  start-page: 1183
  year: 2014
  ident: 10.1016/j.cub.2016.07.064_bib32
  article-title: Pervasive axonal transport deficits in multiple sclerosis models
  publication-title: Neuron
  doi: 10.1016/j.neuron.2014.11.006
  contributor:
    fullname: Sorbara
– volume: 196
  start-page: 407
  year: 2012
  ident: 10.1016/j.cub.2016.07.064_bib13
  article-title: Autophagosomes initiate distally and mature during transport toward the cell soma in primary neurons
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201106120
  contributor:
    fullname: Maday
– volume: 404
  start-page: 567
  year: 2000
  ident: 10.1016/j.cub.2016.07.064_bib23
  article-title: Semaphorin 3A is a chemoattractant for cortical apical dendrites
  publication-title: Nature
  doi: 10.1038/35007001
  contributor:
    fullname: Polleux
– volume: 97
  start-page: 15
  year: 2002
  ident: 10.1016/j.cub.2016.07.064_bib26
  article-title: Differential effects of anesthetics on mitochondrial K(ATP) channel activity and cardiomyocyte protection
  publication-title: Anesthesiology
  doi: 10.1097/00000542-200207000-00004
  contributor:
    fullname: Zaugg
– volume: 132
  start-page: 137
  year: 2008
  ident: 10.1016/j.cub.2016.07.064_bib33
  article-title: Docking of axonal mitochondria by syntaphilin controls their mobility and affects short-term facilitation
  publication-title: Cell
  doi: 10.1016/j.cell.2007.11.024
  contributor:
    fullname: Kang
– volume: 136
  start-page: 163
  year: 2009
  ident: 10.1016/j.cub.2016.07.064_bib8
  article-title: The mechanism of Ca2+-dependent regulation of kinesin-mediated mitochondrial motility
  publication-title: Cell
  doi: 10.1016/j.cell.2008.11.046
  contributor:
    fullname: Wang
– volume: 147
  start-page: 893
  year: 2011
  ident: 10.1016/j.cub.2016.07.064_bib6
  article-title: PINK1 and Parkin target Miro for phosphorylation and degradation to arrest mitochondrial motility
  publication-title: Cell
  doi: 10.1016/j.cell.2011.10.018
  contributor:
    fullname: Wang
– volume: 30
  start-page: 11369
  year: 2010
  ident: 10.1016/j.cub.2016.07.064_bib38
  article-title: Defects in mitochondrial axonal transport and membrane potential without increased reactive oxygen species production in a Drosophila model of Friedreich ataxia
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.0529-10.2010
  contributor:
    fullname: Shidara
– volume: 5
  start-page: 1564
  year: 2013
  ident: 10.1016/j.cub.2016.07.064_bib5
  article-title: Mitochondria coordinate sites of axon branching through localized intra-axonal protein synthesis
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2013.11.022
  contributor:
    fullname: Spillane
– volume: 112
  start-page: 10515
  year: 2015
  ident: 10.1016/j.cub.2016.07.064_bib35
  article-title: In vivo imaging of axonal transport of mitochondria in the diseased and aged mammalian CNS
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1509879112
  contributor:
    fullname: Takihara
– volume: 18
  start-page: R169
  issue: R2
  year: 2009
  ident: 10.1016/j.cub.2016.07.064_bib1
  article-title: Mitochondrial dynamics--fusion, fission, movement, and mitophagy--in neurodegenerative diseases
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/ddp326
  contributor:
    fullname: Chen
SSID ssj0012896
Score 2.5829852
Snippet The importance of mitochondria for neuronal function is evident by the large number of neurodegenerative diseases that have been associated with a disruption...
SourceID pubmedcentral
proquest
crossref
pubmed
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 2602
SubjectTerms Aging
Animals
Axons - physiology
Mice
Mitochondria - physiology
Title Progressive Decrease of Mitochondrial Motility during Maturation of Cortical Axons In Vitro and In Vivo
URI https://dx.doi.org/10.1016/j.cub.2016.07.064
https://www.ncbi.nlm.nih.gov/pubmed/27641765
https://search.proquest.com/docview/1835404867
https://pubmed.ncbi.nlm.nih.gov/PMC5235338
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbKEBIviDsdFxmJvSBlysWJ7ceqdFCVIqQWxFuUOInWweKpSzbKr-G38Ms4tuMkLRcBEi9R41zq5Hw5_o79-RihZ-AXE5IL10mygDiEEuJwkjKHpgEtAk5YRPQitgv65gN7MSGTwcAul9iV_VdLQxnYWs2c_QtrtzeFAvgNNoctWB22f2T3t0pwpbStWhGkOKHprZ_Dpwuursz0Mh1zWa00AW-mKc5Vfs-WPY7l2nRxjz4rJc20PBj7ByP3_apay0ZAbEsuZJ_e2mxPTWqnTu1zaVIZLOXp6cZc-vqwk3aY2e4v1UTQT83ho_bw7NIIAxa5_OjMNnV7UwmhgviiQTKq4HGSfg-GFynX32hZdbeanVrT6Zh0_2TkOiq5oGmojHdmVI3kmPyT1n2bCfcWprzvjCPX7zXssMt-2miY_ouTQ1GnSutnsrma3Oo7ubgXOkEfVApYLHBVBm3_VR88nI7lp7N2-AqiWD1Ibp_BDqdrYeHO3_yKEP0Y8OzqdntEaHkT3WgiGDwy0LuFBnl5G10za5pu7qBVD4DYAhDLAm8BEFsAYgNA3AFQnWsBiDUA8bT89lWDDwP4mr0LeRe9O5osx6-cZj0PR4QerZzQp2nkFa7gjIcFdTlwVS_wMzfKCLgEngDd5CwTJOE8Df0UuCiNaM6AZnEBgX1wD-2VsswfIMzdomBFmAcs5SRxCyYE8NRA8CLhRHjFED23LzU-M2lbYqtnPInBArGyQOzSGCwwRMS-9rjhnYZPxoCQ31321JooBp-sBtqSMpf1eezp3lSVy3KI7huTtbWARyIejcIholvGbE9Q-d63j5SrY533PfQDCM7Y_r9V9yG63n18j9Beta7zx-jKeVY_0eD9DvbHy0s
link.rule.ids 230,315,782,786,887,27933,27934
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Progressive+Decrease+of+Mitochondrial+Motility+during+Maturation+of+Cortical+Axons+In%C2%A0Vitro+and+In%C2%A0Vivo&rft.jtitle=Current+biology&rft.au=Lewis%2C+Tommy%C2%A0L.&rft.au=Turi%2C+Gergely%C2%A0F.&rft.au=Kwon%2C+Seok-Kyu&rft.au=Losonczy%2C+Attila&rft.date=2016-10-10&rft.pub=Elsevier+Ltd&rft.issn=0960-9822&rft.eissn=1879-0445&rft.volume=26&rft.issue=19&rft.spage=2602&rft.epage=2608&rft_id=info:doi/10.1016%2Fj.cub.2016.07.064&rft.externalDocID=S0960982216308582
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-9822&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-9822&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-9822&client=summon