Machine learning for image analysis in the cervical spine: Systematic review of the available models and methods
•Neural network approaches show the most potential for automated image analysis of thecervical spine.•Fully automatic convolutional neural network (CNN) models are promising Deep Learning methods for segmentation.•In cervical spine analysis, the biomechanical features are most often studied using fi...
Saved in:
Published in: | Brain & spine Vol. 2; p. 101666 |
---|---|
Main Authors: | , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Netherlands
Elsevier B.V
01-01-2022
Elsevier |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | •Neural network approaches show the most potential for automated image analysis of thecervical spine.•Fully automatic convolutional neural network (CNN) models are promising Deep Learning methods for segmentation.•In cervical spine analysis, the biomechanical features are most often studied using finiteelement models.•The application of artificial neural networks and support vector machine models looks promising for classification purposes.•This article provides an overview of the methods for research on computer aided imaging diagnostics of the cervical spine. |
---|---|
AbstractList | •Neural network approaches show the most potential for automated image analysis of thecervical spine.•Fully automatic convolutional neural network (CNN) models are promising Deep Learning methods for segmentation.•In cervical spine analysis, the biomechanical features are most often studied using finiteelement models.•The application of artificial neural networks and support vector machine models looks promising for classification purposes.•This article provides an overview of the methods for research on computer aided imaging diagnostics of the cervical spine. • Neural network approaches show the most potential for automated image analysis of thecervical spine. • Fully automatic convolutional neural network (CNN) models are promising Deep Learning methods for segmentation. • In cervical spine analysis, the biomechanical features are most often studied using finiteelement models. • The application of artificial neural networks and support vector machine models looks promising for classification purposes. • This article provides an overview of the methods for research on computer aided imaging diagnostics of the cervical spine. |
ArticleNumber | 101666 |
Author | Vleggeert-Lankamp, C.L.A. Staring, M. Schoones, J.W. Goedmakers, C.M.W. Remis, R.F. de Leeuw den Bouter, M.L. Pereboom, L.M. |
Author_xml | – sequence: 1 givenname: C.M.W. orcidid: 0000-0002-1575-7976 surname: Goedmakers fullname: Goedmakers, C.M.W. email: C.M.W.Goedmakers@lumc.nl organization: Department of Neurosurgery, Leiden University Medical Center, Leiden, the Netherlands – sequence: 2 givenname: L.M. surname: Pereboom fullname: Pereboom, L.M. organization: Faculty of Mechanical, Maritime and Materials Engineering (3mE), Delft University of Technology, Delft, the Netherlands – sequence: 3 givenname: J.W. orcidid: 0000-0003-1120-4781 surname: Schoones fullname: Schoones, J.W. organization: Walaeus Library, Leiden University Medical Center, Leiden, the Netherlands – sequence: 4 givenname: M.L. orcidid: 0000-0003-3743-9618 surname: de Leeuw den Bouter fullname: de Leeuw den Bouter, M.L. organization: Delft Institute of Applied Mathematics, Department of Numerical Analysis, Delft University of Technology, Delft, the Netherlands – sequence: 5 givenname: R.F. surname: Remis fullname: Remis, R.F. organization: Circuits and Systems Group, Microelectronics Department, Delft University of Technology, Delft, the Netherlands – sequence: 6 givenname: M. orcidid: 0000-0003-2885-5812 surname: Staring fullname: Staring, M. organization: Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands – sequence: 7 givenname: C.L.A. surname: Vleggeert-Lankamp fullname: Vleggeert-Lankamp, C.L.A. organization: Department of Neurosurgery, Leiden University Medical Center, Leiden, the Netherlands |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36506292$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUtvEzEUhUeoiJbSH8AGeckmwfaMPWOQkKqKR6UiFsDauvZcJ44842BPgvLvcTKlajes_Drnu_f6vKzOxjhiVb1mdMkok-82SwN5ySnnp7OUz6oL3rZ8Ibhqzh7tz6urnDeUUt4xSqV6UZ3XUlDJFb-ott_Arv2IJCCk0Y8r4mIifoAVEhghHLLPxI9kWiOxmPbeQiB5WxzvyY9DnnCAyVuScO_xD4nuJIQ9-AAmIBlijyEXUk8GnNaxz6-q5w5Cxqv79bL69fnTz5uvi7vvX25vru8WVrB2WghqG94bKxRrXWdEGcbaujUtMzWXnNWUYycEhd40wljmwBnVSAE1tBJ4XV9WtzO3j7DR21RGSgcdwevTRUwrDam0HlDXjROis6WYs43iqKRxtkcjULWic01hfZxZ250ZsLc4TgnCE-jTl9Gv9SrutWq56mpeAG_vASn-3mGe9OCzxRBgxLjLmreilrJplCpSNkttijkndA9lGNXHoPVGl-D1MXg9B188bx739-D4F3MRfJgFJYxjUkln63G02PuEdipf4v-D_wtgP8Gh |
CitedBy_id | crossref_primary_10_1016_j_msksp_2024_102945 |
Cites_doi | 10.1016/j.jcot.2020.10.027 10.1038/nature21056 10.1371/journal.pmed.1000097 10.1016/j.media.2009.02.004 10.1016/j.cmpb.2019.105081 10.1109/TMI.2009.2023362 10.1016/j.compbiomed.2019.04.010 10.1158/1078-0432.CCR-18-2495 10.1016/j.mri.2011.08.006 10.1016/j.mayocp.2014.09.008 10.1007/s11548-016-1507-z 10.1371/journal.pone.0228594 10.1016/j.wneu.2019.03.165 10.1007/s00586-016-4817-5 10.1016/j.compmedimag.2012.08.004 10.1007/s10278-018-0140-5 10.1016/j.clinbiomech.2018.04.015 10.3390/e21121222 10.1016/j.ajodo.2020.08.014 10.1080/02841850410000755 10.1148/radiol.13121351 10.1109/TMI.2019.2927289 10.1118/1.1634483 10.1007/s10278-017-9945-x 10.1038/s41598-019-46718-3 10.1109/TMI.2015.2437192 10.1148/radiol.2015142346 10.2196/jmir.5870 10.1016/j.bspc.2007.03.002 10.1002/nbm.4114 10.1097/BRS.0000000000001302 10.1007/s10278-007-9099-3 10.1016/j.compmedimag.2016.02.002 10.1007/s11548-013-0927-2 10.1186/s40510-019-0295-8 10.1038/s41592-021-01256-7 10.1007/s11548-014-1121-x 10.1016/j.cmpb.2018.01.006 10.1016/j.cmpb.2019.05.003 10.1148/radiol.2383050456 10.1007/s11596-012-0021-y 10.1186/s12880-020-0418-1 10.1016/j.media.2019.05.010 10.1007/s40846-020-00579-8 10.1002/rcs.1991 10.1088/1361-6560/aac226 10.1001/jamanetworkopen.2020.20961 10.1007/s10278-009-9176-x 10.1038/s41598-018-20132-7 10.1002/mrm.24404 |
ContentType | Journal Article |
Copyright | 2022 The Author(s) 2022 The Author(s). 2022 The Author(s) 2022 |
Copyright_xml | – notice: 2022 The Author(s) – notice: 2022 The Author(s). – notice: 2022 The Author(s) 2022 |
DBID | 6I. AAFTH NPM AAYXX CITATION 7X8 5PM DOA |
DOI | 10.1016/j.bas.2022.101666 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access PubMed CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | PubMed CrossRef MEDLINE - Academic |
DatabaseTitleList | PubMed |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: http://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 2772-5294 |
EndPage | 101666 |
ExternalDocumentID | oai_doaj_org_article_34f558cbc5fc492e96bfcdeb5e9758f4 10_1016_j_bas_2022_101666 36506292 S2772529422008074 |
Genre | Journal Article Review |
GroupedDBID | .1- .FO 53G 6I. AAFTH AAXUO AFCTW AFRHN AJUYK ALMA_UNASSIGNED_HOLDINGS AMRAJ EBS FDB GROUPED_DOAJ M41 M~E OK1 ROL RPM Z5R 0R~ 0SF AALRI ADVLN AFJKZ AITUG NPM AAYXX CITATION 7X8 5PM |
ID | FETCH-LOGICAL-c517t-50c42dbc5917f8b5772cc37b71b32621302e8550adb45bc1fafb9465a3a76a233 |
IEDL.DBID | RPM |
ISSN | 2772-5294 |
IngestDate | Tue Oct 22 15:15:50 EDT 2024 Tue Sep 17 21:30:55 EDT 2024 Fri Oct 25 08:36:48 EDT 2024 Thu Nov 21 21:11:26 EST 2024 Sat Sep 28 08:21:27 EDT 2024 Fri Feb 23 02:39:39 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Computer aided diagnostics Image analysis Radiological imaging Cervical spine Machine learning |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. 2022 The Author(s). This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c517t-50c42dbc5917f8b5772cc37b71b32621302e8550adb45bc1fafb9465a3a76a233 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-3 content type line 23 ObjectType-Review-1 Co-first author. |
ORCID | 0000-0003-2885-5812 0000-0002-1575-7976 0000-0003-3743-9618 0000-0003-1120-4781 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9729832/ |
PMID | 36506292 |
PQID | 2753664499 |
PQPubID | 23479 |
PageCount | 1 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_34f558cbc5fc492e96bfcdeb5e9758f4 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9729832 proquest_miscellaneous_2753664499 crossref_primary_10_1016_j_bas_2022_101666 pubmed_primary_36506292 elsevier_sciencedirect_doi_10_1016_j_bas_2022_101666 |
PublicationCentury | 2000 |
PublicationDate | 2022-01-01 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – month: 01 year: 2022 text: 2022-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Brain & spine |
PublicationTitleAlternate | Brain Spine |
PublicationYear | 2022 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Clogenson, Duff, Luethi, Levivier, Meuli, Baur, Henein (bib17) 2015; 10 Xu, Hosny, Zeleznik, Parmar, Coroller, Franco, Mak, Aerts (bib65) 2019; 25 Tabibu, Vinod, Jawahar (bib57) 2019; 9 Weiss, Storrs, Banto (bib62) 2006; 239 Chen, Shen, Qin, Ni, Shi, Cheng, Heng (bib14) 2015 Nikkhoo, Cheng, Wang, Khoz, El-Rich, Hebela, Khalaf (bib47) 2019; 109 Cai, Landis, Laidley, Kornecki, Lum, Li (bib13) 2016; 51 Forsberg, Sjöblom, Sunshine (bib24) 2017; 30 Makaremi, Lacaule, Mohammad-Djafari (bib42) 2019; 21 Jakubicek, Chmelik, Jan, Ourednicek, Lambert, Gavelli (bib32) 2020; 183 Kage, Akbari-Shandiz, Foltz, Lawrence, Brandon, Helwig, Ellingson (bib35) 2020; 15 Klinder, Ostermann, Ehm, Franz, Kneser, Lorenz (bib36) 2009; 13 Mirzaalian, Wels, Heimann, Kelm, Suehling (bib44) 2013 Al Arif, Knapp, Slabaugh (bib1) 2018; 157 Nikkhoo, Mohammad (bib69) 2020; 41 Rashad, Heiland, Hiepe, Nasirpour, Rendenbach, Keuchel, Regier, Al-Dam (bib50) 2019; 15 Schmidt, Kappes, Bergtholdt, Pekar, Dries, Bystrov, Schnörr (bib51) 2007; 20 Giulietti, Summers, Ferraro, Porro, Maraviglia, Giove (bib25) 2011; 29 Hopkins, Weber, Kesavabhotla, Paliwal, Cantrell, Smith (bib30) 2019; 127 Zamora, Sari-Sarraf, Long (bib66) 2003 Tan, Yao, Yao, Ward (bib58) 2012 Aresta, Araújo, Kwok, Chennamsetty, Safwan, Alex, Marami, Prastawa, Chan, Donovan, Fernandez, Zeineh, Kohl, Walz, Ludwig, Braunewell, Baust, Vu, To, Kim, Kwak, Galal, Sanchez-Freire, Brancati, Frucci, Riccio, Wang, Sun, Ma, Fang, Kone, Boulmane, Campilho, Eloy, Polónia, Aguiar (bib5) 2019; 56 Lecron, Benjelloun, Mahmoudi (bib39) 2012; 36 . Dzyubachyk, Lelieveldt, Blaas, Reijnierse, Webb, van der Geest (bib22) 2013; 69 Pekar, Bystrov, Heese, Dries, Schmidt, Grewer, den Harder, Bergmans, Simonetti, van Muiswinkel (bib48) 2007; 10 Wells, Shea, O'Connel, Welch, Losos, Tugwell (bib63) Bae, Hyun, Byeon, Shin, Cho, Song, Yi, Kuh, Yeom, Kim (bib6) 2019; 184 Wang, Zhai, Niu (bib61) 2019; 32 Glocker, Zikic, Konukoglu, Haynor, Criminisi (bib27) 2013; 16 Burns, Yao, Muñoz, Summers (bib12) 2016; 278 Esteva, Kuprel, Novoa, Ko, Swetter, Blau, Thrun (bib23) 2017; 542 Srinivasan S, Kumar S D, R S, Jebaseelan D D, Yoganandan N, RajasekaranS. Effect of heterotopic ossification after bryan-cervical disc arthroplasty on adjacent level range of motion: A finite element study. J. Clin. Orthop. Trauma. 15, 99–103. Allaire, DePaolis Kaluza, Bruno, Samelson, Kiel, Anderson, Bouxsein (bib3) 2017; 26 Schmitz, Pitzen, Beuter, Steudel, Reith (bib52) 2004; 45 De Leener, Cohen-Adad, Kadoury (bib20) 2015; 34 Al Arif, Gundry, Knapp, Slabaugh (bib2) 2016 Liu, Yang, Song, Cong, Jiao, Song, Ai, Jiang, Wang (bib40) 2018; 63 Tiulpin, Thevenot, Rahtu, Lehenkari, Saarakkala (bib59) 2018; 8 Luo, Phung, Tran, Gupta, Rana, Karmakar, Shilton, Yearwood, Dimitrova, Ho, Venkatesh, Berk (bib41) 2016; 18 Jin, Luk, Cheung, Hu (bib34) 2019; 32 Urrutia, Zamora, Yurac, Campos, Palma, Mobarec, Prada (bib60) 2017; 42 Rak, Steffen, Meyer, Hansen, Tönnies (bib49) 2019; 177 Cohen (bib18) 2015; 90 Larhmam, Benjelloun, Mahmoudi (bib38) 2014; 9 Huang, Chu, Lai, Novak (bib31) 2009; 28 Moher, Liberati, Tetzlaff, Altman, The (bib45) 2009; 6 Daenzer, Freitag, von Sachsen, Steinke, Groll, Meixensberger, Leimert (bib19) 2014; 41 Sinnott, Dally, Trafton, Goulet, Wagner (bib54) 2017; 96 Xi, Hong-Wei, Xu-Cheng, Ning, Shafin (bib64) 2012 Chen, Gao, Li, Zhao, Zhao (bib16) 2020; 39 Jakubicek, Chmelik, Ourednicek, Jan (bib33) 2019 Banik, Rangayyan, Boag (bib8) 2010; 23 Shin, Han, Lee (bib53) 2020; 3 Kök, Acilar, İzgi (bib37) 2019; 20 Amasya, Cesur, Yıldırım, Orhan (bib4) 2020; 158 Glocker, Feulner, Criminisi, Haynor, Konukoglu (bib26) 2012; 15 Heil, Hoffman, Markowetz, Lee, Greene, Hicks (bib29) 2021; 18 Benjelloun, Mahmoudi (bib9) 2009; 22 Suzani, Seitel, Liu, Fels, Rohling, Abolmaesumi (bib56) 2015 Burns, Yao, Wiese, Muñoz, Jones, Summers (bib11) 2013; 268 Zhang, Lobo-Mueller, Karanicolas, Gallinger, Haider, Khalvati (bib67) 2020; 20 Burnett, Starkschalla, Stevens, Liao (bib10) 2004; 31 Hanaoka, Masutani, Nemoto, Nomura, Miki, Yoshikawa, Hayashi, Ohtomo, Shimizu (bib28) 2017; 12 du Bois d'Aische, De Craene, Geets, Gregoire, Macq, Warfield (bib21) 2007; 2 Balkovec, Veldhuis, Baird, Wayne Brodland, McGill (bib7) 2018; 56 Chen, Lan, Xu, Lin, Hu (bib15) 2012; 32 Mehmood, Akram, Tariq (bib43) 2017 Burns (10.1016/j.bas.2022.101666_bib12) 2016; 278 Dzyubachyk (10.1016/j.bas.2022.101666_bib22) 2013; 69 Pekar (10.1016/j.bas.2022.101666_bib48) 2007; 10 Tan (10.1016/j.bas.2022.101666_bib58) 2012 Aresta (10.1016/j.bas.2022.101666_bib5) 2019; 56 Jakubicek (10.1016/j.bas.2022.101666_bib32) 2020; 183 Moher (10.1016/j.bas.2022.101666_bib45) 2009; 6 Xi (10.1016/j.bas.2022.101666_bib64) 2012 Chen (10.1016/j.bas.2022.101666_bib14) 2015 Cohen (10.1016/j.bas.2022.101666_bib18) 2015; 90 Weiss (10.1016/j.bas.2022.101666_bib62) 2006; 239 Burns (10.1016/j.bas.2022.101666_bib11) 2013; 268 du Bois d'Aische (10.1016/j.bas.2022.101666_bib21) 2007; 2 Zamora (10.1016/j.bas.2022.101666_bib66) 2003 10.1016/j.bas.2022.101666_bib68 Kök (10.1016/j.bas.2022.101666_bib37) 2019; 20 Forsberg (10.1016/j.bas.2022.101666_bib24) 2017; 30 Burnett (10.1016/j.bas.2022.101666_bib10) 2004; 31 Rashad (10.1016/j.bas.2022.101666_bib50) 2019; 15 Cai (10.1016/j.bas.2022.101666_bib13) 2016; 51 Glocker (10.1016/j.bas.2022.101666_bib26) 2012; 15 Luo (10.1016/j.bas.2022.101666_bib41) 2016; 18 Schmidt (10.1016/j.bas.2022.101666_bib51) 2007; 20 Wells (10.1016/j.bas.2022.101666_bib63) Heil (10.1016/j.bas.2022.101666_bib29) 2021; 18 De Leener (10.1016/j.bas.2022.101666_bib20) 2015; 34 Jin (10.1016/j.bas.2022.101666_bib34) 2019; 32 Glocker (10.1016/j.bas.2022.101666_bib27) 2013; 16 Rak (10.1016/j.bas.2022.101666_bib49) 2019; 177 Al Arif (10.1016/j.bas.2022.101666_bib1) 2018; 157 Banik (10.1016/j.bas.2022.101666_bib8) 2010; 23 Hopkins (10.1016/j.bas.2022.101666_bib30) 2019; 127 Chen (10.1016/j.bas.2022.101666_bib15) 2012; 32 Kage (10.1016/j.bas.2022.101666_bib35) 2020; 15 Giulietti (10.1016/j.bas.2022.101666_bib25) 2011; 29 Nikkhoo (10.1016/j.bas.2022.101666_bib69) 2020; 41 Schmitz (10.1016/j.bas.2022.101666_bib52) 2004; 45 Chen (10.1016/j.bas.2022.101666_bib16) 2020; 39 Tabibu (10.1016/j.bas.2022.101666_bib57) 2019; 9 Tiulpin (10.1016/j.bas.2022.101666_bib59) 2018; 8 Urrutia (10.1016/j.bas.2022.101666_bib60) 2017; 42 Zhang (10.1016/j.bas.2022.101666_bib67) 2020; 20 Lecron (10.1016/j.bas.2022.101666_bib39) 2012; 36 Bae (10.1016/j.bas.2022.101666_bib6) 2019; 184 Nikkhoo (10.1016/j.bas.2022.101666_bib47) 2019; 109 Esteva (10.1016/j.bas.2022.101666_bib23) 2017; 542 Hanaoka (10.1016/j.bas.2022.101666_bib28) 2017; 12 Xu (10.1016/j.bas.2022.101666_bib65) 2019; 25 Daenzer (10.1016/j.bas.2022.101666_bib19) 2014; 41 Benjelloun (10.1016/j.bas.2022.101666_bib9) 2009; 22 Liu (10.1016/j.bas.2022.101666_bib40) 2018; 63 Shin (10.1016/j.bas.2022.101666_bib53) 2020; 3 Klinder (10.1016/j.bas.2022.101666_bib36) 2009; 13 Balkovec (10.1016/j.bas.2022.101666_bib7) 2018; 56 Mehmood (10.1016/j.bas.2022.101666_bib43) 2017 Makaremi (10.1016/j.bas.2022.101666_bib42) 2019; 21 Al Arif (10.1016/j.bas.2022.101666_bib2) 2016 Clogenson (10.1016/j.bas.2022.101666_bib17) 2015; 10 Sinnott (10.1016/j.bas.2022.101666_bib54) 2017; 96 Huang (10.1016/j.bas.2022.101666_bib31) 2009; 28 Wang (10.1016/j.bas.2022.101666_bib61) 2019; 32 Allaire (10.1016/j.bas.2022.101666_bib3) 2017; 26 Larhmam (10.1016/j.bas.2022.101666_bib38) 2014; 9 Suzani (10.1016/j.bas.2022.101666_bib56) 2015 Jakubicek (10.1016/j.bas.2022.101666_bib33) 2019 Mirzaalian (10.1016/j.bas.2022.101666_bib44) 2013 Amasya (10.1016/j.bas.2022.101666_bib4) 2020; 158 |
References_xml | – start-page: 1 year: 2012 end-page: 8 ident: bib64 article-title: Automatic Segmentation of Cervical Vertebrae in X-Ray Images, the 2012 International Joint Conference on Neural Networks contributor: fullname: Shafin – volume: 26 start-page: 167 year: 2017 end-page: 172 ident: bib3 article-title: Evaluation of a new approach to compute intervertebral disc height measurements from lateral radiographic views of the spine publication-title: Eur. Spine J. contributor: fullname: Bouxsein – volume: 90 start-page: 284 year: 2015 end-page: 299 ident: bib18 article-title: Epidemiology, diagnosis, and treatment of neck pain publication-title: Mayo Clin. Proc. contributor: fullname: Cohen – volume: 6 year: 2009 ident: bib45 article-title: Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement publication-title: PLoS Med. contributor: fullname: The – volume: 30 start-page: 406 year: 2017 end-page: 412 ident: bib24 article-title: Detection and labeling of vertebrae in MR images using deep learning with clinical annotations as training data publication-title: J. Digit. Imag. contributor: fullname: Sunshine – volume: 15 start-page: 590 year: 2012 end-page: 598 ident: bib26 article-title: Automatic localization and identification of vertebrae in arbitrary field-of-view CT scans publication-title: Med. Image Comput. Comput. Assist Interv. contributor: fullname: Konukoglu – volume: 22 start-page: 309 year: 2009 end-page: 318 ident: bib9 article-title: Spine localization in X-ray images using interest point detection publication-title: J. Digit. Imag. contributor: fullname: Mahmoudi – volume: 63 year: 2018 ident: bib40 article-title: Sparse intervertebral fence composition for 3D cervical vertebra segmentation publication-title: Phys. Med. Biol. contributor: fullname: Wang – volume: 41 year: 2014 ident: bib19 article-title: VolHOG: a volumetric object recognition approach based on bivariate histograms of oriented gradients for vertebra detection in cervical spine MRI publication-title: Med. Phys. contributor: fullname: Leimert – volume: 41 start-page: 59 year: 2020 end-page: 70 ident: bib69 article-title: The biomechanical response of the lower cervical spine post laminectomy: geometrically-parametric patient-specific finite element analyses publication-title: J. Med. Biol. Eng. contributor: fullname: Mohammad – volume: 23 start-page: 301 year: 2010 end-page: 322 ident: bib8 article-title: Automatic segmentation of the ribs, the vertebral column, and the spinal canal in pediatric computed tomographic images publication-title: J. Digit. Imag. contributor: fullname: Boag – volume: 177 start-page: 47 year: 2019 end-page: 56 ident: bib49 article-title: Combining convolutional neural networks and star convex cuts for fast whole spine vertebra segmentation in MRI publication-title: Comput. Methods Progr. Biomed. contributor: fullname: Tönnies – start-page: 287 year: 2017 end-page: 292 ident: bib43 article-title: Vertebra localization and centroid detection from cervical radiographs publication-title: International Conference on Communication, Computing and Digital Systems contributor: fullname: Tariq – volume: 32 start-page: 119 year: 2012 end-page: 123 ident: bib15 article-title: Accuracy and repeatability of computer aided cervical vertebra landmarking in cephalogram publication-title: J Huazhong Univ Sci Technolog Med Sci contributor: fullname: Hu – volume: 157 start-page: 95 year: 2018 end-page: 111 ident: bib1 article-title: Fully automatic cervical vertebrae segmentation framework for X-ray images publication-title: Comput. Methods Progr. Biomed. contributor: fullname: Slabaugh – volume: 51 start-page: 11 year: 2016 end-page: 19 ident: bib13 article-title: Multi-modal vertebrae recognition using transformed deep convolution network publication-title: Comput. Med. Imag. Graph. contributor: fullname: Li – volume: 56 start-page: 11 year: 2018 end-page: 17 ident: bib7 article-title: Digital tracking algorithm reveals the influence of structural irregularities on joint movements in the human cervical spine publication-title: Clin. BioMech. contributor: fullname: McGill – volume: 278 start-page: 64 year: 2016 end-page: 73 ident: bib12 article-title: Automated detection, localization, and classification of traumatic vertebral body fractures in the thoracic and lumbar spine at CT publication-title: Radiology contributor: fullname: Summers – volume: 13 start-page: 471 year: 2009 end-page: 482 ident: bib36 article-title: Automated model-based vertebra detection, identification, and segmentation in CT images publication-title: Med. Image Anal. contributor: fullname: Lorenz – volume: 239 start-page: 255 year: 2006 end-page: 262 ident: bib62 article-title: Automated spine survey iterative scan technique publication-title: Radiology contributor: fullname: Banto – start-page: 3 year: 2016 end-page: 15 ident: bib2 article-title: Improving an Active Shape Model with Random Classification Forest for Segmentation of Cervical Vertebrae contributor: fullname: Slabaugh – volume: 25 start-page: 3266 year: 2019 end-page: 3275 ident: bib65 article-title: Deep learning predicts lung cancer treatment response from serial medical imaging publication-title: Clin. Cancer Res. contributor: fullname: Aerts – year: 2003 ident: bib66 article-title: Hierarchical Segmentation of Vertebrae from X-Ray Images contributor: fullname: Long – volume: 18 start-page: e323 year: 2016 ident: bib41 article-title: Guidelines for developing and reporting machine learning predictive models in biomedical research: a multidisciplinary view publication-title: J. Med. Internet Res. contributor: fullname: Berk – start-page: 3379 year: 2013 end-page: 3382 ident: bib44 article-title: Fast and robust 3D vertebra segmentation using statistical shape models publication-title: Annu Int Conf IEEE Eng Med Biol Soc contributor: fullname: Suehling – start-page: 515 year: 2015 end-page: 522 ident: bib14 article-title: Automatic Localization and Identification of Vertebrae in Spine CT via a Joint Learning Model with Deep Neural Networks contributor: fullname: Heng – volume: 15 year: 2020 ident: bib35 article-title: Validation of an automated shape-matching algorithm for biplane radiographic spine osteokinematics and radiostereometric analysis error quantification publication-title: PLoS One contributor: fullname: Ellingson – volume: 36 start-page: 634 year: 2012 end-page: 642 ident: bib39 article-title: Cervical spine mobility analysis on radiographs: a fully automatic approach publication-title: Comput. Med. Imag. Graph. contributor: fullname: Mahmoudi – volume: 9 year: 2019 ident: bib57 article-title: Pan-Renal Cell Carcinoma classification and survival prediction from histopathology images using deep learning publication-title: Sci. Rep. contributor: fullname: Jawahar – volume: 56 start-page: 122 year: 2019 end-page: 139 ident: bib5 article-title: BACH: Grand challenge on breast cancer histology images publication-title: Med. Image Anal. contributor: fullname: Aguiar – volume: 45 start-page: 53 year: 2004 end-page: 58 ident: bib52 article-title: Regional variations in the thickness of cervical spine endplates as measured by computed tomography publication-title: Acta Radiol. contributor: fullname: Reith – volume: 20 start-page: 41 year: 2019 ident: bib37 article-title: Usage and comparison of artificial intelligence algorithms for determination of growth and development by cervical vertebrae stages in orthodontics publication-title: Prog. Orthod. contributor: fullname: İzgi – volume: 21 start-page: 24 year: 2019 ident: bib42 article-title: Deep learning and artificial intelligence for the determination of the cervical vertebra maturation degree from lateral radiography publication-title: Entropy contributor: fullname: Mohammad-Djafari – volume: 42 year: 2017 ident: bib60 article-title: An independent inter- and intraobserver agreement evaluation of the AOSpine subaxial cervical spine injury classification system publication-title: Spine contributor: fullname: Prada – volume: 10 start-page: 1097 year: 2015 end-page: 1107 ident: bib17 article-title: A statistical shape model of the human second cervical vertebra publication-title: Int. J. Comput. Assist. Radiol. Surg. contributor: fullname: Henein – volume: 32 start-page: 336 year: 2019 end-page: 348 ident: bib61 article-title: Automatic vertebrae localization and identification by combining deep SSAE contextual features and structured regression forest publication-title: J. Digit. Imag. contributor: fullname: Niu – volume: 10 start-page: 601 year: 2007 end-page: 608 ident: bib48 article-title: Automated planning of scan geometries in spine MRI scans publication-title: Med. Image Comput. Comput. Assist Interv. contributor: fullname: van Muiswinkel – volume: 268 start-page: 69 year: 2013 end-page: 78 ident: bib11 article-title: Automated detection of sclerotic metastases in the thoracolumbar spine at CT publication-title: Radiology contributor: fullname: Summers – volume: 15 year: 2019 ident: bib50 article-title: Evaluation of a novel elastic registration algorithm for spinal imaging data: a pilot clinical study publication-title: Int. J. Med. Robot. contributor: fullname: Al-Dam – volume: 20 start-page: 122 year: 2007 end-page: 133 ident: bib51 article-title: Spine detection and labeling using a parts-based graphical model publication-title: Inf. Process Med. Imaging contributor: fullname: Schnörr – volume: 127 start-page: e436 year: 2019 end-page: e442 ident: bib30 article-title: Machine learning for the prediction of cervical spondylotic myelopathy: a post hoc pilot study of 28 participants publication-title: World Neurosurg contributor: fullname: Smith – start-page: 678 year: 2015 end-page: 686 ident: bib56 article-title: Fast automatic vertebrae detection and localization in pathological CT scans - a deep learning approach publication-title: Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015 contributor: fullname: Abolmaesumi – volume: 542 start-page: 115 year: 2017 end-page: 118 ident: bib23 article-title: Dermatologist-level classification of skin cancer with deep neural networks publication-title: Nature contributor: fullname: Thrun – volume: 8 start-page: 1727 year: 2018 ident: bib59 article-title: Automatic knee osteoarthritis diagnosis from plain radiographs: a deep learning-based approach publication-title: Sci. Rep. contributor: fullname: Saarakkala – volume: 69 start-page: 1777 year: 2013 end-page: 1786 ident: bib22 article-title: Automated algorithm for reconstruction of the complete spine from multistation 7T MR data publication-title: Magn. Reson. Med. contributor: fullname: van der Geest – volume: 3 year: 2020 ident: bib53 article-title: Temporal trends in cervical spine curvature of south Korean adults assessed by deep learning system segmentation, 2006-2018 publication-title: JAMA Netw. Open contributor: fullname: Lee – start-page: 2407 year: 2019 end-page: 2410 ident: bib33 article-title: Deep-learning-based fully automatic spine centerline detection in CT data publication-title: Annu Int Conf IEEE Eng Med Biol Soc contributor: fullname: Jan – volume: 18 start-page: 1132 year: 2021 end-page: 1135 ident: bib29 article-title: Reproducibility standards for machine learning in the life sciences publication-title: Nat. Methods contributor: fullname: Hicks – start-page: 1554 year: 2012 end-page: 1557 ident: bib58 article-title: High precision semi-automated vertebral height measurement using computed tomography: a phantom study publication-title: Annu Int Conf IEEE Eng Med Biol Soc contributor: fullname: Ward – volume: 96 year: 2017 ident: bib54 article-title: Trends in diagnosis of painful neck and back conditions publication-title: 2002 to 2011, Medicine contributor: fullname: Wagner – volume: 39 start-page: 387 year: 2020 end-page: 399 ident: bib16 article-title: Vertebrae identification and localization utilizing fully convolutional networks and a hidden Markov model publication-title: IEEE Trans. Med. Imag. contributor: fullname: Zhao – ident: bib63 article-title: The NewcastleOttawa Scale (NOS) for assessing the quality of nonradomised studies in metaanalysis contributor: fullname: Tugwell – volume: 31 start-page: 251 year: 2004 end-page: 263 ident: bib10 article-title: A deformable-model approach to semi-automatic segmentation of CT images demonstrated by application to the spinal canal publication-title: Med. Phys. contributor: fullname: Liao – volume: 28 start-page: 1595 year: 2009 end-page: 1605 ident: bib31 article-title: Learning-based vertebra detection and iterative normalized-cut segmentation for spinal MRI publication-title: IEEE Trans. Med. Imag. contributor: fullname: Novak – volume: 32 start-page: e4114 year: 2019 ident: bib34 article-title: Prognosis of cervical myelopathy based on diffusion tensor imaging with artificial intelligence methods publication-title: NMR Biomed. contributor: fullname: Hu – volume: 20 start-page: 11 year: 2020 ident: bib67 article-title: CNN-based survival model for pancreatic ductal adenocarcinoma in medical imaging publication-title: BMC Med. Imag. contributor: fullname: Khalvati – volume: 12 start-page: 413 year: 2017 end-page: 430 ident: bib28 article-title: Landmark-guided diffeomorphic demons algorithm and its application to automatic segmentation of the whole spine and pelvis in CT images publication-title: Int. J. Comput. Assist. Radiol. Surg. contributor: fullname: Shimizu – volume: 109 start-page: 22 year: 2019 end-page: 32 ident: bib47 article-title: Development and validation of a geometrically personalized finite element model of the lower ligamentous cervical spine for clinical applications publication-title: Comput. Biol. Med. contributor: fullname: Khalaf – volume: 158 start-page: e173 year: 2020 end-page: e179 ident: bib4 article-title: Validation of cervical vertebral maturation stages: artificial intelligence vs human observer visual analysis publication-title: Am. J. Orthod. Dentofacial Orthop. contributor: fullname: Orhan – volume: 183 year: 2020 ident: bib32 article-title: Learning–based vertebra localization and labeling in 3D CT data of possibly incomplete and pathological spines publication-title: Comput. Methods Progr. Biomed. contributor: fullname: Gavelli – volume: 2 start-page: 16 year: 2007 end-page: 24 ident: bib21 article-title: Estimation of the deformations induced by articulated bodies: registration of the spinal column publication-title: Biomed. Signal Process Control contributor: fullname: Warfield – volume: 184 year: 2019 ident: bib6 article-title: Fully automated 3D segmentation and separation of multiple cervical vertebrae in CT images using a 2D convolutional neural network publication-title: Comput. Methods Progr. Biomed. contributor: fullname: Kim – volume: 29 start-page: 1429 year: 2011 end-page: 1436 ident: bib25 article-title: Semiautomated segmentation of the human spine based on echoplanar images publication-title: Magn. Reson. Imaging contributor: fullname: Giove – volume: 34 start-page: 1705 year: 2015 end-page: 1718 ident: bib20 article-title: Automatic segmentation of the spinal cord and spinal canal coupled with vertebral labeling publication-title: IEEE Trans. Med. Imag. contributor: fullname: Kadoury – volume: 16 start-page: 262 year: 2013 end-page: 270 ident: bib27 article-title: Vertebrae localization in pathological spine CT via dense classification from sparse annotations publication-title: Med. Image Comput. Comput. Assist Interv. contributor: fullname: Criminisi – volume: 9 start-page: 177 year: 2014 end-page: 187 ident: bib38 article-title: Vertebra identification using template matching modelmp and K-means clustering publication-title: Int. J. Comput. Assist. Radiol. Surg. contributor: fullname: Mahmoudi – ident: 10.1016/j.bas.2022.101666_bib68 doi: 10.1016/j.jcot.2020.10.027 – ident: 10.1016/j.bas.2022.101666_bib63 contributor: fullname: Wells – volume: 542 start-page: 115 issue: 7639 year: 2017 ident: 10.1016/j.bas.2022.101666_bib23 article-title: Dermatologist-level classification of skin cancer with deep neural networks publication-title: Nature doi: 10.1038/nature21056 contributor: fullname: Esteva – volume: 6 issue: 7 year: 2009 ident: 10.1016/j.bas.2022.101666_bib45 article-title: Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement publication-title: PLoS Med. doi: 10.1371/journal.pmed.1000097 contributor: fullname: Moher – volume: 13 start-page: 471 issue: 3 year: 2009 ident: 10.1016/j.bas.2022.101666_bib36 article-title: Automated model-based vertebra detection, identification, and segmentation in CT images publication-title: Med. Image Anal. doi: 10.1016/j.media.2009.02.004 contributor: fullname: Klinder – start-page: 3 year: 2016 ident: 10.1016/j.bas.2022.101666_bib2 contributor: fullname: Al Arif – volume: 183 year: 2020 ident: 10.1016/j.bas.2022.101666_bib32 article-title: Learning–based vertebra localization and labeling in 3D CT data of possibly incomplete and pathological spines publication-title: Comput. Methods Progr. Biomed. doi: 10.1016/j.cmpb.2019.105081 contributor: fullname: Jakubicek – volume: 28 start-page: 1595 issue: 10 year: 2009 ident: 10.1016/j.bas.2022.101666_bib31 article-title: Learning-based vertebra detection and iterative normalized-cut segmentation for spinal MRI publication-title: IEEE Trans. Med. Imag. doi: 10.1109/TMI.2009.2023362 contributor: fullname: Huang – start-page: 3379 year: 2013 ident: 10.1016/j.bas.2022.101666_bib44 article-title: Fast and robust 3D vertebra segmentation using statistical shape models contributor: fullname: Mirzaalian – volume: 109 start-page: 22 year: 2019 ident: 10.1016/j.bas.2022.101666_bib47 article-title: Development and validation of a geometrically personalized finite element model of the lower ligamentous cervical spine for clinical applications publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2019.04.010 contributor: fullname: Nikkhoo – volume: 96 issue: 20 year: 2017 ident: 10.1016/j.bas.2022.101666_bib54 article-title: Trends in diagnosis of painful neck and back conditions publication-title: 2002 to 2011, Medicine contributor: fullname: Sinnott – volume: 25 start-page: 3266 issue: 11 year: 2019 ident: 10.1016/j.bas.2022.101666_bib65 article-title: Deep learning predicts lung cancer treatment response from serial medical imaging publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-18-2495 contributor: fullname: Xu – volume: 29 start-page: 1429 issue: 10 year: 2011 ident: 10.1016/j.bas.2022.101666_bib25 article-title: Semiautomated segmentation of the human spine based on echoplanar images publication-title: Magn. Reson. Imaging doi: 10.1016/j.mri.2011.08.006 contributor: fullname: Giulietti – volume: 90 start-page: 284 issue: 2 year: 2015 ident: 10.1016/j.bas.2022.101666_bib18 article-title: Epidemiology, diagnosis, and treatment of neck pain publication-title: Mayo Clin. Proc. doi: 10.1016/j.mayocp.2014.09.008 contributor: fullname: Cohen – volume: 12 start-page: 413 issue: 3 year: 2017 ident: 10.1016/j.bas.2022.101666_bib28 article-title: Landmark-guided diffeomorphic demons algorithm and its application to automatic segmentation of the whole spine and pelvis in CT images publication-title: Int. J. Comput. Assist. Radiol. Surg. doi: 10.1007/s11548-016-1507-z contributor: fullname: Hanaoka – volume: 41 issue: 8 year: 2014 ident: 10.1016/j.bas.2022.101666_bib19 article-title: VolHOG: a volumetric object recognition approach based on bivariate histograms of oriented gradients for vertebra detection in cervical spine MRI publication-title: Med. Phys. contributor: fullname: Daenzer – volume: 15 issue: 2 year: 2020 ident: 10.1016/j.bas.2022.101666_bib35 article-title: Validation of an automated shape-matching algorithm for biplane radiographic spine osteokinematics and radiostereometric analysis error quantification publication-title: PLoS One doi: 10.1371/journal.pone.0228594 contributor: fullname: Kage – volume: 127 start-page: e436 year: 2019 ident: 10.1016/j.bas.2022.101666_bib30 article-title: Machine learning for the prediction of cervical spondylotic myelopathy: a post hoc pilot study of 28 participants publication-title: World Neurosurg doi: 10.1016/j.wneu.2019.03.165 contributor: fullname: Hopkins – volume: 26 start-page: 167 issue: 1 year: 2017 ident: 10.1016/j.bas.2022.101666_bib3 article-title: Evaluation of a new approach to compute intervertebral disc height measurements from lateral radiographic views of the spine publication-title: Eur. Spine J. doi: 10.1007/s00586-016-4817-5 contributor: fullname: Allaire – start-page: 515 year: 2015 ident: 10.1016/j.bas.2022.101666_bib14 contributor: fullname: Chen – volume: 36 start-page: 634 issue: 8 year: 2012 ident: 10.1016/j.bas.2022.101666_bib39 article-title: Cervical spine mobility analysis on radiographs: a fully automatic approach publication-title: Comput. Med. Imag. Graph. doi: 10.1016/j.compmedimag.2012.08.004 contributor: fullname: Lecron – volume: 32 start-page: 336 issue: 2 year: 2019 ident: 10.1016/j.bas.2022.101666_bib61 article-title: Automatic vertebrae localization and identification by combining deep SSAE contextual features and structured regression forest publication-title: J. Digit. Imag. doi: 10.1007/s10278-018-0140-5 contributor: fullname: Wang – volume: 56 start-page: 11 year: 2018 ident: 10.1016/j.bas.2022.101666_bib7 article-title: Digital tracking algorithm reveals the influence of structural irregularities on joint movements in the human cervical spine publication-title: Clin. BioMech. doi: 10.1016/j.clinbiomech.2018.04.015 contributor: fullname: Balkovec – volume: 21 start-page: 24 issue: 12 year: 2019 ident: 10.1016/j.bas.2022.101666_bib42 article-title: Deep learning and artificial intelligence for the determination of the cervical vertebra maturation degree from lateral radiography publication-title: Entropy doi: 10.3390/e21121222 contributor: fullname: Makaremi – volume: 158 start-page: e173 issue: 6 year: 2020 ident: 10.1016/j.bas.2022.101666_bib4 article-title: Validation of cervical vertebral maturation stages: artificial intelligence vs human observer visual analysis publication-title: Am. J. Orthod. Dentofacial Orthop. doi: 10.1016/j.ajodo.2020.08.014 contributor: fullname: Amasya – volume: 45 start-page: 53 issue: 1 year: 2004 ident: 10.1016/j.bas.2022.101666_bib52 article-title: Regional variations in the thickness of cervical spine endplates as measured by computed tomography publication-title: Acta Radiol. doi: 10.1080/02841850410000755 contributor: fullname: Schmitz – volume: 268 start-page: 69 issue: 1 year: 2013 ident: 10.1016/j.bas.2022.101666_bib11 article-title: Automated detection of sclerotic metastases in the thoracolumbar spine at CT publication-title: Radiology doi: 10.1148/radiol.13121351 contributor: fullname: Burns – volume: 39 start-page: 387 issue: 2 year: 2020 ident: 10.1016/j.bas.2022.101666_bib16 article-title: Vertebrae identification and localization utilizing fully convolutional networks and a hidden Markov model publication-title: IEEE Trans. Med. Imag. doi: 10.1109/TMI.2019.2927289 contributor: fullname: Chen – volume: 31 start-page: 251 issue: 2 year: 2004 ident: 10.1016/j.bas.2022.101666_bib10 article-title: A deformable-model approach to semi-automatic segmentation of CT images demonstrated by application to the spinal canal publication-title: Med. Phys. doi: 10.1118/1.1634483 contributor: fullname: Burnett – volume: 15 start-page: 590 issue: Pt 3 year: 2012 ident: 10.1016/j.bas.2022.101666_bib26 article-title: Automatic localization and identification of vertebrae in arbitrary field-of-view CT scans publication-title: Med. Image Comput. Comput. Assist Interv. contributor: fullname: Glocker – volume: 30 start-page: 406 issue: 4 year: 2017 ident: 10.1016/j.bas.2022.101666_bib24 article-title: Detection and labeling of vertebrae in MR images using deep learning with clinical annotations as training data publication-title: J. Digit. Imag. doi: 10.1007/s10278-017-9945-x contributor: fullname: Forsberg – volume: 9 issue: 1 year: 2019 ident: 10.1016/j.bas.2022.101666_bib57 article-title: Pan-Renal Cell Carcinoma classification and survival prediction from histopathology images using deep learning publication-title: Sci. Rep. doi: 10.1038/s41598-019-46718-3 contributor: fullname: Tabibu – volume: 34 start-page: 1705 issue: 8 year: 2015 ident: 10.1016/j.bas.2022.101666_bib20 article-title: Automatic segmentation of the spinal cord and spinal canal coupled with vertebral labeling publication-title: IEEE Trans. Med. Imag. doi: 10.1109/TMI.2015.2437192 contributor: fullname: De Leener – volume: 184 year: 2019 ident: 10.1016/j.bas.2022.101666_bib6 article-title: Fully automated 3D segmentation and separation of multiple cervical vertebrae in CT images using a 2D convolutional neural network publication-title: Comput. Methods Progr. Biomed. contributor: fullname: Bae – volume: 278 start-page: 64 issue: 1 year: 2016 ident: 10.1016/j.bas.2022.101666_bib12 article-title: Automated detection, localization, and classification of traumatic vertebral body fractures in the thoracic and lumbar spine at CT publication-title: Radiology doi: 10.1148/radiol.2015142346 contributor: fullname: Burns – volume: 18 start-page: e323 issue: 12 year: 2016 ident: 10.1016/j.bas.2022.101666_bib41 article-title: Guidelines for developing and reporting machine learning predictive models in biomedical research: a multidisciplinary view publication-title: J. Med. Internet Res. doi: 10.2196/jmir.5870 contributor: fullname: Luo – volume: 2 start-page: 16 issue: 1 year: 2007 ident: 10.1016/j.bas.2022.101666_bib21 article-title: Estimation of the deformations induced by articulated bodies: registration of the spinal column publication-title: Biomed. Signal Process Control doi: 10.1016/j.bspc.2007.03.002 contributor: fullname: du Bois d'Aische – volume: 32 start-page: e4114 issue: 8 year: 2019 ident: 10.1016/j.bas.2022.101666_bib34 article-title: Prognosis of cervical myelopathy based on diffusion tensor imaging with artificial intelligence methods publication-title: NMR Biomed. doi: 10.1002/nbm.4114 contributor: fullname: Jin – volume: 42 issue: 5 year: 2017 ident: 10.1016/j.bas.2022.101666_bib60 article-title: An independent inter- and intraobserver agreement evaluation of the AOSpine subaxial cervical spine injury classification system publication-title: Spine doi: 10.1097/BRS.0000000000001302 contributor: fullname: Urrutia – volume: 22 start-page: 309 issue: 3 year: 2009 ident: 10.1016/j.bas.2022.101666_bib9 article-title: Spine localization in X-ray images using interest point detection publication-title: J. Digit. Imag. doi: 10.1007/s10278-007-9099-3 contributor: fullname: Benjelloun – volume: 20 start-page: 122 year: 2007 ident: 10.1016/j.bas.2022.101666_bib51 article-title: Spine detection and labeling using a parts-based graphical model publication-title: Inf. Process Med. Imaging contributor: fullname: Schmidt – volume: 51 start-page: 11 year: 2016 ident: 10.1016/j.bas.2022.101666_bib13 article-title: Multi-modal vertebrae recognition using transformed deep convolution network publication-title: Comput. Med. Imag. Graph. doi: 10.1016/j.compmedimag.2016.02.002 contributor: fullname: Cai – volume: 10 start-page: 601 issue: Pt 1 year: 2007 ident: 10.1016/j.bas.2022.101666_bib48 article-title: Automated planning of scan geometries in spine MRI scans publication-title: Med. Image Comput. Comput. Assist Interv. contributor: fullname: Pekar – volume: 9 start-page: 177 issue: 2 year: 2014 ident: 10.1016/j.bas.2022.101666_bib38 article-title: Vertebra identification using template matching modelmp and K-means clustering publication-title: Int. J. Comput. Assist. Radiol. Surg. doi: 10.1007/s11548-013-0927-2 contributor: fullname: Larhmam – start-page: 287 year: 2017 ident: 10.1016/j.bas.2022.101666_bib43 article-title: Vertebra localization and centroid detection from cervical radiographs contributor: fullname: Mehmood – volume: 20 start-page: 41 issue: 1 year: 2019 ident: 10.1016/j.bas.2022.101666_bib37 article-title: Usage and comparison of artificial intelligence algorithms for determination of growth and development by cervical vertebrae stages in orthodontics publication-title: Prog. Orthod. doi: 10.1186/s40510-019-0295-8 contributor: fullname: Kök – volume: 18 start-page: 1132 issue: 10 year: 2021 ident: 10.1016/j.bas.2022.101666_bib29 article-title: Reproducibility standards for machine learning in the life sciences publication-title: Nat. Methods doi: 10.1038/s41592-021-01256-7 contributor: fullname: Heil – volume: 10 start-page: 1097 issue: 7 year: 2015 ident: 10.1016/j.bas.2022.101666_bib17 article-title: A statistical shape model of the human second cervical vertebra publication-title: Int. J. Comput. Assist. Radiol. Surg. doi: 10.1007/s11548-014-1121-x contributor: fullname: Clogenson – volume: 157 start-page: 95 year: 2018 ident: 10.1016/j.bas.2022.101666_bib1 article-title: Fully automatic cervical vertebrae segmentation framework for X-ray images publication-title: Comput. Methods Progr. Biomed. doi: 10.1016/j.cmpb.2018.01.006 contributor: fullname: Al Arif – volume: 177 start-page: 47 year: 2019 ident: 10.1016/j.bas.2022.101666_bib49 article-title: Combining convolutional neural networks and star convex cuts for fast whole spine vertebra segmentation in MRI publication-title: Comput. Methods Progr. Biomed. doi: 10.1016/j.cmpb.2019.05.003 contributor: fullname: Rak – year: 2003 ident: 10.1016/j.bas.2022.101666_bib66 contributor: fullname: Zamora – volume: 16 start-page: 262 issue: Pt 2 year: 2013 ident: 10.1016/j.bas.2022.101666_bib27 article-title: Vertebrae localization in pathological spine CT via dense classification from sparse annotations publication-title: Med. Image Comput. Comput. Assist Interv. contributor: fullname: Glocker – start-page: 678 year: 2015 ident: 10.1016/j.bas.2022.101666_bib56 article-title: Fast automatic vertebrae detection and localization in pathological CT scans - a deep learning approach contributor: fullname: Suzani – volume: 239 start-page: 255 issue: 1 year: 2006 ident: 10.1016/j.bas.2022.101666_bib62 article-title: Automated spine survey iterative scan technique publication-title: Radiology doi: 10.1148/radiol.2383050456 contributor: fullname: Weiss – volume: 32 start-page: 119 issue: 1 year: 2012 ident: 10.1016/j.bas.2022.101666_bib15 article-title: Accuracy and repeatability of computer aided cervical vertebra landmarking in cephalogram publication-title: J Huazhong Univ Sci Technolog Med Sci doi: 10.1007/s11596-012-0021-y contributor: fullname: Chen – volume: 20 start-page: 11 issue: 1 year: 2020 ident: 10.1016/j.bas.2022.101666_bib67 article-title: CNN-based survival model for pancreatic ductal adenocarcinoma in medical imaging publication-title: BMC Med. Imag. doi: 10.1186/s12880-020-0418-1 contributor: fullname: Zhang – volume: 56 start-page: 122 year: 2019 ident: 10.1016/j.bas.2022.101666_bib5 article-title: BACH: Grand challenge on breast cancer histology images publication-title: Med. Image Anal. doi: 10.1016/j.media.2019.05.010 contributor: fullname: Aresta – volume: 41 start-page: 59 year: 2020 ident: 10.1016/j.bas.2022.101666_bib69 article-title: The biomechanical response of the lower cervical spine post laminectomy: geometrically-parametric patient-specific finite element analyses publication-title: J. Med. Biol. Eng. doi: 10.1007/s40846-020-00579-8 contributor: fullname: Nikkhoo – start-page: 2407 year: 2019 ident: 10.1016/j.bas.2022.101666_bib33 article-title: Deep-learning-based fully automatic spine centerline detection in CT data contributor: fullname: Jakubicek – start-page: 1 year: 2012 ident: 10.1016/j.bas.2022.101666_bib64 contributor: fullname: Xi – volume: 15 issue: 3 year: 2019 ident: 10.1016/j.bas.2022.101666_bib50 article-title: Evaluation of a novel elastic registration algorithm for spinal imaging data: a pilot clinical study publication-title: Int. J. Med. Robot. doi: 10.1002/rcs.1991 contributor: fullname: Rashad – volume: 63 issue: 11 year: 2018 ident: 10.1016/j.bas.2022.101666_bib40 article-title: Sparse intervertebral fence composition for 3D cervical vertebra segmentation publication-title: Phys. Med. Biol. doi: 10.1088/1361-6560/aac226 contributor: fullname: Liu – volume: 3 issue: 10 year: 2020 ident: 10.1016/j.bas.2022.101666_bib53 article-title: Temporal trends in cervical spine curvature of south Korean adults assessed by deep learning system segmentation, 2006-2018 publication-title: JAMA Netw. Open doi: 10.1001/jamanetworkopen.2020.20961 contributor: fullname: Shin – volume: 23 start-page: 301 issue: 3 year: 2010 ident: 10.1016/j.bas.2022.101666_bib8 article-title: Automatic segmentation of the ribs, the vertebral column, and the spinal canal in pediatric computed tomographic images publication-title: J. Digit. Imag. doi: 10.1007/s10278-009-9176-x contributor: fullname: Banik – start-page: 1554 year: 2012 ident: 10.1016/j.bas.2022.101666_bib58 article-title: High precision semi-automated vertebral height measurement using computed tomography: a phantom study contributor: fullname: Tan – volume: 8 start-page: 1727 issue: 1 year: 2018 ident: 10.1016/j.bas.2022.101666_bib59 article-title: Automatic knee osteoarthritis diagnosis from plain radiographs: a deep learning-based approach publication-title: Sci. Rep. doi: 10.1038/s41598-018-20132-7 contributor: fullname: Tiulpin – volume: 69 start-page: 1777 issue: 6 year: 2013 ident: 10.1016/j.bas.2022.101666_bib22 article-title: Automated algorithm for reconstruction of the complete spine from multistation 7T MR data publication-title: Magn. Reson. Med. doi: 10.1002/mrm.24404 contributor: fullname: Dzyubachyk |
SSID | ssj0002810069 |
Score | 2.2425685 |
SecondaryResourceType | review_article |
Snippet | •Neural network approaches show the most potential for automated image analysis of thecervical spine.•Fully automatic convolutional neural network (CNN) models... • Neural network approaches show the most potential for automated image analysis of thecervical spine. • Fully automatic convolutional neural network (CNN)... |
SourceID | doaj pubmedcentral proquest crossref pubmed elsevier |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 101666 |
SubjectTerms | Cervical spine Computer aided diagnostics Image analysis Machine learning Radiological imaging Review |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NT8MgFCe6g_Fi_LZ-BRNPJo1rgbZ482PLLvMyTbw1QEG7aLe4zb_fB7Rz00QvHttS2scD3u_B4_cQOicFU5HIklBmmoY0LUQIONmEUaaNATSXCJfrsDdI75-yu46lyZmn-rIxYZ4e2DfcJaGGsUxJxYyiPNY8kUYVWjLNAeoazwTaThacqaFbMoosB6_NLAcfBG-L02ZL0wV3gYkA3zCO3bVjSPwySo67f8k2_cSe30MoF2xSdxNt1GASX3shttCKrrbRWr_eLt9B474LldS4zg3xjAGi4vIN5hAsajYSXFYYQCBWbtKA2iZjeOMKD-YUz9gfb8Ej4wqKD1G-2gNX2GXRmUBNBfaJqCe76LHbebjthXWKhVCxKJ2GrK1oXEDjgtdmMsmgsZQiqUwjCbgutrua2lKeiUJSJlVkhJGcJkwQkYIaCdlDrWpU6QOETcR1JiS4X8JQmireJpQkJoNS0kQFD9BF08b52DNp5E2I2dDa7NwqJPcKCdCN1cK8oCXBdjega-R118j_6hoBoo0O8xpPeJwAVZW_ffus0XcOY81uoIhKj2ZQCHy7BAAkB2H2vf7nf0gA6iYxjwOULvWMJRGWn1Tli-Pz5uDgwMR6-B8yH6F1K4pfJDpGren7TJ-g1UkxO3Uj5BMTLBZW priority: 102 providerName: Directory of Open Access Journals |
Title | Machine learning for image analysis in the cervical spine: Systematic review of the available models and methods |
URI | https://dx.doi.org/10.1016/j.bas.2022.101666 https://www.ncbi.nlm.nih.gov/pubmed/36506292 https://search.proquest.com/docview/2753664499 https://pubmed.ncbi.nlm.nih.gov/PMC9729832 https://doaj.org/article/34f558cbc5fc492e96bfcdeb5e9758f4 |
Volume | 2 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB3RHhAXxE7ZZCROSKEktpOYG6u4FCEBErfIdmxIRdOKtnw_YycpFCQO3LI4jpPnZN7Y4zcARzTnOpRpHKjUsIAluQyQJ9sgTI21yOZi6XMd3j4kd8_p1bWTyeHNWhgftK9VcVK-DU7K4tXHVo4GutvEiXXve5cCGSH2xG4LWrj1zUXv-9Gi0MnvNjOYPpYLLQK6glHk970g4pcN8lL9c6boN9X8GTH5zQTdrMByzR3JedXGVVgw5Ros9urZ8XUY9XxkpCF1KogXgoyUFAP8ZRBZi4-QoiTI-Yj2_wisbTzCK87Iw0zRmVSrWcjQ-oLyQxZvbn0V8UlzxlhTTqq80-MNeLq5fry8DeqMCoHmYTIJ-KlmUa40RyfNpoojGFrTRCWhQhoXuUlM4xTOZK4YVzq00irBYi6pTBA1SjehXQ5Lsw3EhsKkUqG3JS1jiRanlNHYplhK2TAXHThu3nE2qoQzsiairO9MdOYAySpAOnDhUJgVdJrX_sDw_SWrkc8os5ynGltvNROREbGyOjeKG4FOj2UdYA2GWU0fKlqAVRV_3fuwwTvDT8vNl8jSDKdYCF25GPmiwIfZqvCftZAis40jEXUgmesZc48wfwZ7s5fvrnvvzr-v3IUl1_5qIGgP2pP3qdmH1jifHvghhQP_QXwC708S0Q |
link.rule.ids | 230,315,729,782,786,866,887,2106,27933,27934,53800,53802 |
linkProvider | National Library of Medicine |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swED-NThq8wDa-OvbhSXtCCm1iO4n3BgzUaRRNAqS9WbZjQxBNq5by93N2ko4OaQ88JnYcO3f2_S4-_w7gGy24iVWeRjq3LGJZoSLEyS6Kc-scorlUhVyHg4vs_E_-48TT5PD2LEwI2je6PKjuRgdVeRNiKycj02vjxHq_h8cCESFqYm8FXuN87fefOOm34X9R7Al42z3MEM2FNgGdwSQJ14ES8a8VCmT9S8boOdj8N2byiRE63Xhh99_CeoM6yWFd_A5e2eo9vBk2--qbMBmGmEpLmiQS1wSxLClHuNgQ1dCWkLIiiBaJCasLtjab4BPfycWCC5rU52DI2IWK6kGVd_5kFgnpdmbYUkHqjNWzLbg6Pbk8HkRNLobI8Di7j3jfsKTQhqN753LNUYzG0ExnsUYAmPjtT-u50VShGdcmdsppwVKuqMpQ3pRuQ6caV3YXiIuFzZVGP005xjIj-pTR1OVYS7u4EF3Yb2UjJzXlhmxj0W69cZdekLIWZBeOvPQWFT1bdrgxnl7L5qNLyhznucHeO8NEYkWqnSms5lagu-RYF1gre9kAjxpQYFPl_979tdUTiZPS77Soyo7nWAmdwBSRpsDB7NR6s-ghRUycJiLpQrakUUtDWC5BRQrE343ifHjxk19gdXA5PJNnP89_7cGaH0v9O-kjdO6nc_sJVmbF_HOYTo-NhSds |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB71IVVcKOW5hRYjcUJKdxPbScwN2q6KYKtKBYmb5WdJ1c1G3S6_n7GTLF0qcWiPScZOnBlnvonH3wC8p5abVJV5okvHElZYlSBO9klaOu8RzeUq1jo8OS9Of5ZHx4EmZ1nqKybtG10d1FfTg7r6FXMrm6kZ9nliw7PJoUBEiJY4bKwfrsMmztlRditQv4z_jNJAwtuvY8aMLvQLGBBmWTyOtIh_PVEk7F9xSHcB5795k7cc0Xj7AUN4Ao879Ek-tSI7sObqp7A16dbXn0EzibmVjnTFJC4IYlpSTfGjQ1RHX0KqmiBqJCZ-ZbC3eYMtPpLzJSc0affDkJmPguq3qq7CDi0Sy-7MsSdL2srV8-fwY3z8_fAk6WoyJIanxU3CR4ZlVhuOYZ4vNUd1GkMLXaQagWAWlkFd4EhTVjOuTeqV14LlXFFVoN4pfQEb9ax2r4D4VLhSaYzXlGesMGJEGc19iVLap1YM4EOvH9m01Buyz0m7DE5eBmXKVpkD-Bw0uBQMrNnxxOz6QnYvXlLmOS8NPr03TGRO5Nob6zR3AsMmzwbAev3LDoC0wAK7qv5373e9rUicnGHFRdVutkAhDAZzRJwCB_OytZ3lE1LExnkmsgEUK1a1MoTVK2hMkQC8M57de7d8C1tnR2P57cvp19fwKAyl_av0BjZurhduD9bndrEfZ9Qfug0p7A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning+for+image+analysis+in+the+cervical+spine%3A+Systematic+review+of+the+available+models+and+methods&rft.jtitle=Brain+%26+spine&rft.au=Goedmakers%2C+C.M.W.&rft.au=Pereboom%2C+L.M.&rft.au=Schoones%2C+J.W.&rft.au=de+Leeuw+den+Bouter%2C+M.L.&rft.date=2022-01-01&rft.pub=Elsevier+B.V&rft.issn=2772-5294&rft.eissn=2772-5294&rft.volume=2&rft_id=info:doi/10.1016%2Fj.bas.2022.101666&rft.externalDocID=S2772529422008074 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2772-5294&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2772-5294&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2772-5294&client=summon |