Redistribution of Synapsin I and Synaptophysin in Response to Electrical Stimulation in the Rat Neurohypophysial Nerve Endings

To understand the dynamics of synaptic vesicles and synapsin I, we have studied the localization of synapsin I and synaptophysin in resting and stimulated nerve endings by ultracryomicrotomy and colloidal gold-immunocytochemistry. First, we characterized microvesicles in resting nerve endings of the...

Full description

Saved in:
Bibliographic Details
Published in:Cell Structure and Function Vol. 19; no. 4; pp. 253 - 262
Main Authors: Hayashi, Toshihiro, Soulie, Frederic, Nakata, Takao, Hirokawa, Nobutaka
Format: Journal Article
Language:English
Published: Japan Japan Society for Cell Biology 1994
Japan Science and Technology Agency
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract To understand the dynamics of synaptic vesicles and synapsin I, we have studied the localization of synapsin I and synaptophysin in resting and stimulated nerve endings by ultracryomicrotomy and colloidal gold-immunocytochemistry. First, we characterized microvesicles in resting nerve endings of the rat neurohypophysis, which was chosen as the model of nerve ending in this study. Synaptophysin was localized in microvesicles that were clustered beneath the plasma membrane. Quick-freeze deep-etching electron microscopy showed that short strands cross-linked microvesicles to each other, which highly resembly the structures observed in our studies of the presynaptic nerve terminals of central and peripheral nervous system and in vitro reconstitution of synapsin I and synaptic vesicles. Immunocytochemistry showed that synapsin I was localized to the region of cluster of microvesicles. Second, using this system, we examined localization of synapsin I and synaptophysin in nerve endings after electrical stimulation. Besides release of neurosecretory granules, clusters of microvesicles disappeared and both microvesicles and synaptophysin were scattered over nerve endings. These changes were also confirmed by quick-freeze, freeze-substitution. Immunocytochemistry of the stimulated sample revealed that synapsin I was also scattered. The results show that microvesicles in neurohypophysis have similar characteristics of typical synaptic vesicles and synapsin I has a role as a scaffold to cross-link microvesicles to be clustered in resting nerve endings. This scaffold of synapsin I was disengaged after stimulation to redistribute microvesicles and synapsin I itself, which may be the mechanism of synapsin I to regulate the availability of synaptic vesicles for release.
AbstractList To understand the dynamics of synaptic vesicles and synapsin I, we have studied the localization of synapsin I and synaptophysin in resting and stimulated nerve endings by ultracryomicrotomy and colloidal gold-immunocytochemistry. First, we characterized microvesicles in resting nerve endings of the rat neurohypophysis, which was chosen as the model of nerve ending in this study. Synaptophysin was localized in microvesicles that were clustered beneath the plasma membrane. Quick-freeze deep-etching electron microscopy showed that short strands cross-linked microvesicles to each other, which highly resembly the structures observed in our studies of the presynaptic nerve terminals of central and peripheral nervous system and in vitro reconstitution of synapsin I and synaptic vesicles. Immunocytochemistry showed that synapsin I was localized to the region of cluster of microvesicles. Second, using this system, we examined localization of synapsin I and synaptophysin in nerve endings after electrical stimulation. Besides release of neurosecretory granules, clusters of microvesicles disappeared and both microvesicles and synaptophysin were scattered over nerve endings. These changes were also confirmed by quick-freeze, freeze-substitution. Immunocytochemistry of the stimulated sample revealed that synapsin I was also scattered. The results show that microvesicles in neurohypophysis have similar characteristics of typical synaptic vesicles and synapsin I has a role as a scaffold to cross-link microvesicles to be clustered in resting nerve endings. This scaffold of synapsin I was disengaged after stimulation to redistribute microvesicles and synapsin I itself, which may be the mechanism of synapsin I to regulate the availability of synaptic vesicles for release.
To understand the dynamics of synaptic vesicles and synapsin I, we have studied the localization of synapsin I and synaptophysin in resting and stimulated nerve endings by ultracryomicrotomy and colloidal gold-immunocytochemistry. First, we characterized microvesicles in resting nerve endings of the rat neurohypophysis, which was chosen as the model of nerve ending in this study. Synaptophysin was localized in microvesicles that were clustered beneath the plasma membrane. Quick-freeze deep-etching electron microscopy showed that short strands cross-linked microvesicles to each other, which highly resemble the structures observed in our studies of the presynaptic nerve terminals of central and peripheral nervous system and in vitro reconstitution of synapsin I and synaptic vesicles. Immunocytochemistry showed that synapsin I was localized to the region of cluster of microvesicles. Second, using this system, we examined localization of synapsin I and synaptophysin in nerve endings after electrical stimulation. Besides release of neurosecretory granules, clusters of microvesicles dissappeared and both microvesicles and synaptophysin were scattered over nerve endings. These changes were also confirmed by quick-freeze, freeze-substitution. Immunocytochemistry of the stimulated sample revealed that synapsin I was also scattered. The results show that microvesicles in neurohypophysis have similar characteristics of typical synaptic vesicles and synapsin I has a role as a scaffold to cross-link microvesicles to be clustered in resting nerve endings. This scaffold of synapsin I was disengaged after stimulation to redistribute microvesicles and synapsin I itself, which may be the mechanism of synapsin I to regulate the availability of synaptic vesicles for release.
Author Hayashi, Toshihiro
Soulie, Frederic
Nakata, Takao
Hirokawa, Nobutaka
Author_xml – sequence: 1
  fullname: Hayashi, Toshihiro
  organization: Department of Anatomy and Cell Biology, School of Medicine, The University of Tokyo
– sequence: 2
  fullname: Soulie, Frederic
  organization: Department of Anatomy and Cell Biology, School of Medicine, The University of Tokyo
– sequence: 3
  fullname: Nakata, Takao
  organization: Department of Anatomy and Cell Biology, School of Medicine, The University of Tokyo
– sequence: 4
  fullname: Hirokawa, Nobutaka
  organization: Department of Anatomy and Cell Biology, School of Medicine, The University of Tokyo
BackLink https://www.ncbi.nlm.nih.gov/pubmed/7820876$$D View this record in MEDLINE/PubMed
BookMark eNpdkc9r2zAYhsXo6NJul90HgsEOhWSWP_2wjyNkXaF0kG5nocifGwdH8iS5kMv-9slz6GAgJKT3-R4E7xW5cN4hIe9ZsWIlV59tbFesXpUCXpEFA66WoIrigiwKqORSsVq-IVcxHoqiFIVUl-RSVWVRKbkgv7fYdDGFbjemzjvqW_p4cmaInaN31LhmviY_7E_TW15bjIN3EWnydNOjzcPW9PQxdcexN38tmUp7pFuT6AOOwe9PwyzI3AOGZ6Qb13TuKb4lr1vTR3x3Pq_Jz6-bH-tvy_vvt3frL_dLK5iCpVBtBRJb20iB0jLkWJagSt5aI4GbChmwnYAKLbRGWFszsZPAmloAlIzDNfk0e4fgf40Ykz520WLfG4d-jFrJGqQEmcGP_4EHPwaX_6YZF7XgksOku5kpG3yMAVs9hO5owkmzQk-V6FyJZrXOlWT4w1k57o7YvKDnDnK-nvNDTOYJX3ITUmd7nFSsVmLS8XnL1n_p3gSNDv4AUtChwg
CitedBy_id crossref_primary_10_1083_jcb_145_5_1039
crossref_primary_10_1371_journal_pone_0058649
crossref_primary_10_7554_eLife_45650
crossref_primary_10_1016_0304_4157_96_00007_X
ContentType Journal Article
Copyright Japan Society for Cell Biology
Copyright Japan Science and Technology Agency 1994
Copyright_xml – notice: Japan Society for Cell Biology
– notice: Copyright Japan Science and Technology Agency 1994
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QP
7QR
7TK
8FD
FR3
K9.
P64
7X8
DOI 10.1247/csf.19.253
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Neurosciences Abstracts
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Technology Research Database
ProQuest Health & Medical Complete (Alumni)
Chemoreception Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList
Technology Research Database
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: ECM
  name: MEDLINE
  url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1347-3700
EndPage 262
ExternalDocumentID 3130936631
10_1247_csf_19_253
7820876
article_csf1975_19_4_19_4_253_article_char_en
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
.55
.GJ
29B
2WC
3O-
53G
5GY
5RE
6J9
7X7
88E
8AO
8FI
8FJ
AAUGY
ABUWG
ACIWK
ACPRK
ADBBV
AENEX
AFKRA
AHMBA
AI.
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
CS3
DIK
DU5
E3Z
EBS
EJD
EMOBN
F5P
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
JSF
JSH
KQ8
M1P
M7P
M~E
OK1
P2P
PIMPY
PQEST
PQQKQ
PSQYO
RJT
RNS
RZJ
TKC
TR2
UKHRP
VH1
X7M
XSB
ZXP
ALIPV
CCPQU
CGR
CUY
CVF
ECM
EIF
HMCUK
NPM
PGMZT
RPM
AAYXX
CITATION
7QP
7QR
7TK
8FD
FR3
K9.
P64
7X8
ID FETCH-LOGICAL-c5173-57f836efcd65e6c1e4e223724fca634a8e131b538ec3fa5cc915b631d95332143
ISSN 0386-7196
IngestDate Fri Aug 16 20:58:10 EDT 2024
Thu Oct 10 20:03:05 EDT 2024
Fri Aug 23 02:48:17 EDT 2024
Sat Sep 28 07:36:10 EDT 2024
Thu Aug 17 20:27:42 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c5173-57f836efcd65e6c1e4e223724fca634a8e131b538ec3fa5cc915b631d95332143
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.jstage.jst.go.jp/article/csf1975/19/4/19_4_253/_article/-char/en
PMID 7820876
PQID 1459546434
PQPubID 1996364
PageCount 10
ParticipantIDs proquest_miscellaneous_76936636
proquest_journals_1459546434
crossref_primary_10_1247_csf_19_253
pubmed_primary_7820876
jstage_primary_article_csf1975_19_4_19_4_253_article_char_en
PublicationCentury 1900
PublicationDate 1994-00-00
PublicationDateYYYYMMDD 1994-01-01
PublicationDate_xml – year: 1994
  text: 1994-00-00
PublicationDecade 1990
PublicationPlace Japan
PublicationPlace_xml – name: Japan
– name: Saitama
PublicationTitle Cell Structure and Function
PublicationTitleAlternate Cell Struct. Funct.
PublicationYear 1994
Publisher Japan Society for Cell Biology
Japan Science and Technology Agency
Publisher_xml – name: Japan Society for Cell Biology
– name: Japan Science and Technology Agency
References 17. JOHNSTON, P. A., CAMERON, P. L., STUKENBROK, H., JAHN, R., DE CAMILLI, P., and SÜDHOF, T. C. 1989. Synaptophysin is targeted to similar microvesicles in CHO and PC12 cells. Embo J., 8 : 2863-2872.
38. WIEDENMANN, B. and FRANKE, W. W. 1985. Identification and localization of synaptophysin, an integral membrane glycoprotein of Mr 38,000 characteristic of presynaptic vesicles. Cell, 41 : 1017-1028.
2. BENFENATI, F., BÄHLER, M., JAHN, R., and GREENGARD, P. 1989. Interactions of synapsin I with small synaptic vesicles : distinct sites in synapsin I bind to vesicle phospholipids and vesicle proteins. J. Cell Biol., 108 : 1863-1872.
11. HEUSER, J. E., REESE, T. S., DENNIS, M. J., JAN, Y., JAN, L., and EVANS, L. 1979. Synaptic vesicle exocytosis captured by quick freezing and correlated with quantal transmitter release. J. Cell Biol., 81 : 275-300.
6. DE CAMILLI, P., HARRIS, S. J., HUTTNER, W. B., and GREENGARD, P. 1983. Synapsin I (Protein I), a nerve terminal-specific phosphoprotein. II. Its specific association with synaptic vesicles demonstrated by immunocytochemistry in agarose-embedded synaptosomes. J. Cell Biol., 96 : 1355-1373.
14. HIROKAWA, N., SOBUE, K., KANDA, K., HARADA, A., and YORIFUJI, H. 1989. The cytoskeletal architecture of the presynaptic terminal and molecular structure of synapsin I. J. Cell Biol., 108 : 111-126.
26. NICHOLS, R. A., CHILCOTE, T. J., CZERNIK, A. J., and GREENGARD, P. 1992. Synapsin I regulates glutamate release from rat brain synaptosomes. J. Neurochem., 58 : 783-785.
25. NAVONE, F., DI GIOLA, G., HAHN, R., BROWNING, M., GREENGARD, P., and DE CAMILLI, P. 1989. Microvesicles of the neurohypophysis are biochemically related to small synaptic vesicles of presynaptic nerve terminals. J. Cell Biol., 109 : 3425-3432.
29. OKABE, T. and SOBUE, K. 1987. Identification of a new 84/82 kDa calmodulin-binding protein, which also interacts with actin filaments, tubulin and spectrin, as synapsin I. Febs Lett, 213 : 184-188.
3. CAMERON, P. L., SÜDHOF, T.C., JAHN, R., and DE CAMILLI, P. 1991. Colocalization of synaptophysin with transferrin receptors : implications for synaptic vesicle biogenesis. J. Cell Biol., 115 : 151-164.
27. OBATA, K., NISHIYE, H., FUJITA, S. C., SHIRAO, T., INOUE, H., and UCHIZONO, K. 1986. Identification of a synaptic vesicle-specific 38,000-dalton protein by monoclonal antibodies. Brain Res., 375 : 37-48.
28. OBATA, K., KOJIMA, N., NISHIYE, H., INOUE, H., SHIRAO, T., FUJITA, S. C., and UCHIZONO, K. 1987. Four synaptic vesicle-specific proteins : identification by monoclonal antibodies and distribution in the nervous tissue and the adrenal medulla. Brain Res, 404 : 169-179.
37. TORRI-TARELLI, F., VILLA, A., VALTORTA, F., DE CAMILLI, P., GREENGARD, P., and CECCARELLI, B. 1990. Redistribution of synaptophysin and synapsin I during alphalatrotoxin-induced release of neurotransmitter at the neuromuscular junction. J. Cell Biol., 110 : 449-459.
20. LINSTEDT, A. D. and KELLY, R. B. 1991. Synaptophysin is sorted from endocytotic markers in neuroendocrine PC12 cells but not transfected fibroblasts. Neuron, 7 : 309-317.
31. REETZ, A., SOLIMENA, M., MATTEOLI, M., FOLLI, F., TAKEI, K., and DE CAMILLI, P. 1991. GABA and pancreatic β-cell : colo-calization of glutamic acid decarboxylase (GAD) and GABA with synaptic-like microvesicles suggests their role in GABA storage and secretion. EMBO J., 10 : 1275-1284.
16. JAHN, R., SCHIEBLER, W., OUIMET, C., and GREENGARD, P. 1985. A 38,000-dalton membrane protein (p38) present in synaptic vesicles. Proc. Natl. Acad. Sci. USA, 82 : 4137-4141.
4. CLIFT-O'GRADY, L., LINSTEDT, A. D., LOWE, A. W., GROTE, E., and KELLY, R. B. 1990. Biogenesis of synaptic vesicle-like structures in a pheochromocytoma cell line PC-12. J. Cell Biol., 110 : 1693-1703.
19. LIN, J. W., SUGIMORI, M., LLINÁS, R. R., MCGUINNESS, T. L., and GREENGARD, P. 1990. Effects of synapsin I and calcium/calmodulin-dependent protein kinase II on spontaneous neurotransmitter release in the squid giant synapse. Proc. Natl. Acad. Sci. USA, 87 : 8257-8261.
35. TOKUYASU, K. T. 1980. Immunochemistry on ultrathin frozen sections. Histochem. J., 12 : 381-403.
12. HIROKAWA, N. and KIRINO, T. 1980. An ultrastructural study of nerve and glia cells by freeze-substitution J. Neurocytol., 9 : 243-254.
13. HIROKAWA, N. and HEUSER, J. E. 1981. Quick-freeze, deep-etch visualization of the cytoskeleton beneath surface differentiation of epithelial cells. J. Cell Biol., 91 : 339-409.
30. PETRUCCI, T. C. and MORROW, J. S. 1987. Synapsin I : an actin-bundling protein under phosphorylation control. J. Cell Biol., 105 : 1355-1363.
7. DE CAMILLI, P., BENFENATI, F., VALTORTA, F., and GREENGARD, P. 1990. The synapsins. Annu. Rev. Cell Biol., 6 : 433-460.
23. MORRIS, J. F. and NORDMAMM, J. J. 1980. Membrane recapture after hormone release from nerve endings in the neural lobe of the rat pituitary gland. Neurosci., 5 : 639-649.
32. SCHIEBLER, W., JAHN, R., DOUCET, J. P., ROTHLEIN, J., and GREENGARD, P. 1986. Characterization of synapsin I binding to small synaptic vesicles. J. Biol. Chem., 261 : 8383-8390.
9. HARADA, A., SOBUE, K., and HIROKAWA, N. 1990. Developmental changes of synapsin I subcellular localization in rat cerebellar neurons. Cell Struct. Funct., 15 : 329-342.
10. HEUSER, J. E. and SALPETER, S. R. 1979. Organization of acetylcholine receptors in quick-frozen, deep-etched and rotary replicated Torpedo postsynaptic membrane. J. Cell Biol., 82 : 150-173.
8. DOUGLAS, W. W., NAGASAWA, J., and SCHULZ, R. 1970. Electron microscopic studies on the mechanism of secretion of posterior pituitary hormones and significance of microvesicles ("synaptic vesicles") : evidence of secretion by exocytosis and formation of microvesicles and a by-product of this process. Mem. Soc. Endocrinol., 19 : 353-377.
18. LANDIS, D. M., HALL, A. K., WEINSTEIN, L. A., and REESE, T. S. 1988. The organization of cytoplasm at the presynaptic active zone of a central nervous system synapse. Neuron, 1 : 201-209.
1. BÃHLER, M. and GREENGARD, P. 1987. Synapsin I bundles Factin in a phosphorylation-dependent manner. Nature, 326 : 704-707.
36. TOKUYASU, K. T. 1989. Use of poly(vinylpyrrolidone) and poly(vinyl alcohol) for cryoultramicrotomy. Histochem. J., 21 : 163-171.
33. SHIBUKI, K. 1990. Activation of neurohypophysial vasopressin release by Ca2+ influx and intracellular Ca2+ accumulation in the rat. J. Physiol. (Lond), 422 : 321-331.
5. DE CAMILLI, P., CAMERON, R., and GREENGARD, P. 1983. Synapsin I (protein I), a nerve terminal-specific phosphoprotein. I. Its general distribution in synapses of the central and peripheral nervous system demonstrated by immunofluorescence in frozen and plastic sections. J. Cell Biol., 96 : 1337-1354.
21. LLINÁS, R., MCGUINNESS, T. L., LEONARD, C. S., SUGIMORI, M., and GREENGARD, P. 1985. Intraterminal injection of synapsin I or calcium/calmodulin-dependent protein kinase 2 alters neurotransmitter release at the squid giant synapse. Proc. Natl. Acad. Sci. USA, 82 : 3035-3039.
22. LLINÁS, R., GRUNER, J. A., SUGIMORI, M., MCGUINNESS, T. L., and GREENGARD, P. 1991. Regulation by synapsin I and Ca2+- calmodulin-dependent protein kinase II of the transmitter release in squid giant synapse. J. Physiol. (Lond), 436 : 257-282.
15. HUTTNER, W. B., SCHIEBLER, W., GREENGARD, P., and DE CAMILLLI, P. 1983. Synapsin I (protein I), a nerve terminal-specific phosphoprotein. III. Its association with synaptic vesicles studied in a highly purified synaptic vesicle preparation. J. Cell Biol., 96 : 1374-1388.
24. NAGASAWA, J., DOUGLAS, W. W., and SCHULZ, R. A. 1971. Micropinocytotic origin of coated and smooth microvesicles ("synaptic vesicles") in neurosecretory terminals of posterior pituitary glands demonstrated by incorporation of horseradish peroxidase. Nature, 232 : 341-342.
34. SIRA, T. S., WANG, J. K. T., GORELICK, F. S., and GREENGARD, P. 1989. Translocation of synapsin I in response to depolarization of isolated nerve terminals. Proc. Natl. Acad. Sci. USA, 86 : 8108-8112.
References_xml
SSID ssj0025067
Score 1.4450934
Snippet To understand the dynamics of synaptic vesicles and synapsin I, we have studied the localization of synapsin I and synaptophysin in resting and stimulated...
SourceID proquest
crossref
pubmed
jstage
SourceType Aggregation Database
Index Database
Publisher
StartPage 253
SubjectTerms Animals
Electric Stimulation
exocytosis
Immunohistochemistry
Male
Microscopy, Electron
Nerve Endings - metabolism
Nerve Endings - ultrastructure
neurohypophysis
Pituitary Gland, Posterior - innervation
Rats
Rats, Wistar
synapses
synapsin I
Synapsins - analysis
Synaptic Vesicles - metabolism
Synaptic Vesicles - ultrastructure
synaptophysin
Synaptophysin - analysis
Title Redistribution of Synapsin I and Synaptophysin in Response to Electrical Stimulation in the Rat Neurohypophysial Nerve Endings
URI https://www.jstage.jst.go.jp/article/csf1975/19/4/19_4_253/_article/-char/en
https://www.ncbi.nlm.nih.gov/pubmed/7820876
https://www.proquest.com/docview/1459546434
https://search.proquest.com/docview/76936636
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Cell Structure and Function, 1994, Vol.19(4), pp.253-262
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1db9MwFLXYAIkXxNdEYYAleKsyasdOGokXtHVqxVQk1kl7ixzHZmUirZZNKC_8du618wlCwANSFTXOjVv5nlwfx_Y9hLxRcEHYOA_CfKIDwa0KVBTHQWZzxSexBsrvpBNO4-X59GgmZt3LnK7sv3oaysDXuHP2H7zdVgoF8B18DkfwOhz_yu-fcKNtK2OFXLCsCrUt18V44WYK3CmmE6iwzG1ncctknYaGV8XxWyWv119rba9mMSSgZewSYF5UW18B2BW4ZnJs3O6Yss91D_G1oM9P28xSYC_an_mfqwrFnAaLtU9Ro3246HipLpVnua3VfH21uVTfVDeblNd7-UQvtoXTKIiZF7NtA3HSA5zoR1WfT7juoLkP37_Efi5w9lmX9oAlB-0t_QTby4_p8dnJSbqana92yG0OsQlFL44WH9oxupw40eH2_9UZbaHut13NAw5z5wvQ-M_m9yMUx1RWD8j9eohB33tsPCS3TPGI3PWio9Vj8n2IELqxtEEIXVDwEh0ghMKnQQi93tAOIbSHELQChFBACP0ZIdQhhNYIeULOjmerw3lQq3AEWrI4DGRsp2FkrM4jaSLNjDBAKWMurFZRKNTUsJBl0G8aHVoltU6YzKKQ5bhwmQMd3yO7xaYwTwnlmWE5tznTPAdmKDOpuGI6SrJETMLQjsjrpl3TrU-2kuIgFVo_hdZPWZJC64_IO9_krU39sKENS2KJdsIfwLy7eqGuIEKMyH7jqLR-bksYAMtECmDnYkRetZch0uL0mSrM5qZMUTUU-Hk0Inveve3vY85JYBXP_njrc3LP5-LGV3j7ZBceQfOC7JT5zUsHwx94qa5Z
link.rule.ids 315,782,786,4028,27932,27933,27934
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Redistribution+of+synapsin+I+and+synaptophysin+in+response+to+electrical+stimulation+in+the+rat+neurohypophysial+nerve+endings&rft.jtitle=Cell+structure+and+function&rft.au=Hayashi%2C+T&rft.au=Soulie%2C+F&rft.au=Nakata%2C+T&rft.au=Hirokawa%2C+N&rft.date=1994&rft.issn=0386-7196&rft.volume=19&rft.issue=4&rft.spage=253&rft.epage=262&rft_id=info:doi/10.1247%2Fcsf.19.253&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0386-7196&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0386-7196&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0386-7196&client=summon