Effect of ultraviolet (UV) A, UVB or ionizing radiation on the cell cycle of human melanoma cells
Summary Background One important component of the cellular response to irradiation is the activation of cell cycle checkpoints. It is known that both ultraviolet (UV) radiation and ionizing radiation (IR) can activate checkpoints at transitions from G1 to S phase, from G2 phase to mitosis and durin...
Saved in:
Published in: | British journal of dermatology (1951) Vol. 156; no. 5; pp. 843 - 847 |
---|---|
Main Authors: | , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Oxford, UK
Blackwell Publishing Ltd
01-05-2007
Blackwell |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Summary
Background One important component of the cellular response to irradiation is the activation of cell cycle checkpoints. It is known that both ultraviolet (UV) radiation and ionizing radiation (IR) can activate checkpoints at transitions from G1 to S phase, from G2 phase to mitosis and during DNA replication.
Objectives To evaluate the effects of irradiation with different wavelengths on cell cycle alterations.
Methods p53‐deficient IPC‐298 melanoma cells were irradiated with 10 J cm−2 UVA, 40 mJ cm−2 UVB, or with 7·5 Gy IR. Cell cycle effects were then determined by DNA/5‐bromodeoxyuridine dual‐parameter flow cytometry.
Results IPC‐298 cells irradiated in G1 with UVA were not arrested at the G1/S transition, but at the G2/M transition. Despite p53 deficiency, the cells showed a G1 arrest after UVB exposure. Furthermore, IR did not affect G1 or S phase, but induced G2 phase arrest. Hence, the effects of UVA, but not of UVB, on the cell cycle in p53‐deficient melanoma cells are comparable with those of IR.
Conclusions UVA and IR induce radical‐mediated strand breaks and DNA lesions, and UVB essentially induces thymine dimers that lead to excision repair‐related strand breaks. Different cell cycle effects may be a consequence of different types of DNA damage. The results showed that UVB‐irradiated p53‐deficient cells are arrested in G1. Irradiation with the solar radiation component UVB can therefore result in a beneficial retardation of tumour promotion in human skin carrying p53‐mutated cell clones. |
---|---|
AbstractList | Summary
Background One important component of the cellular response to irradiation is the activation of cell cycle checkpoints. It is known that both ultraviolet (UV) radiation and ionizing radiation (IR) can activate checkpoints at transitions from G1 to S phase, from G2 phase to mitosis and during DNA replication.
Objectives To evaluate the effects of irradiation with different wavelengths on cell cycle alterations.
Methods p53‐deficient IPC‐298 melanoma cells were irradiated with 10 J cm−2 UVA, 40 mJ cm−2 UVB, or with 7·5 Gy IR. Cell cycle effects were then determined by DNA/5‐bromodeoxyuridine dual‐parameter flow cytometry.
Results IPC‐298 cells irradiated in G1 with UVA were not arrested at the G1/S transition, but at the G2/M transition. Despite p53 deficiency, the cells showed a G1 arrest after UVB exposure. Furthermore, IR did not affect G1 or S phase, but induced G2 phase arrest. Hence, the effects of UVA, but not of UVB, on the cell cycle in p53‐deficient melanoma cells are comparable with those of IR.
Conclusions UVA and IR induce radical‐mediated strand breaks and DNA lesions, and UVB essentially induces thymine dimers that lead to excision repair‐related strand breaks. Different cell cycle effects may be a consequence of different types of DNA damage. The results showed that UVB‐irradiated p53‐deficient cells are arrested in G1. Irradiation with the solar radiation component UVB can therefore result in a beneficial retardation of tumour promotion in human skin carrying p53‐mutated cell clones. Background One important component of the cellular response to irradiation is the activation of cell cycle checkpoints. It is known that both ultraviolet (UV) radiation and ionizing radiation (IR) can activate checkpoints at transitions from G sub(1) to S phase, from G sub(2) phase to mitosis and during DNA replication. Objectives To evaluate the effects of irradiation with different wavelengths on cell cycle alterations. Methods p53-deficient IPC-298 melanoma cells were irradiated with 10 J cm super(-2) UVA, 40 mJ cm super(-2) UVB, or with 7.5 Gy IR. Cell cycle effects were then determined by DNA/5-bromodeoxyuridine dual-parameter flow cytometry. Results IPC-298 cells irradiated in G sub(1) with UVA were not arrested at the G sub(1)/S transition, but at the G sub(2)/M transition. Despite p53 deficiency, the cells showed a G sub(1) arrest after UVB exposure. Furthermore, IR did not affect G sub(1) or S phase, but induced G sub(2) phase arrest. Hence, the effects of UVA, but not of UVB, on the cell cycle in p53-deficient melanoma cells are comparable with those of IR. Conclusions UVA and IR induce radical-mediated strand breaks and DNA lesions, and UVB essentially induces thymine dimers that lead to excision repair-related strand breaks. Different cell cycle effects may be a consequence of different types of DNA damage. The results showed that UVB-irradiated p53-deficient cells are arrested in G sub(1). Irradiation with the solar radiation component UVB can therefore result in a beneficial retardation of tumour promotion in human skin carrying p53-mutated cell clones. One important component of the cellular response to irradiation is the activation of cell cycle checkpoints. It is known that both ultraviolet (UV) radiation and ionizing radiation (IR) can activate checkpoints at transitions from G(1) to S phase, from G(2) phase to mitosis and during DNA replication. To evaluate the effects of irradiation with different wavelengths on cell cycle alterations. p53-deficient IPC-298 melanoma cells were irradiated with 10 J cm(-2) UVA, 40 mJ cm(-2) UVB, or with 7.5 Gy IR. Cell cycle effects were then determined by DNA/5-bromodeoxyuridine dual-parameter flow cytometry. IPC-298 cells irradiated in G(1) with UVA were not arrested at the G(1)/S transition, but at the G(2)/M transition. Despite p53 deficiency, the cells showed a G(1) arrest after UVB exposure. Furthermore, IR did not affect G(1) or S phase, but induced G(2) phase arrest. Hence, the effects of UVA, but not of UVB, on the cell cycle in p53-deficient melanoma cells are comparable with those of IR. UVA and IR induce radical-mediated strand breaks and DNA lesions, and UVB essentially induces thymine dimers that lead to excision repair-related strand breaks. Different cell cycle effects may be a consequence of different types of DNA damage. The results showed that UVB-irradiated p53-deficient cells are arrested in G(1). Irradiation with the solar radiation component UVB can therefore result in a beneficial retardation of tumour promotion in human skin carrying p53-mutated cell clones. BACKGROUNDOne important component of the cellular response to irradiation is the activation of cell cycle checkpoints. It is known that both ultraviolet (UV) radiation and ionizing radiation (IR) can activate checkpoints at transitions from G(1) to S phase, from G(2) phase to mitosis and during DNA replication.OBJECTIVESTo evaluate the effects of irradiation with different wavelengths on cell cycle alterations.METHODSp53-deficient IPC-298 melanoma cells were irradiated with 10 J cm(-2) UVA, 40 mJ cm(-2) UVB, or with 7.5 Gy IR. Cell cycle effects were then determined by DNA/5-bromodeoxyuridine dual-parameter flow cytometry.RESULTSIPC-298 cells irradiated in G(1) with UVA were not arrested at the G(1)/S transition, but at the G(2)/M transition. Despite p53 deficiency, the cells showed a G(1) arrest after UVB exposure. Furthermore, IR did not affect G(1) or S phase, but induced G(2) phase arrest. Hence, the effects of UVA, but not of UVB, on the cell cycle in p53-deficient melanoma cells are comparable with those of IR.CONCLUSIONSUVA and IR induce radical-mediated strand breaks and DNA lesions, and UVB essentially induces thymine dimers that lead to excision repair-related strand breaks. Different cell cycle effects may be a consequence of different types of DNA damage. The results showed that UVB-irradiated p53-deficient cells are arrested in G(1). Irradiation with the solar radiation component UVB can therefore result in a beneficial retardation of tumour promotion in human skin carrying p53-mutated cell clones. |
Author | Gaube, S. Kerkmann, U. Przybilla, B. Placzek, M. Gilbertz, K.-P. |
Author_xml | – sequence: 1 givenname: M. surname: Placzek fullname: Placzek, M. organization: Klinik und Poliklinik für Dermatologie und Allergologie, Ludwig-Maximilians-Universität, 80337 Munich, Germany Institut für Radiobiologie der Bundeswehr, Neuherbergstr. 11, 80937 Munich, Germany – sequence: 2 givenname: B. surname: Przybilla fullname: Przybilla, B. organization: Klinik und Poliklinik für Dermatologie und Allergologie, Ludwig-Maximilians-Universität, 80337 Munich, Germany Institut für Radiobiologie der Bundeswehr, Neuherbergstr. 11, 80937 Munich, Germany – sequence: 3 givenname: U. surname: Kerkmann fullname: Kerkmann, U. organization: Klinik und Poliklinik für Dermatologie und Allergologie, Ludwig-Maximilians-Universität, 80337 Munich, Germany Institut für Radiobiologie der Bundeswehr, Neuherbergstr. 11, 80937 Munich, Germany – sequence: 4 givenname: S. surname: Gaube fullname: Gaube, S. organization: Klinik und Poliklinik für Dermatologie und Allergologie, Ludwig-Maximilians-Universität, 80337 Munich, Germany Institut für Radiobiologie der Bundeswehr, Neuherbergstr. 11, 80937 Munich, Germany – sequence: 5 givenname: K.-P. surname: Gilbertz fullname: Gilbertz, K.-P. organization: Klinik und Poliklinik für Dermatologie und Allergologie, Ludwig-Maximilians-Universität, 80337 Munich, Germany Institut für Radiobiologie der Bundeswehr, Neuherbergstr. 11, 80937 Munich, Germany |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18702832$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/17355234$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkU1v1DAQhi1URLeFv4B8AYFEgh3HcXLooS2lCyzlwpajNbEn1Es-ip2FXX49TnfVHsGyZFvzvOOZd47IQT_0SAjlLOVxvV2lXBQyybgQacaYSplSlUw3j8jsPnBAZiyGElYV4pAchbBijAsm2RNyyJWQMhP5jMBF06AZ6dDQdTt6-OWGFkf6ann9mp6-ocvrMzp46obe_XH9d-rBOhjjk8Y93iA12LbUbE2LU4qbdQc97bCFfujgLhiekscNtAGf7c9jsnx_8fV8niy-XH44P10kRvJYcpVjDsiFlXXG8xokygIllI0tayttLXmNvKrqHHJWWCNZVhpjgQleN9LaTByTl7u8t374ucYw6s6FqQLocVgHrVieFUqIf4K8UlWpMhXBcgcaP4TgsdG33nXgt5ozPc1Br_Rkt57s1tMc9N0c9CZKn-__WNcd2gfh3vgIvNgDEAy0jYfeuPDAlSo2KKauTnbcb9fi9r8L0Gcf3023qE92ehdG3Nzrwf_Q0Qwl9berSz2fLz7nn9SVzsRf5fSzZA |
CODEN | BJDEAZ |
CitedBy_id | crossref_primary_10_1016_j_bmc_2021_116600 crossref_primary_10_1111_j_1365_2133_2009_09107_x crossref_primary_10_3389_fmars_2022_966654 crossref_primary_10_1016_j_jdermsci_2011_03_001 crossref_primary_10_1186_1476_4598_9_214 crossref_primary_10_1371_journal_pone_0079748 crossref_primary_10_1371_journal_pone_0131253 crossref_primary_10_1111_ics_12165 crossref_primary_10_1007_s13258_015_0308_z crossref_primary_10_1016_j_det_2014_03_004 crossref_primary_10_1016_j_jdermsci_2012_08_001 crossref_primary_10_1002_jemt_20735 crossref_primary_10_1038_srep31383 crossref_primary_10_1016_j_jdermsci_2008_01_003 crossref_primary_10_1080_09553000902740150 crossref_primary_10_1117_1_3316296 crossref_primary_10_1016_j_jaad_2007_12_010 crossref_primary_10_1111_j_1751_1097_2008_00309_x crossref_primary_10_3389_fchem_2023_1245941 |
Cites_doi | 10.1146/annurev.cellbio.13.1.261 10.1111/j.1751-1097.1996.tb03075.x 10.1080/10715760100300921 10.1002/cyto.990010606 10.1080/095530098142572 10.1038/sj.onc.1206682 10.1111/j.1600-0749.1994.tb00634.x 10.1111/j.1600-0749.1994.tb00635.x 10.1016/j.dnarep.2004.03.006 10.1073/pnas.93.24.14025 10.1006/bbrc.2000.3436 10.1038/sj.onc.1206677 10.1146/annurev.biochem.73.011303.073723 10.1023/B:CANC.0000031762.91306.b4 10.1002/ijc.2910540513 10.1080/095530096145931 10.1016/j.mrfmmm.2004.09.012 10.1093/carcin/16.5.1087 10.1016/S0921-8777(97)00064-5 10.1016/0002-9343(91)90279-7 10.1080/09553000110117340 10.1073/pnas.80.18.5573 10.1016/S1011-1344(01)00206-8 10.1515/znc-1998-3-411 10.1269/jrr.41.227 10.1002/cyto.990080405 10.1016/S0300-483X(02)00460-2 10.1016/j.ijrobp.2004.03.005 10.1074/jbc.M410873200 |
ContentType | Journal Article |
Copyright | 2007 INIST-CNRS |
Copyright_xml | – notice: 2007 INIST-CNRS |
DBID | BSCLL IQODW CGR CUY CVF ECM EIF NPM AAYXX CITATION 7TM 8FD FR3 P64 RC3 7X8 |
DOI | 10.1111/j.1365-2133.2007.07795.x |
DatabaseName | Istex Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Nucleic Acids Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Genetics Abstracts Engineering Research Database Technology Research Database Nucleic Acids Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | Genetics Abstracts MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: ECM name: MEDLINE url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1365-2133 |
EndPage | 847 |
ExternalDocumentID | 10_1111_j_1365_2133_2007_07795_x 17355234 18702832 BJD7795 ark_67375_WNG_HHLM4K7N_2 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- .3N .55 .GA .GJ .Y3 05W 0R~ 10A 1CY 1OB 1OC 23N 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5HH 5LA 5RE 5VS 5WD 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AABZA AACZT AAESR AAEVG AAHHS AAONW AAPGJ AAPXW AARHZ AASGY AAUAY AAVAP AAWDT AAXRX AAZKR ABCQN ABCUV ABEJV ABEML ABNHQ ABOCM ABPTD ABPVW ABQNK ABWST ABXGK ABXVV ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACFRR ACGFS ACMXC ACPOU ACPRK ACSCC ACUTJ ACXBN ACXQS ACZBC ADBBV ADEOM ADIPN ADIZJ ADKYN ADMGS ADOZA ADQBN ADVEK ADXAS ADZMN ADZOD AEEZP AEIMD AENEX AEQDE AEUQT AFBPY AFEBI AFFNX AFGKR AFPWT AFYAG AFZJQ AGMDO AGQXC AGUTN AHEFC AIACR AIURR AIWBW AJAOE AJBDE AJEEA ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB APJGH ASPBG ATGXG ATUGU AVNTJ AVWKF AZBYB AZFZN AZVAB BAFTC BCRHZ BDRZF BHBCM BMXJE BROTX BRXPI BSCLL BY8 C45 CAG COF CS3 D-6 D-7 D-E D-F DC6 DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBS EJD EMOBN ESX EX3 F00 F01 F04 F5P FEDTE FUBAC FZ0 G-S G.N GODZA H.X H13 HF~ HVGLF HZI HZ~ IHE IX1 J0M J5H K48 KBYEO KOP L7B LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ O66 O9- OAUYM OCZFY OIG OJZSN OPAEJ OVD OWPYF P2P P2W P2X P2Z P4B P4D PALCI Q.N Q11 QB0 R.K RIWAO RJQFR ROL ROX RX1 SUPJJ TEORI TMA UB1 V9Y VVN W8V W99 WBKPD WHWMO WIH WIJ WIK WOHZO WOW WQJ WRC WUP WVDHM WXI X7M XG1 Y6R YFH ZGI ZXP ZZTAW ~IA ~WT 08R AAPBV AAUGY AAVGM ABHUG ABPTK ABWRO ACSMX ACXME ADAWD ADDAD AFVGU AGJLS AKALU ALXQX BFHJK IQODW OBFPC SAMSI CGR CUY CVF ECM EIF NPM AAYXX CITATION 7TM 8FD FR3 P64 RC3 7X8 |
ID | FETCH-LOGICAL-c5165-94e4ae13d5b214ba5e56e5a8fd8bd5db51be199b4a406dc5028ccda031bf5dd23 |
IEDL.DBID | 33P |
ISSN | 0007-0963 |
IngestDate | Sun Sep 29 07:47:44 EDT 2024 Sun Sep 29 07:49:45 EDT 2024 Fri Nov 22 01:13:38 EST 2024 Sat Sep 28 07:57:01 EDT 2024 Sun Oct 29 17:10:02 EDT 2023 Sat Aug 24 00:59:44 EDT 2024 Wed Oct 30 09:54:29 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Human Cell culture UVA radiation Dermatology UVB radiation melanoma Malignant tumor sltroviolet radiation Ultraviolet radiation Ionizing radiation Cell cycle Malignant melanoma Tumor cell |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5165-94e4ae13d5b214ba5e56e5a8fd8bd5db51be199b4a406dc5028ccda031bf5dd23 |
Notes | ark:/67375/WNG-HHLM4K7N-2 ArticleID:BJD7795 istex:F53E4F6C3057E1699C8F270CF093FEAD5A36023E Conflicts of interest None declared. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://academic.oup.com/bjd/article-pdf/156/5/843/47493022/bjd0843.pdf |
PMID | 17355234 |
PQID | 19798727 |
PQPubID | 23462 |
PageCount | 5 |
ParticipantIDs | proquest_miscellaneous_70426733 proquest_miscellaneous_19798727 crossref_primary_10_1111_j_1365_2133_2007_07795_x pubmed_primary_17355234 pascalfrancis_primary_18702832 wiley_primary_10_1111_j_1365_2133_2007_07795_x_BJD7795 istex_primary_ark_67375_WNG_HHLM4K7N_2 |
PublicationCentury | 2000 |
PublicationDate | May 2007 |
PublicationDateYYYYMMDD | 2007-05-01 |
PublicationDate_xml | – month: 05 year: 2007 text: May 2007 |
PublicationDecade | 2000 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK – name: London – name: Oxford – name: Edinburgh – name: England |
PublicationTitle | British journal of dermatology (1951) |
PublicationTitleAlternate | Br J Dermatol |
PublicationYear | 2007 |
Publisher | Blackwell Publishing Ltd Blackwell |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Blackwell |
References | Fei P, El-Deiry WS. p53 and radiation responses. Oncogene 2003; 22:5774-83. Dolbeare F, Gratzner HG, Pallavicini MG, Gray JW. Flow cytometric measurement of total DNA content and incorporated bromodeoxyuridine. Proc Natl Acad Sci USA 1983; 80:5573-7. Lukas J, Lukas C, Bartek J. Mammalian cell cycle checkpoints: signalling pathways and their organization in space and time. DNA Repair 2004; 3:997-1007. Jonason AS, Kunala S, Price GJ et al. Frequent clones of p53-mutated keratinocytes in normal human skin. Proc Natl Acad Sci USA 1996; 93:14025-9. Athar M, Kim AL, Ahmad N et al. Mechanism of ultraviolet B-induced cell cycle arrest in G2/M phase in immortalized skin keratinocytes with defective p53. Biochem Biophys Res Commun 2000; 277:107-11. Pawlik TM, Keyomarsi K. Role of cell cycle in mediating sensitivity to radiotherapy. Int J Radiat Oncol Biol Phys 2004; 59:928-42. Wilson GD. Radiation and the cell cycle, revisited. Cancer Metastasis Rev 2004; 23:209-25. Halliwell B. Reactive oxygen species in living systems: source, biochemistry, and role in human disease. Am J Med 1991; 91 (Suppl. 3C):S14-22. Morgan DO. Cyclin-dependent kinases: engines, clocks and microprocessors. Annu Rev Cell Dev Biol 1997; 13:261-91. Bånrud H, Stokke T, Moan J, Berg K. S phase arrest and induction of multinucleated cells after exposure to ultraviolet radiation. Carcinogenesis 1995; 16:1087-94. Lehmann J, Pollet D, Peker S et al. Kinetics of DNA strand breaks and protection by antioxidants in UVA- or UVB-irradiated HaCaT keratinocytes using the single cell gel electrophoresis assay. Mutat Res 1998; 407:97-108. Taga M, Shiraishi K, Shimura T et al. The effect of caffeine on p53-dependent radioresponses in undifferentiated mouse embryonal carcinoma cells after X-ray and UV-irradiation. J Radiat Res 2000; 41:227-41. Herzinger T, Funk JO, Hilmer K et al. Ultraviolet B irradiation-induced G2 cell cycle arrest in human keratinocytes by inhibitory phosphorylation of the cdc2 cell cycle kinase. Oncogene 1995; 10:2151-6. Pietenpol JA, Stewart ZA. Cell cycle checkpoint signalling: cell cycle arrest versus apoptosis. Toxicology 2002; 181-182:475-81. Cordes N, Blaese MA, Meineke V, Van Beuningen D. Ionizing radiation induces up-regulation of functional beta1-integrin in human lung tumour cell lines in vitro. Int J Radiat Biol 2002; 78:347-57. Bolognia J, Sodi SA, Chakraborthy AK et al. Effects of ultraviolet irradiation on the cell cycle. Pigment Cell Res 1994; 7:320-5. Iliakis G, Wang Y, Guan J, Hang H. DNA damage checkpoint control in cells exposed to ionizing irradiation. Oncogene 2003; 22:5834-47. Schutte B, Reynders MM, Van Assche CL et al. An improved method for the immunocytochemical detection of bromodeoxyuridine labeled nuclei using flow cytometry. Cytometry 1987; 8:372-6. Sancar A, Lindsey-Boltz LA, Ünsal-Kaçmaz K, Linn S. Molecular mechanisms of mammalian DNA repairs and the DNA damage checkpoints. Annu Rev Biochem 2004; 73:39-85. Goodarzi AA, Block WD, Lees-Miller SP. The role of ATM and ATR in DNA damage-induced cell cycle control. Prog Cell Cycle Res 2003; 5:393-411. Thorn T, Gniadecki R, Petersen AB et al. Differences in activation of G2/M checkpoint in keratinocytes after genotoxic stress induced by hydrogen peroxide and ultraviolet A radiation. Free Radic Res 2001; 35:405-16. Abdel-Malek Z, Swope V, Smalara D et al. Analysis of the UV-induced melanogenesis and growth arrest of human melanocytes. Pigment Cell Res 1994; 7:326-32. Gratzner HG, Leif RC. An immunofluorescence method for monitoring DNA synthesis by flow cytometry. Cytometry 1981; 1:385-9. Saran M, Michel C, Bors W. Radical functions in vivo: a critical review of current concepts and hypotheses. Z Naturf 1998; 53c:210-27. De Laat A, Van Tilburg M, Van Der Leun JC et al. Cell cycle kinetics following UVA irradiation in comparison to UVB and UVC irradiation. Photochem Photobiol 1996; 63:492-7. Petrocelli T, Poon R, Drucker DJ et al. UVB radiation induces p21Cip1/WAF1 and mediates G1 and S phase checkpoints. Oncogene 1996; 12:1387-96. Gilbertz K-P, Van Beuningen D, Rhein AP. Early changes in cell cycle kinetics after ionizing irradiation below 1 Gy. Int J Radiat Biol 1998; 73:187-95. Helt CE, Cliby WA, Keng PC et al. Ataxia telangiectasia mutated (ATM) and ATM and rad3-related protein exhibit selective target specificities in reponse to different forms of DNA damage. J Biol Chem 2005; 280:1186-92. Weller EM, Hain J, Jung T et al. UV-B-induced cell cycle perturbations, micronucleus induction, and modulation by caffeine in human keratinocytes. Int J Radiat Biol 1996; 69:371-84. Aubert C, Rouge F, Reillaudou M, Metge P. Establishment and characterization of human ocular melanoma cell lines. Int J Cancer 1993; 54:784-92. Ravanat JL, Douki T, Cadet J. Direct and indirect effects of UV radiation on DNA and its compounds. J Photochem Photobiol B 2001; 63:88-102. Cadet J, Sage E, Douki T. Ultraviolet radiation-mediated damage to cellular DNA. Mutat Res 2005; 571:3-17. 2005; 571 1987; 8 1995; 16 1981; 1 2002; 78 2002; 181–182 2004; 23 2000; 41 1995; 10 2004; 3 1996; 93 2000; 277 2001; 63 1996; 12 2005; 280 1998; 53c 2004; 73 2004; 59 1993; 54 1997; 13 1996; 63 1998; 407 1991; 91 2003; 5 1983; 80 1996; 69 1998; 73 2001; 35 2003; 22 1994; 7 b13_883 b2_872 b30_900 b24_894 Saran M (b7_877) 1998; 53 b19_889 b8_878 b3_873 b22_892 b27_897 b23_893 b12_882 b16_886 de Laat A (b11_881) 1996; 63 b21_891 b10_880 Petrocelli T (b18_888) 1996; 12 b26_896 Cadet J (b5_875) 2005; 571 b4_874 b15_885 b32_902 Herzinger T (b20_890) 1995; 10 b25_895 b14_884 b6_876 b17_887 b31_901 b28_898 b9_879 b1_871 Goodarzi AA (b29_899) 2003; 5 |
References_xml | – volume: 12 start-page: 1387 year: 1996 end-page: 96 article-title: UVB radiation induces p21Cip1/WAF1 and mediates G and S phase checkpoints publication-title: Oncogene – volume: 73 start-page: 187 year: 1998 end-page: 95 article-title: Early changes in cell cycle kinetics after ionizing irradiation below 1 Gy publication-title: Int J Radiat Biol – volume: 7 start-page: 326 year: 1994 end-page: 32 article-title: Analysis of the UV‐induced melanogenesis and growth arrest of human melanocytes publication-title: Pigment Cell Res – volume: 1 start-page: 385 year: 1981 end-page: 9 article-title: An immunofluorescence method for monitoring DNA synthesis by flow cytometry publication-title: Cytometry – volume: 280 start-page: 1186 year: 2005 end-page: 92 article-title: Ataxia telangiectasia mutated (ATM) and ATM and rad3‐related protein exhibit selective target specificities in reponse to different forms of DNA damage publication-title: J Biol Chem – volume: 181–182 start-page: 475 year: 2002 end-page: 81 article-title: Cell cycle checkpoint signalling: cell cycle arrest versus apoptosis publication-title: Toxicology – volume: 8 start-page: 372 year: 1987 end-page: 6 article-title: An improved method for the immunocytochemical detection of bromodeoxyuridine labeled nuclei using flow cytometry publication-title: Cytometry – volume: 22 start-page: 5834 year: 2003 end-page: 47 article-title: DNA damage checkpoint control in cells exposed to ionizing irradiation publication-title: Oncogene – volume: 3 start-page: 997 year: 2004 end-page: 1007 article-title: Mammalian cell cycle checkpoints: signalling pathways and their organization in space and time publication-title: DNA Repair – volume: 22 start-page: 5774 year: 2003 end-page: 83 article-title: p53 and radiation responses publication-title: Oncogene – volume: 78 start-page: 347 year: 2002 end-page: 57 article-title: Ionizing radiation induces up‐regulation of functional beta1‐integrin in human lung tumour cell lines publication-title: Int J Radiat Biol – volume: 80 start-page: 5573 year: 1983 end-page: 7 article-title: Flow cytometric measurement of total DNA content and incorporated bromodeoxyuridine publication-title: Proc Natl Acad Sci USA – volume: 277 start-page: 107 year: 2000 end-page: 11 article-title: Mechanism of ultraviolet B‐induced cell cycle arrest in G /M phase in immortalized skin keratinocytes with defective p53 publication-title: Biochem Biophys Res Commun – volume: 16 start-page: 1087 year: 1995 end-page: 94 article-title: S phase arrest and induction of multinucleated cells after exposure to ultraviolet radiation publication-title: Carcinogenesis – volume: 73 start-page: 39 year: 2004 end-page: 85 article-title: Ünsal‐Kaçmaz K, Linn S. Molecular mechanisms of mammalian DNA repairs and the DNA damage checkpoints publication-title: Annu Rev Biochem – volume: 53c start-page: 210 year: 1998 end-page: 27 article-title: Radical functions : a critical review of current concepts and hypotheses publication-title: Z Naturf – volume: 5 start-page: 393 year: 2003 end-page: 411 article-title: The role of ATM and ATR in DNA damage‐induced cell cycle control publication-title: Prog Cell Cycle Res – volume: 91 start-page: S14 issue: Suppl. 3C year: 1991 end-page: 22 article-title: Reactive oxygen species in living systems: source, biochemistry, and role in human disease publication-title: Am J Med – volume: 63 start-page: 492 year: 1996 end-page: 7 article-title: Cell cycle kinetics following UVA irradiation in comparison to UVB and UVC irradiation publication-title: Photochem Photobiol – volume: 69 start-page: 371 year: 1996 end-page: 84 article-title: UV‐B‐induced cell cycle perturbations, micronucleus induction, and modulation by caffeine in human keratinocytes publication-title: Int J Radiat Biol – volume: 10 start-page: 2151 year: 1995 end-page: 6 article-title: Ultraviolet B irradiation‐induced G cell cycle arrest in human keratinocytes by inhibitory phosphorylation of the cdc2 cell cycle kinase publication-title: Oncogene – volume: 7 start-page: 320 year: 1994 end-page: 5 article-title: Effects of ultraviolet irradiation on the cell cycle publication-title: Pigment Cell Res – volume: 35 start-page: 405 year: 2001 end-page: 16 article-title: Differences in activation of G /M checkpoint in keratinocytes after genotoxic stress induced by hydrogen peroxide and ultraviolet A radiation publication-title: Free Radic Res – volume: 59 start-page: 928 year: 2004 end-page: 42 article-title: Role of cell cycle in mediating sensitivity to radiotherapy publication-title: Int J Radiat Oncol Biol Phys – volume: 13 start-page: 261 year: 1997 end-page: 91 article-title: Cyclin‐dependent kinases: engines, clocks and microprocessors publication-title: Annu Rev Cell Dev Biol – volume: 93 start-page: 14025 year: 1996 end-page: 9 article-title: Frequent clones of p53‐mutated keratinocytes in normal human skin publication-title: Proc Natl Acad Sci USA – volume: 54 start-page: 784 year: 1993 end-page: 92 article-title: Establishment and characterization of human ocular melanoma cell lines publication-title: Int J Cancer – volume: 41 start-page: 227 year: 2000 end-page: 41 article-title: The effect of caffeine on p53‐dependent radioresponses in undifferentiated mouse embryonal carcinoma cells after X‐ray and UV‐irradiation publication-title: J Radiat Res – volume: 23 start-page: 209 year: 2004 end-page: 25 article-title: Radiation and the cell cycle, revisited publication-title: Cancer Metastasis Rev – volume: 571 start-page: 3 year: 2005 end-page: 17 article-title: Ultraviolet radiation‐mediated damage to cellular DNA publication-title: Mutat Res – volume: 407 start-page: 97 year: 1998 end-page: 108 article-title: Kinetics of DNA strand breaks and protection by antioxidants in UVA‐ or UVB‐irradiated HaCaT keratinocytes using the single cell gel electrophoresis assay publication-title: Mutat Res – volume: 63 start-page: 88 year: 2001 end-page: 102 article-title: Direct and indirect effects of UV radiation on DNA and its compounds publication-title: J Photochem Photobiol B – ident: b9_879 doi: 10.1146/annurev.cellbio.13.1.261 – volume: 63 start-page: 492 year: 1996 ident: b11_881 publication-title: Photochem Photobiol doi: 10.1111/j.1751-1097.1996.tb03075.x contributor: fullname: de Laat A – volume: 12 start-page: 1387 year: 1996 ident: b18_888 publication-title: Oncogene contributor: fullname: Petrocelli T – ident: b13_883 doi: 10.1080/10715760100300921 – ident: b24_894 doi: 10.1002/cyto.990010606 – ident: b26_896 doi: 10.1080/095530098142572 – ident: b8_878 doi: 10.1038/sj.onc.1206682 – ident: b17_887 doi: 10.1111/j.1600-0749.1994.tb00634.x – ident: b16_886 doi: 10.1111/j.1600-0749.1994.tb00635.x – ident: b10_880 doi: 10.1016/j.dnarep.2004.03.006 – ident: b32_902 doi: 10.1073/pnas.93.24.14025 – ident: b19_889 doi: 10.1006/bbrc.2000.3436 – ident: b22_892 doi: 10.1038/sj.onc.1206677 – volume: 5 start-page: 393 year: 2003 ident: b29_899 publication-title: Prog Cell Cycle Res contributor: fullname: Goodarzi AA – ident: b28_898 doi: 10.1146/annurev.biochem.73.011303.073723 – ident: b3_873 doi: 10.1023/B:CANC.0000031762.91306.b4 – ident: b23_893 doi: 10.1002/ijc.2910540513 – ident: b12_882 doi: 10.1080/095530096145931 – volume: 10 start-page: 2151 year: 1995 ident: b20_890 publication-title: Oncogene contributor: fullname: Herzinger T – volume: 571 start-page: 3 year: 2005 ident: b5_875 publication-title: Mutat Res doi: 10.1016/j.mrfmmm.2004.09.012 contributor: fullname: Cadet J – ident: b15_885 doi: 10.1093/carcin/16.5.1087 – ident: b31_901 doi: 10.1016/S0921-8777(97)00064-5 – ident: b6_876 doi: 10.1016/0002-9343(91)90279-7 – ident: b27_897 doi: 10.1080/09553000110117340 – ident: b21_891 doi: 10.1073/pnas.80.18.5573 – ident: b4_874 doi: 10.1016/S1011-1344(01)00206-8 – volume: 53 start-page: 210 year: 1998 ident: b7_877 publication-title: Z Naturf doi: 10.1515/znc-1998-3-411 contributor: fullname: Saran M – ident: b14_884 doi: 10.1269/jrr.41.227 – ident: b25_895 doi: 10.1002/cyto.990080405 – ident: b1_871 doi: 10.1016/S0300-483X(02)00460-2 – ident: b2_872 doi: 10.1016/j.ijrobp.2004.03.005 – ident: b30_900 doi: 10.1074/jbc.M410873200 |
SSID | ssj0013050 |
Score | 2.0229688 |
Snippet | Summary
Background One important component of the cellular response to irradiation is the activation of cell cycle checkpoints. It is known that both... One important component of the cellular response to irradiation is the activation of cell cycle checkpoints. It is known that both ultraviolet (UV) radiation... Background One important component of the cellular response to irradiation is the activation of cell cycle checkpoints. It is known that both ultraviolet (UV)... BACKGROUNDOne important component of the cellular response to irradiation is the activation of cell cycle checkpoints. It is known that both ultraviolet (UV)... |
SourceID | proquest crossref pubmed pascalfrancis wiley istex |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 843 |
SubjectTerms | Biological and medical sciences cell cycle Cell Cycle - radiation effects Dermatology DNA Damage Humans ionizing radiation Medical sciences melanoma Melanoma - pathology Pyrimidine Dimers Radiation, Ionizing Skin Neoplasms - pathology Tumors of the skin and soft tissue. Premalignant lesions ultraviolet radiation Ultraviolet Rays - adverse effects |
Title | Effect of ultraviolet (UV) A, UVB or ionizing radiation on the cell cycle of human melanoma cells |
URI | https://api.istex.fr/ark:/67375/WNG-HHLM4K7N-2/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1365-2133.2007.07795.x https://www.ncbi.nlm.nih.gov/pubmed/17355234 https://search.proquest.com/docview/19798727 https://search.proquest.com/docview/70426733 |
Volume | 156 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEB_0DsQXvz_qx5oHEQUrpk0u6eOud-dyeougu95bSJr0xbtW2l04_eudSXdvLZwgIvSh0CZtJjPJbz4yA_BcW--qEFSKu0-eiqz0qbOCpy53vNRCZtqTKXv6Wc1O9P4Bpck52pyF6fNDXBjcSDLiek0Cbl03FPIYoYVK1joToVKFfEN4EpWGeJoj_7R1KLyV_WkUsswh0w2Dei7taLBT7RLRzyly0nZIvKqvenEZLB2i3LhNHd78nwO8BTfWYJWNe-66DVdCfQeuHa_d8XfB9rmPWVOx1emytdHLv2Qv54tXbPyazRcT1rSMLL4_cYdkLeVBIEZgeCHwZOQ1YOUP7Ju6iOUC2Vk4tXVzZuPD7h7MDw--vJum65oNaSk5_m0hgrCB5166jAtnZZB7QVpdee289E5yF3hROGERSfhSIrwpS29xaXGV9D7L78NO3dThITBS9kqlbbCWglErK1BXRA7inmxLOiTAN_NjvvepOcxvKg3SzhDtqNCmMpF25jyBF3EiLxrY9huFtilpvs7em-n047H4oGYmS2A0mOntF3CBo_JOCTzbTL1BiSSa2Do0q87wQhUaYeGf31CkuKo8T-BBzzPb3hXivywXCexF1vjrgZnJ0T7dPfrXho_hem-2pljOJ7CzbFfhKVzt_GoUJWkEu-PJyWLxC6H0GgU |
link.rule.ids | 315,782,786,1408,27933,27934,46064,46488 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5BKwEXypu00PqAEEgE4cReJ8eWtgT2ISS6hZtlx86FNkHZXanl1zPj7HaJVCSEkHKIlNiJxzP2Nw_PALzIjLOV9yrG3SeNRVK62BrBY5taXmZCJpkjU3bxRU2-ZYdHlCZnuDoL0-WHuDK4kWSE9ZoEnAzSfSkPIVqoZS1TESqVy7cIKDfFAPmSznOkn9cuhXeyO49Ctjlku35Yz7U99faqTSL7BcVOmhmSr-rqXlwHTPs4N2xUx1v_dYj34O4Sr7L9jsHuww1fP4Bb46VH_iGYLv0xayq2OJu3Jjj65-zV9PQ123_DpqcHrGkZGX1_4ibJWkqFQLzA8ELsychxwMpL7Ju6CBUD2bk_M3VzbsLD2SOYHh-dvC_iZdmGuJQc_zYXXhjPUydtwoU10suBlyarXGaddFZy63meW2EQTLhSIsIpS2dwdbGVdC5JH8NG3dT-KTDS90qVGW8MxaNWRqC6iEzEHZmXMh8BX02Q_tFl59C_aTVIO020o1qbSgfa6YsIXoaZvGpg2u8U3aak_jr5oItiNBZDNdFJBLu9qV5_Adc4qvAUwd5q7jUKJdHE1L5ZzDTPVZ4hMvzzG4p0V5WmETzpmGbdu0IImKQigkHgjb8emD74dEh32__acA9uFyfjkR59nAx34E5nxabQzmewMW8X_jncnLnFbhCrX56MHIM |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5BK1VcKG9SoPUBIZAIwoldO8eW7bL0saoEW7hZduxcaJMquysVfj0zzm6XSEVCCCmHSImdeDxjf_PwDMBLbb2rQlAp7j55KrLSp84Knrrc8VILmWlPpuzRZzX-pgcHlCbncHkWpssPcW1wI8mI6zUJ-KWv-kIeI7RQyVpkIlSqkO8QT64LROWURz_PT1cehfeyO45Cpjnkun5Uz4099baqdaL6FYVO2ilSr-rKXtyES_swN-5Tw83_OcJ7cHeBVtlex1734VaoH8DGycIf_xBsl_yYNRWbn89aG938M_Z6cvaG7b1lk7N91rSMTL4_cYtkLSVCIE5geCHyZOQ2YOUP7Ju6iPUC2UU4t3VzYePD6SOYDA--fBili6INaSk5_m0hgrCB5166jAtnZZC7QVpdee289E5yF3hROGERSvhSIr4pS29xbXGV9D7LH8Na3dThKTDS9kqlbbCWolErK1BZRBbinoxLOiTAl_NjLrvcHOY3nQZpZ4h2VGlTmUg7c5XAqziR1w1s-51i25Q0X8cfzWh0fCKO1NhkCWz3Znr1BVzhqL5TAjvLqTcokkQTW4dmPjW8UIVGXPjnNxRprirPE3jS8cyqd4UAMMtFAruRNf56YGb_cEB3W__acAc2TgdDc_xpfPQM7nQmbIrrfA5rs3YeXsDtqZ9vR6H6BfjfGyk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+ultraviolet+%28UV%29+A%2C+UVB+or+ionizing+radiation+on+the+cell+cycle+of+human+melanoma+cells&rft.jtitle=British+journal+of+dermatology+%281951%29&rft.au=Placzek%2C+M.&rft.au=Przybilla%2C+B.&rft.au=Kerkmann%2C+U.&rft.au=Gaube%2C+S.&rft.date=2007-05-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0007-0963&rft.eissn=1365-2133&rft.volume=156&rft.issue=5&rft.spage=843&rft.epage=847&rft_id=info:doi/10.1111%2Fj.1365-2133.2007.07795.x&rft.externalDBID=10.1111%252Fj.1365-2133.2007.07795.x&rft.externalDocID=BJD7795 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0007-0963&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0007-0963&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0007-0963&client=summon |