Extensive clonal spread and extreme longevity in saw palmetto, a foundation clonal plant

The lack of effective tools has hampered out ability to assess the size, growth and ages of clonal plants. With Serenoa repens (saw palmetto) as a model, we introduce a novel analytical framework that integrates DNA fingerprinting and mathematical modelling to simulate growth and estimate ages of cl...

Full description

Saved in:
Bibliographic Details
Published in:Molecular ecology Vol. 20; no. 18; pp. 3730 - 3742
Main Authors: TAKAHASHI, MIZUKI K., HORNER, LIANA M., KUBOTA, TOSHIRO, KELLER, NATHAN A., ABRAHAMSON, WARREN G.
Format: Journal Article
Language:English
Published: Oxford, UK Blackwell Publishing Ltd 01-09-2011
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The lack of effective tools has hampered out ability to assess the size, growth and ages of clonal plants. With Serenoa repens (saw palmetto) as a model, we introduce a novel analytical framework that integrates DNA fingerprinting and mathematical modelling to simulate growth and estimate ages of clonal plants. We also demonstrate the application of such life‐history information of clonal plants to provide insight into management plans. Serenoa is an ecologically important foundation species in many Southeastern United States ecosystems; yet, many land managers consider Serenoa a troublesome invasive plant. Accordingly, management plans have been developed to reduce or eliminate Serenoa with little understanding of its life history. Using Amplified Fragment Length Polymorphisms, we genotyped 263 Serenoa and 134 Sabal etonia (a sympatric non‐clonal palmetto) samples collected from a 20 × 20 m study plot in Florida scrub. Sabal samples were used to assign small field‐unidentifiable palmettos to Serenoa or Sabal and also as a negative control for clone detection. We then mathematically modelled clonal networks to estimate genet ages. Our results suggest that Serenoa predominantly propagate via vegetative sprouts and 10 000‐year‐old genets may be common, while showing no evidence of clone formation by Sabal. The results of this and our previous studies suggest that: (i) Serenoa has been part of scrub associations for thousands of years, (ii) Serenoa invasion are unlikely and (ii) once Serenoa is eliminated from local communities, its restoration will be difficult. Reevaluation of the current management tools and plans is an urgent task.
Bibliography:istex:8890CEBC4CE7F8D8E518BC2725A33EBB5312DEDC
ark:/67375/WNG-1JNBWBZ8-M
ArticleID:MEC5212
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
ISSN:0962-1083
1365-294X
DOI:10.1111/j.1365-294X.2011.05212.x