High strain rate in-plane shear behavior of composites

Studies are presented on in-plane shear properties of a typical plain weave E-glass/epoxy composite under high strain rate loading. In-plane shear properties were determined with ±45 degree off-axis compression and tension tests using a split Hopkinson pressure bar apparatus. In-plane shear properti...

Full description

Saved in:
Bibliographic Details
Published in:Polymer testing Vol. 32; no. 8; pp. 1334 - 1341
Main Authors: Gowtham, H.L., Pothnis, Jayaram R., Ravikumar, G., Naik, N.K.
Format: Journal Article
Language:English
Published: Kindlington Elsevier Ltd 01-12-2013
Elsevier
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Studies are presented on in-plane shear properties of a typical plain weave E-glass/epoxy composite under high strain rate loading. In-plane shear properties were determined with ±45 degree off-axis compression and tension tests using a split Hopkinson pressure bar apparatus. In-plane shear properties are presented as a function of axial and shear strain rates. The range of axial strain rates for off-axis compression tests was 819–2003 per sec, and for off-axis tension tests was 91–180 per sec, whereas the range of shear strain rates for off-axis compression tests was 1388–3442 per sec and for off-axis tension tests was 153–303 per sec. In general, it was observed that in-plane shear strength was enhanced at high strain rate loading compared to that at quasi-static loading. Also, it was observed that in-plane shear strength increased with increasing strain rate within the range of strain rates considered.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0142-9418
1873-2348
DOI:10.1016/j.polymertesting.2013.08.008