Designing, constructing and testing of a new generation of sound barriers
Purpose Nowadays, noise pollution is considered a major environmental problem which has affected the health and comfort of millions of people around the world. Solving the mentioned problems need to design a new generation of acoustic barriers. Acoustics experts believe that stopping and absorbing t...
Saved in:
Published in: | Journal of environmental health science and engineering Vol. 17; no. 2; pp. 507 - 527 |
---|---|
Main Authors: | , , |
Format: | Journal Article |
Language: | English |
Published: |
Cham
Springer International Publishing
01-12-2019
BioMed Central |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Purpose
Nowadays, noise pollution is considered a major environmental problem which has affected the health and comfort of millions of people around the world. Solving the mentioned problems need to design a new generation of acoustic barriers. Acoustics experts believe that stopping and absorbing the low-frequency sound is difficult. The aims of this study were to remove the harmful frequency in industries and cities. This study concentrates on the reduction of the noise level and increasing the mass law and resonance at low frequencies.
Methods
Sound measurement and frequency analysis did to fix the harmful frequency in the Shiraz city and in the Shiraz Gas Power Plant. COMSOL 5.3a software used for simulation. Suitable material chose for the manufacture of the sound barrier through the Cambridge engineering selection software 2013. The meta-material sound barrier made and tested in the acoustic room and in the free space. Results analyzed and optimized by Design of Experiment (DOE) and Response Surface Methodology (RSM) software. Mini Tab. 18.1 software used for Statistical Calculations. New sound barriers manufactured with adding new strategies to previous studies to improve the performance of meta-materials like beautification inspired from the flowers of nature and increasing of resonance in internal pipes.
Results
Three mechanisms used in this scatterer model which included, resonance phenomenon, Band Gap (BG) without absorption mechanism and inner-fractal-like structure. Our technique showed an advantage to reduce at frequencies below 100 Hz without adsorbent usage. The results showed that reduced noise exposures about 17.8 dB at frequency 50 Hz, about 9.1 dB within the range of 250 Hz according to EN 1793–2 standard (Lab Test for Airborne Sound Insulation). The sound barrier reported in this work provides the best and updated solution in the field of noise control.
Conclusions
A novel generation of sound barriers introduced. We called this structure Interior Quasi-Fractal Sonic Crystal Acoustic Barrier (IQFSCAB). In this study, several different gaps used to remove various frequencies. It could be concluded that the outcomes of the meta-material models based on the Sonic Crystal (SC) could be used for the purpose of noise control system and could be helpful for decision-makers on the noise control legislations.
Graphical abstract
Interaction of waves with noise barriers and wave propagation inside periodic media is a hot topic in many branches of science and technology. The acoustic metamaterial can create green environments by reducing the low frequencies of industrial noise or traffic jam. New barrier have added a number of new strategies to previous studies in order to improve the performance of meta-materials. Our technique shows a clear advantage over to absorb at frequencies below 100 Hz without adsorbent usage. Innovative use of several different gaps and diameters for to remove various frequencies was done in this study. We called this structure IQFSACB due to fractal like interior pipes as those seen in some of the flowers in nature. |
---|---|
AbstractList | Nowadays, noise pollution is considered a major environmental problem which has affected the health and comfort of millions of people around the world. Solving the mentioned problems need to design a new generation of acoustic barriers. Acoustics experts believe that stopping and absorbing the low-frequency sound is difficult. The aims of this study were to remove the harmful frequency in industries and cities. This study concentrates on the reduction of the noise level and increasing the mass law and resonance at low frequencies.
Sound measurement and frequency analysis did to fix the harmful frequency in the Shiraz city and in the Shiraz Gas Power Plant. COMSOL 5.3a software used for simulation. Suitable material chose for the manufacture of the sound barrier through the Cambridge engineering selection software 2013. The meta-material sound barrier made and tested in the acoustic room and in the free space. Results analyzed and optimized by Design of Experiment (DOE) and Response Surface Methodology (RSM) software. Mini Tab. 18.1 software used for Statistical Calculations. New sound barriers manufactured with adding new strategies to previous studies to improve the performance of meta-materials like beautification inspired from the flowers of nature and increasing of resonance in internal pipes.
Three mechanisms used in this scatterer model which included, resonance phenomenon, Band Gap (BG) without absorption mechanism and inner-fractal-like structure. Our technique showed an advantage to reduce at frequencies below 100 Hz without adsorbent usage. The results showed that reduced noise exposures about 17.8 dB at frequency 50 Hz, about 9.1 dB within the range of 250 Hz according to EN 1793-2 standard (Lab Test for Airborne Sound Insulation). The sound barrier reported in this work provides the best and updated solution in the field of noise control.
A novel generation of sound barriers introduced. We called this structure Interior Quasi-Fractal Sonic Crystal Acoustic Barrier (IQFSCAB). In this study, several different gaps used to remove various frequencies. It could be concluded that the outcomes of the meta-material models based on the Sonic Crystal (SC) could be used for the purpose of noise control system and could be helpful for decision-makers on the noise control legislations. Graphical abstractInteraction of waves with noise barriers and wave propagation inside periodic media is a hot topic in many branches of science and technology. The acoustic metamaterial can create green environments by reducing the low frequencies of industrial noise or traffic jam. New barrier have added a number of new strategies to previous studies in order to improve the performance of meta-materials. Our technique shows a clear advantage over to absorb at frequencies below 100 Hz without adsorbent usage. Innovative use of several different gaps and diameters for to remove various frequencies was done in this study. We called this structure IQFSACB due to fractal like interior pipes as those seen in some of the flowers in nature. Purpose Nowadays, noise pollution is considered a major environmental problem which has affected the health and comfort of millions of people around the world. Solving the mentioned problems need to design a new generation of acoustic barriers. Acoustics experts believe that stopping and absorbing the low-frequency sound is difficult. The aims of this study were to remove the harmful frequency in industries and cities. This study concentrates on the reduction of the noise level and increasing the mass law and resonance at low frequencies. Methods Sound measurement and frequency analysis did to fix the harmful frequency in the Shiraz city and in the Shiraz Gas Power Plant. COMSOL 5.3a software used for simulation. Suitable material chose for the manufacture of the sound barrier through the Cambridge engineering selection software 2013. The meta-material sound barrier made and tested in the acoustic room and in the free space. Results analyzed and optimized by Design of Experiment (DOE) and Response Surface Methodology (RSM) software. Mini Tab. 18.1 software used for Statistical Calculations. New sound barriers manufactured with adding new strategies to previous studies to improve the performance of meta-materials like beautification inspired from the flowers of nature and increasing of resonance in internal pipes. Results Three mechanisms used in this scatterer model which included, resonance phenomenon, Band Gap (BG) without absorption mechanism and inner-fractal-like structure. Our technique showed an advantage to reduce at frequencies below 100 Hz without adsorbent usage. The results showed that reduced noise exposures about 17.8 dB at frequency 50 Hz, about 9.1 dB within the range of 250 Hz according to EN 1793–2 standard (Lab Test for Airborne Sound Insulation). The sound barrier reported in this work provides the best and updated solution in the field of noise control. Conclusions A novel generation of sound barriers introduced. We called this structure Interior Quasi-Fractal Sonic Crystal Acoustic Barrier (IQFSCAB). In this study, several different gaps used to remove various frequencies. It could be concluded that the outcomes of the meta-material models based on the Sonic Crystal (SC) could be used for the purpose of noise control system and could be helpful for decision-makers on the noise control legislations. Graphical abstract Interaction of waves with noise barriers and wave propagation inside periodic media is a hot topic in many branches of science and technology. The acoustic metamaterial can create green environments by reducing the low frequencies of industrial noise or traffic jam. New barrier have added a number of new strategies to previous studies in order to improve the performance of meta-materials. Our technique shows a clear advantage over to absorb at frequencies below 100 Hz without adsorbent usage. Innovative use of several different gaps and diameters for to remove various frequencies was done in this study. We called this structure IQFSACB due to fractal like interior pipes as those seen in some of the flowers in nature. PurposeNowadays, noise pollution is considered a major environmental problem which has affected the health and comfort of millions of people around the world. Solving the mentioned problems need to design a new generation of acoustic barriers. Acoustics experts believe that stopping and absorbing the low-frequency sound is difficult. The aims of this study were to remove the harmful frequency in industries and cities. This study concentrates on the reduction of the noise level and increasing the mass law and resonance at low frequencies.MethodsSound measurement and frequency analysis did to fix the harmful frequency in the Shiraz city and in the Shiraz Gas Power Plant. COMSOL 5.3a software used for simulation. Suitable material chose for the manufacture of the sound barrier through the Cambridge engineering selection software 2013. The meta-material sound barrier made and tested in the acoustic room and in the free space. Results analyzed and optimized by Design of Experiment (DOE) and Response Surface Methodology (RSM) software. Mini Tab. 18.1 software used for Statistical Calculations. New sound barriers manufactured with adding new strategies to previous studies to improve the performance of meta-materials like beautification inspired from the flowers of nature and increasing of resonance in internal pipes.ResultsThree mechanisms used in this scatterer model which included, resonance phenomenon, Band Gap (BG) without absorption mechanism and inner-fractal-like structure. Our technique showed an advantage to reduce at frequencies below 100 Hz without adsorbent usage. The results showed that reduced noise exposures about 17.8 dB at frequency 50 Hz, about 9.1 dB within the range of 250 Hz according to EN 1793–2 standard (Lab Test for Airborne Sound Insulation). The sound barrier reported in this work provides the best and updated solution in the field of noise control.ConclusionsA novel generation of sound barriers introduced. We called this structure Interior Quasi-Fractal Sonic Crystal Acoustic Barrier (IQFSCAB). In this study, several different gaps used to remove various frequencies. It could be concluded that the outcomes of the meta-material models based on the Sonic Crystal (SC) could be used for the purpose of noise control system and could be helpful for decision-makers on the noise control legislations. |
Author | Moattar, Faramarz Javadpour, Sirus Negahdari, Hadi |
Author_xml | – sequence: 1 givenname: Hadi surname: Negahdari fullname: Negahdari, Hadi organization: Department of Environmental Engineering,Faculty of Natural Resources and Environment,Science and Research Branch, Islamic Azad University – sequence: 2 givenname: Sirus surname: Javadpour fullname: Javadpour, Sirus email: Javadpor@shirazu.ac.ir organization: Department of Materials Science and Engineering,School of Engineering, Shiraz University – sequence: 3 givenname: Faramarz surname: Moattar fullname: Moattar, Faramarz organization: Department of Environmental Engineering,Faculty of Natural Resources and Environment,Science and Research Branch, Islamic Azad University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32030130$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kctOxSAQhonReH8BF6aJW6sDUyhsTIz3xMSNJu4IpbTWKCi0mvP2osfrxhUD880_w_xrZNEH7wjZorBHAer9VAEDWgJVJQDyupwtkFUGnJWI4nbxV7xCNlO6BwAKiFLxZbKCDBAowiq5OHZp6P3g-93CBp_GONkx3wrj22J06SMOXWEK716L3nkXzTgE__6WwpShxsQ4uJg2yFJnHpLb_DzXyc3pyfXReXl5dXZxdHhZWk5xLLmlVSNkLQTShnWV6qRSolJWWmFbFA1XkhnZQltBI1ltpHSqRtFyLlAphevkYK77NDWPrrXOj9E86Kc4PJo408EM-m_GD3e6Dy9aKMkReRbY-RSI4XnKX9T3YYo-z6wZVoLnRakqU2xO2RhSiq777kBBvzug5w7oTOsPB_QsF23_nu275GvfGcA5kHLK9y7-9P5H9g0WR5Mj |
CitedBy_id | crossref_primary_10_1007_s40201_020_00512_w crossref_primary_10_1007_s11356_022_19056_7 crossref_primary_10_1007_s11356_022_23109_2 crossref_primary_10_1016_j_apacoust_2020_107676 |
Cites_doi | 10.1063/1.1882755 10.1063/1.2212050 10.1103/PhysRevE.71.055601 10.1016/j.apacoust.2016.07.028 10.7567/APEX.7.042201 10.1121/1.1906845 10.1063/1.372308 10.1121/1.3643818 10.1103/PhysRevLett.95.013904 10.1103/PhysRevB.60.11993 10.1103/PhysRevB.70.125116 10.1038/nmat1644 10.1006/jsvi.2001.3825 10.1038/nature04210 10.1088/1367-2630/9/11/399 10.1016/j.jsv.2012.08.003 10.1038/378241a0 10.1063/1.1533112 10.1016/j.buildenv.2015.07.002 10.1016/S0041-624X(02)00105-1 10.1063/1.1852719 10.1002/pc.24078 10.1103/PhysRevLett.80.5325 10.1103/PhysRevLett.90.123901 10.1088/2040-8978/13/2/020401 10.1038/nphys343 10.1002/adma.200600106 10.1017/CBO9780511735110 10.1017/S0022112090002750 10.1103/PhysRevB.47.4161 10.1007/978-3-0348-7722-0_1 10.1103/PhysRevE.64.036616 10.1016/0031-8914(47)90013-X 10.1209/0295-5075/92/24007 10.1007/BF02986885 10.1103/PhysRevLett.58.2059 10.1016/S0142-9418(98)00009-9 10.1016/j.ssc.2004.11.024 10.1121/1.3126948 10.1063/1.355934 10.1109/22.798002 10.2478/v10168-012-0057-9 10.1016/j.apacoust.2017.02.006 10.1109/JSAC.2005.851190 10.1016/j.jsv.2005.05.030 10.1126/science.289.5485.1734 10.1121/1.2932706 10.15171/EHEM.2018.29 10.1117/12.344477 10.1103/PhysRevLett.93.024301 10.1103/PhysRevB.48.13434 10.1063/1.2198012 10.1103/PhysRevB.37.6963 10.1103/PhysRevLett.58.2486 10.1103/PhysRev.94.1111 10.1063/1.119130 10.1243/095440604322887099 10.1364/JOSAB.10.000404 10.1002/andp.19133450511 10.1103/PhysRevB.67.245107 10.1103/PhysRevB.62.5536 10.1121/1.2133715 10.1038/nature08681 |
ContentType | Journal Article |
Copyright | Springer Nature Switzerland AG 2019 Springer Nature Switzerland AG 2019. 2019© Springer Nature Switzerland AG 2019 |
Copyright_xml | – notice: Springer Nature Switzerland AG 2019 – notice: Springer Nature Switzerland AG 2019. – notice: 2019© Springer Nature Switzerland AG 2019 |
DBID | NPM AAYXX CITATION 7ST C1K K9. SOI 5PM |
DOI | 10.1007/s40201-019-00357-y |
DatabaseName | PubMed CrossRef Environment Abstracts Environmental Sciences and Pollution Management ProQuest Health & Medical Complete (Alumni) Environment Abstracts PubMed Central (Full Participant titles) |
DatabaseTitle | PubMed CrossRef ProQuest Health & Medical Complete (Alumni) Environment Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | PubMed ProQuest Health & Medical Complete (Alumni) |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Public Health |
EISSN | 2052-336X |
EndPage | 527 |
ExternalDocumentID | 10_1007_s40201_019_00357_y 32030130 |
Genre | Journal Article |
GroupedDBID | -A0 -EM 2NT 2XV 3V. 406 5VS 7X7 7XC 8C1 8FE 8FG 8FH 8FI 8FJ AAFGU AAHNG AATNV AAUYE AAYFA ABDBF ABDZT ABECU ABFGW ABFTV ABJCF ABKAS ABKCH ABMQK ABSXP ABTEG ABTKH ABTMW ABUWG ACBMV ACBRV ACBYP ACGFS ACHSB ACIGE ACIPQ ACOKC ACTTH ACVWB ACWMK ADBBV ADINQ ADKNI ADMDM ADOXG ADRAZ ADURQ ADYFF AEFTE AENEX AESKC AESTI AEVTX AFGXO AFKRA AFNRJ AFQWF AGDGC AGGBP AGJBK AGMZJ AHBYD AHSBF AHYZX AILAN AIMYW AITGF AJDOV AJZVZ AKQUC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AOIJS ATCPS AXYYD BBNVY BENPR BGLVJ BHPHI BPHCQ BVXVI C24 CCPQU DIK DPUIP EBLON EBS EJD FINBP FNLPD FSGXE FYUFA GGCAI GJIRD GROUPED_DOAJ HCIFZ HMCUK HYE IAO IHR IKXTQ ITC IWAJR J-C JZLTJ KQ8 L6V LK8 LLZTM M48 M7P M7S M~E NPVJJ NQJWS O9J OK1 PATMY PQQKQ PROAC PT4 PTHSS PYCSY RBZ ROL RPM RSV SNE SNPRN SOHCF SOJ SRMVM SSLCW STPWE UKHRP UOJIU UTJUX Z84 ZMTXR 0R~ AACDK AAJBT AASML ABAKF ACAOD ACDTI ACZOJ AEFQL AEMSY AFBBN AGQEE AGRTI AIGIU ALIPV FIGPU H13 NPM SJYHP AAYXX CITATION 7ST C1K K9. SOI 5PM |
ID | FETCH-LOGICAL-c513t-5c14b6876631b2f49f899649c8c6cd36b5982a8d0d40b827a88e9736d55639993 |
IEDL.DBID | RPM |
ISSN | 2052-336X |
IngestDate | Tue Sep 17 21:27:33 EDT 2024 Thu Oct 10 17:26:04 EDT 2024 Thu Sep 12 16:50:13 EDT 2024 Tue Oct 29 04:35:17 EDT 2024 Sat Dec 16 12:00:31 EST 2023 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Noise barriers Sound insulation index Noise pollution Environmental pollution Noise control Sonic crystals |
Language | English |
License | Springer Nature Switzerland AG 2019. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c513t-5c14b6876631b2f49f899649c8c6cd36b5982a8d0d40b827a88e9736d55639993 |
OpenAccessLink | https://link.springer.com/content/pdf/10.1007/s40201-019-00357-y.pdf |
PMID | 32030130 |
PQID | 2346500194 |
PQPubID | 2034561 |
PageCount | 21 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6985335 proquest_journals_2346500194 crossref_primary_10_1007_s40201_019_00357_y pubmed_primary_32030130 springer_journals_10_1007_s40201_019_00357_y |
PublicationCentury | 2000 |
PublicationDate | 2019-12-01 |
PublicationDateYYYYMMDD | 2019-12-01 |
PublicationDate_xml | – month: 12 year: 2019 text: 2019-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: England – name: London |
PublicationTitle | Journal of environmental health science and engineering |
PublicationTitleAbbrev | J Environ Health Sci Engineer |
PublicationTitleAlternate | J Environ Health Sci Eng |
PublicationYear | 2019 |
Publisher | Springer International Publishing BioMed Central |
Publisher_xml | – name: Springer International Publishing – name: BioMed Central |
References | Pickover CA. The Physics Book: From the Big Bang to Quantum Resurrection, 250 Milestones in the History of Physics: Sterling Pub.; 2011. CaiCMakCMWangXNoise attenuation performance improvement by adding Helmholtz resonators on the periodic ducted Helmholtz resonator systemAppl Acoust201712281510.1016/j.apacoust.2017.02.006Jul 1 AsdrubaliFD'AlessandroFSchiavoniSSound absorbing properties of materials made of rubber crumbsJ Acoust Soc Am20081235303710.1121/1.2932706Jul Party BT, Begin M, Bakunin M, vos Savant M, Crichton M, Snow M, Shinkai M, Saint-Michel M, Barney M, Rosenberg M, Teresa M. Wikipedia, the free encyclopedia. HuXChanCTZiJTwo-dimensional sonic crystals with Helmholtz resonatorsPhys Rev E200571510.1103/PhysRevE.71.0556011:CAS:528:DC%2BD2MXltVOqt7c%3D KushwahaMSStop-bands for periodic metallic rods: sculptures that can filter the noiseAppl Phys Lett19977024321832201:CAS:528:DyaK2sXjvFOrsL4%3D10.1063/1.119130 PfretzschnerJRodriguezRMAcoustic properties of rubber crumbsPolym Test199918281921:CAS:528:DyaK1MXivFKiu7Y%3D10.1016/S0142-9418(98)00009-9Apr 1 Negahdari H, Javadpour S, Moattar F, Negahdari H. Risk assessment of noise pollution by analyzing the level of sound loudness resulting from central traffic in Shiraz. Environmental Health Engineering and Management Journal. 2018 Nov 20. Sanchez-PerezJVRubioCMartinez-SalaRSanchez-GrandiaRGomezVAcoustic barriers based on periodic arrays of scatterersAppl Phys Lett20028127524052421:CAS:528:DC%2BD38XpvVaqsbo%3D10.1063/1.1533112Dec 30 UmnovaOAttenboroughKLintonCMEffects of porous covering on sound attenuation by periodic arrays of cylindersJ Acoust Soc Am2006119127828410.1121/1.2133715 TrégourèsNHenninoRLacombeCShapiroNMMargerinLCampilloMvan TiggelenBAMultiple scattering of seismic wavesUltrasonics.2002401–826927410.1016/S0041-624X(02)00105-1May 1 ChenSJiangYThe acoustic property study of polyurethane foam with addition of bamboo leaves particlesPolym Compos2018394137013811:CAS:528:DC%2BC28Xos12lsrc%3D10.1002/pc.24078Apr MorandiFMiniaciMMarzaniABarbaresiLGaraiMStandardised acoustic characterisation of sonic crystals noise barriers: sound insulation and reflection propertiesAppl Acoust201611429430610.1016/j.apacoust.2016.07.028Dec 15 KafesakiMEconomouENMultiple-scattering theory for three-dimensional periodic acoustic compositesPhys Rev B1999601711993120011:CAS:528:DyaK1MXmvFOgsbs%3D10.1103/PhysRevB.60.11993Nov 1 FangNXiDXuJAmbatiMSrituravanichWSunCUltrasonic metamaterials with negative modulusNat Mater2006564524561:CAS:528:DC%2BD28XltFWrs7o%3D10.1038/nmat1644 El-KadyIReda TahaMSuMApplication of photonic crystals in submicron damage detection and quantificationAppl Phys Lett2006882525310910.1063/1.22120501:CAS:528:DC%2BD28Xms1yrtr8%3D GuenneauSMovchanAPéturssonGRamakrishnaSAAcoustic metamaterials for sound focusing and confinementNew J Phys200791139910.1088/1367-2630/9/11/399 Romero-GarcíaVFusterEGarcía-RaffiLSánchez-PérezEASopenaMLlinaresJBand gap creation using quasiordered structures based on sonic crystalsAppl Phys Lett2006881717410410.1063/1.21980121:CAS:528:DC%2BD28XksFCjurw%3D SigalasMMGarcıaNTheoretical study of three dimensional elastic band gaps with the finite-difference time-domain methodJ Appl Phys2000876312231251:CAS:528:DC%2BD3cXhtlCrsr0%3D10.1063/1.372308Mar 15 BoardmanAPioneers in metamaterials: John pendry and victor veselagoJ Opt201013210.1088/2040-8978/13/2/0204011:CAS:528:DC%2BC3MXjtVKjs78%3DDec 1 LiXLiuZCoupling of cavity modes and guiding modes in two-dimensional phononic crystalsSolid State Commun200513363974021:CAS:528:DC%2BD2MXktFKitw%3D%3D10.1016/j.ssc.2004.11.024 Botteldooren D, De Coensel B, Van Renterghem T, Dekoninck L, Gillis D. The urban soundscape–a different perspective. Sustainable mobility in Flanders: The livable city. 2008:177–204. Castiñeira-IbáñezSRubioCRomero-GarcíaVSánchez-PérezJVGarcía-RaffiLMDesign, manufacture and characterization of an acoustic barrier made of multi-phenomena cylindrical scatterers arranged in a fractal-based geometryArchives of Acoustics201237445546210.2478/v10168-012-0057-9Dec 1 HåkanssonACerveraFSánchez-DehesaJSound focusing by flat acoustic lenses without negative refractionAppl Phys Lett200586510.1063/1.18527191:CAS:528:DC%2BD2MXhvFKis7w%3DJan 31 LiuZZhangXMaoYZhuYYYangZChanCTShengPLocally resonant sonic materialsScience20002895485173417361:CAS:528:DC%2BD3cXmsV2htLY%3D10.1126/science.289.5485.1734Sep 8 MeiJLiuZShiJTianDTheory for elastic wave scattering by a two-dimensional periodical array of cylinders: an ideal approach for band-structure calculationsPhys Rev B2003672424510710.1103/PhysRevB.67.2451071:CAS:528:DC%2BD3sXlsFyisr4%3DJun 23 Sánchez-PérezJVCaballeroDMártinez-SalaRRubioCSánchez-DehesaJMeseguerFSound attenuation by a two-dimensional array of rigid cylindersPhys Rev Lett199880245325532810.1103/PhysRevLett.80.5325 MandelbrotBBThe fractal geometry of nature1982New YorkWH freemanAug 15 ScarpaFBulloughWALumleyPTrends in acoustic properties of iron particle seeded auxetic polyurethane foamProc Inst Mech Eng C J Mech Eng Sci200421822412441:CAS:528:DC%2BD2cXkt1Kgt7g%3D10.1243/095440604322887099Feb 1 EnglundDFattalDWaksESolomonGZhangBNakaokaTControlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystalPhys Rev Lett200595110.1103/PhysRevLett.95.0139041:CAS:528:DC%2BD2MXlvVCjtrk%3D BrownEParkerCYablonovitchERadiation properties of a planar antenna on a photonic-crystal substrateJOSA B199310240440710.1364/JOSAB.10.000404 AltugHVučkovićJExperimental demonstration of the slow group velocity of light in two-dimensional coupled photonic crystal microcavity arraysAppl Phys Lett2005861111110210.1063/1.18827551:CAS:528:DC%2BD2MXivFahtbk%3D ChutinanAJohnSToaderODiffractionless flow of light in all-optical microchipsPhys Rev Lett2003901212390110.1103/PhysRevLett.90.1239011:CAS:528:DC%2BD3sXisV2jurg%3D KorringaJOn the calculation of the energy of a Bloch wave in a metalPhysica.1947136–739240010.1016/0031-8914(47)90013-XAug 1 KohnWRostokerNSolution of the Schrödinger equation in periodic lattices with an application to metallic lithiumPhys Rev1954945111111201:CAS:528:DyaG2cXltF2jsA%3D%3D10.1103/PhysRev.94.1111Jun 1 ChenSJiangYChenJWangDThe effects of various additive components on the sound absorption performances of polyurethane foamsAdv Mater Sci Eng2015201519 ZáviškaFÜber die Beugung elektromagnetischer Wellen an parallelen, unendlich langen KreiszylindernAnn Phys191334551023105610.1002/andp.19133450511 HarrisCMHandbook of acoustical measurements and noise control1991New YorkMcGraw-HillJun. MeadeRDDevenyiAJoannopoulosJAlerhandOSmithDKashKNovel applications of photonic band gap materials: low-loss bends and high Q cavitiesJ Appl Phys1994759475347551:CAS:528:DyaK2cXkt1ajsL8%3D10.1063/1.355934 PsarobasIEStefanouNModinosAPhononic crystals with planar defectsPhys Rev B2000629553655401:CAS:528:DC%2BD3cXmt1eitLg%3D10.1103/PhysRevB.62.5536Sep 1 Boroditsky M, Vrijen RB, Krauss TF, Coccioli R, Bhat RJ, Yablonovitch E, editors. Control of spontaneus emission in photonic crystals. Light-Emitting Diodes: Research, Manufacturing, and Applications III; 1999: International Society for Optics and Photonics. Martínez-SalaRRubioCGarcía-RaffiLMSánchez-PérezJVSánchez-PérezEALlinaresJControl of noise by trees arranged like sonic crystalsJ Sound Vib20062911–210010610.1016/j.jsv.2005.05.030 Robertson W, Rudy III J. Measurement of acoustic stop bands in two-dimensional periodic scattering arrays. The Journal of the Acoustical Society of America. Martin PA. Multiple scattering: interaction of time-harmonic waves with N obstacles: Cambridge University Press; 2006. PendryJBHoldenAJRobbinsDJStewartWJMagnetism from conductors and enhanced nonlinear phenomenaIEEE transactions on microwave theory and techniques199947112075208410.1109/22.798002Nov MovchanAGuenneauSSplit-ring resonators and localized modesPhys Rev B2004701212511610.1103/PhysRevB.70.1251161:CAS:528:DC%2BD2cXotVOjsro%3D YablonovitchEInhibited spontaneous emission in solid-state physics and electronicsPhys Rev Lett19875820205920621:CAS:528:DyaL2sXktFGit7Y%3D10.1103/PhysRevLett.58.2059 VlasovYAO'boyleMHamannHFMcNabSJActive control of slow light on a chip with photonic crystal waveguidesNature.2005438706465691:CAS:528:DC%2BD2MXhtFOjur3I10.1038/nature04210 RocheleauTNdukumTMacklinCHertzbergJBClerkAASchwabKCPreparation and detection of a mechanical resonator near the ground state of motionNature.2010463727772751:CAS:528:DC%2BD1MXhsFemtr%2FJ10.1038/nature08681Jan LeeFCChenWHAcoustic transmission analysis of multi-layer absorbersJ Sound Vib2001248462163410.1006/jsvi.2001.3825Dec 6 Wu RS, Aki K. Introduction: seismic wave scattering in three-dimensionally heterogeneous earth. InScattering and attenuations of seismic waves, part I 1988 (pp. 1-6). Birkhäuser, Basel. Parker G. Effective noise barrier design and specification. Proceedings from ACOUSTICS 2006. Romero-García V, Krynkin A, Garcia-Raffi LM, Umnova O, Sánchez-Pérez JV. Multi-resonant scatterers in sonic crystals: locally multi-resonant acoustic metamaterial. Journal of Sound and Vibration. 2013 987 Jan 7;332(1):184–98. PenroseRJorgensenPEThe road to reality: a complete guide to the laws of the universeMath Intell2006283596110.1007/BF02986885 YangSPageJHLiuZCowanMLChanCTShengPFocusing of sound in a 3D phononic crystalPhys Rev Lett200493210.1103/PhysRevLett.93.0243011:CAS:528:DC%2BD2cXls1Whs7g%3D EN C. 5: road traffic noise reducing devices-test method for determining the acoustic performance-part 5: intrinsic characteristics–in-situ values of sound reflection under direct sound field conditions. CEN. Brussels, Belgium. 2012. ChenYYYeZTheoretical analysis of acoustic stop bands in two-dimensional periodic scattering arraysPhys Rev E20016431:STN:280:DC%2BD3MrjsVOruw%3D%3D10.1103/PhysRevE.64.036616Aug 29 Martínez-SalaRSound attenuation by sculptureNature199537824110.1038/378241a0 AltugHEnglundDVučkovićJUltrafast photonic crystal nanocavity laserNat Phys2006274844881:CAS:528:DC%2BD28Xnt1OntLo%3D10.1038/nphys343 TwerskyVMultiple scattering of W Kohn (357_CR34) 1954; 94 V Romero-García (357_CR51) 2009; 125 JV Sanchez-Perez (357_CR55) 2002; 81 V Twersky (357_CR37) 1952; 24 357_CR54 357_CR16 357_CR59 357_CR58 YY Chen (357_CR63) 2001; 64 S Castiñeira-Ibáñez (357_CR52) 2012; 37 T Rocheleau (357_CR35) 2010; 463 357_CR50 F Záviška (357_CR39) 1913; 345 JV Sánchez-Pérez (357_CR15) 1998; 80 V Romero-García (357_CR49) 2013; 332 R Martínez-Sala (357_CR25) 1995; 378 N Fang (357_CR19) 2006; 5 V Romero-García (357_CR24) 2006; 88 M Kafesaki (357_CR41) 1999; 60 JB Pendry (357_CR46) 1999; 47 J Mei (357_CR42) 2003; 67 H Altug (357_CR11) 2006; 2 S Chen (357_CR67) 2018; 39 J Pfretzschner (357_CR76) 1999; 18 S ohn (357_CR62) 1987; 58 E Yablonovitch (357_CR26) 1987; 58 CM Harris (357_CR66) 1991 O Umnova (357_CR22) 2006; 119 CM Linton (357_CR36) 1990; 215 357_CR47 RD Meade (357_CR10) 1994; 75 D Englund (357_CR6) 2005; 95 I El-Kady (357_CR12) 2006; 88 Z Liu (357_CR32) 2000; 289 F Morandi (357_CR56) 2016; 114 CM Soukoulis (357_CR30) 2006; 18 S Castiñeira-Ibáñez (357_CR53) 2014; 7 S Guenneau (357_CR20) 2007; 9 IE Psarobas (357_CR43) 2000; 62 F Asdrubali (357_CR3) 2008; 123 DP Elford (357_CR68) 2011; 130 S Castiñeira-Ibáñez (357_CR48) 2010; 92 357_CR77 X Li (357_CR21) 2005; 133 R Martínez-Sala (357_CR23) 2006; 291 357_CR71 F Scarpa (357_CR70) 2004; 218 E Economou (357_CR27) 1993; 48 357_CR74 MM Sigalas (357_CR40) 2000; 87 357_CR73 A Chutinan (357_CR13) 2003; 90 S Tieliang (357_CR44) 1988; 31 JW Rayleigh (357_CR75) 1896 C Cai (357_CR29) 2017; 122 S John (357_CR72) 1988; 37 E Brown (357_CR9) 1993; 10 MS Kushwaha (357_CR14) 1997; 70 A Movchan (357_CR17) 2004; 70 357_CR65 J Korringa (357_CR33) 1947; 13 X Wang (357_CR38) 1993; 47 A Boardman (357_CR45) 2010; 13 357_CR69 S Chen (357_CR2) 2015; 2015 A Håkansson (357_CR31) 2005; 86 S Yang (357_CR28) 2004; 93 R Penrose (357_CR60) 2006; 28 357_CR61 BB Mandelbrot (357_CR57) 1982 N Trégourès (357_CR64) 2002; 40 FC Lee (357_CR4) 2001; 248 357_CR1 YA Vlasov (357_CR7) 2005; 438 H Altug (357_CR8) 2005; 86 X Hu (357_CR18) 2005; 71 357_CR5 |
References_xml | – volume: 86 start-page: 111102 issue: 11 year: 2005 ident: 357_CR8 publication-title: Appl Phys Lett doi: 10.1063/1.1882755 contributor: fullname: H Altug – volume: 88 start-page: 253109 issue: 25 year: 2006 ident: 357_CR12 publication-title: Appl Phys Lett doi: 10.1063/1.2212050 contributor: fullname: I El-Kady – volume: 71 issue: 5 year: 2005 ident: 357_CR18 publication-title: Phys Rev E doi: 10.1103/PhysRevE.71.055601 contributor: fullname: X Hu – ident: 357_CR73 – volume: 114 start-page: 294 year: 2016 ident: 357_CR56 publication-title: Appl Acoust doi: 10.1016/j.apacoust.2016.07.028 contributor: fullname: F Morandi – volume: 7 issue: 4 year: 2014 ident: 357_CR53 publication-title: Appl Phys Express doi: 10.7567/APEX.7.042201 contributor: fullname: S Castiñeira-Ibáñez – volume: 24 start-page: 42 issue: 1 year: 1952 ident: 357_CR37 publication-title: J Acoust Soc Am doi: 10.1121/1.1906845 contributor: fullname: V Twersky – volume: 87 start-page: 3122 issue: 6 year: 2000 ident: 357_CR40 publication-title: J Appl Phys doi: 10.1063/1.372308 contributor: fullname: MM Sigalas – volume: 130 start-page: 2746 issue: 5 year: 2011 ident: 357_CR68 publication-title: J Acoust Soc Am doi: 10.1121/1.3643818 contributor: fullname: DP Elford – volume: 95 issue: 1 year: 2005 ident: 357_CR6 publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.95.013904 contributor: fullname: D Englund – volume-title: Handbook of acoustical measurements and noise control year: 1991 ident: 357_CR66 contributor: fullname: CM Harris – volume: 60 start-page: 11993 issue: 17 year: 1999 ident: 357_CR41 publication-title: Phys Rev B doi: 10.1103/PhysRevB.60.11993 contributor: fullname: M Kafesaki – volume: 70 start-page: 125116 issue: 12 year: 2004 ident: 357_CR17 publication-title: Phys Rev B doi: 10.1103/PhysRevB.70.125116 contributor: fullname: A Movchan – volume: 5 start-page: 452 issue: 6 year: 2006 ident: 357_CR19 publication-title: Nat Mater doi: 10.1038/nmat1644 contributor: fullname: N Fang – volume: 248 start-page: 621 issue: 4 year: 2001 ident: 357_CR4 publication-title: J Sound Vib doi: 10.1006/jsvi.2001.3825 contributor: fullname: FC Lee – volume: 2015 start-page: 1 year: 2015 ident: 357_CR2 publication-title: Adv Mater Sci Eng contributor: fullname: S Chen – volume: 31 start-page: 1503 issue: 12 year: 1988 ident: 357_CR44 publication-title: Science in China Series B-Chemistry, Biological, Agricultural, Medical & Earth Sciences contributor: fullname: S Tieliang – volume: 438 start-page: 65 issue: 7064 year: 2005 ident: 357_CR7 publication-title: Nature. doi: 10.1038/nature04210 contributor: fullname: YA Vlasov – volume: 9 start-page: 399 issue: 11 year: 2007 ident: 357_CR20 publication-title: New J Phys doi: 10.1088/1367-2630/9/11/399 contributor: fullname: S Guenneau – ident: 357_CR50 doi: 10.1016/j.jsv.2012.08.003 – volume: 332 start-page: 184 issue: 1 year: 2013 ident: 357_CR49 publication-title: J Sound Vib doi: 10.1016/j.jsv.2012.08.003 contributor: fullname: V Romero-García – volume: 378 start-page: 241 year: 1995 ident: 357_CR25 publication-title: Nature doi: 10.1038/378241a0 contributor: fullname: R Martínez-Sala – volume: 81 start-page: 5240 issue: 27 year: 2002 ident: 357_CR55 publication-title: Appl Phys Lett doi: 10.1063/1.1533112 contributor: fullname: JV Sanchez-Perez – ident: 357_CR54 doi: 10.1016/j.buildenv.2015.07.002 – volume: 40 start-page: 269 issue: 1–8 year: 2002 ident: 357_CR64 publication-title: Ultrasonics. doi: 10.1016/S0041-624X(02)00105-1 contributor: fullname: N Trégourès – volume: 86 issue: 5 year: 2005 ident: 357_CR31 publication-title: Appl Phys Lett doi: 10.1063/1.1852719 contributor: fullname: A Håkansson – volume: 39 start-page: 1370 issue: 4 year: 2018 ident: 357_CR67 publication-title: Polym Compos doi: 10.1002/pc.24078 contributor: fullname: S Chen – ident: 357_CR77 – volume: 80 start-page: 5325 issue: 24 year: 1998 ident: 357_CR15 publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.80.5325 contributor: fullname: JV Sánchez-Pérez – volume: 90 start-page: 123901 issue: 12 year: 2003 ident: 357_CR13 publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.90.123901 contributor: fullname: A Chutinan – volume: 13 issue: 2 year: 2010 ident: 357_CR45 publication-title: J Opt doi: 10.1088/2040-8978/13/2/020401 contributor: fullname: A Boardman – volume-title: The theory of sound year: 1896 ident: 357_CR75 contributor: fullname: JW Rayleigh – volume: 2 start-page: 484 issue: 7 year: 2006 ident: 357_CR11 publication-title: Nat Phys doi: 10.1038/nphys343 contributor: fullname: H Altug – volume: 18 start-page: 1941 issue: 15 year: 2006 ident: 357_CR30 publication-title: Adv Mater doi: 10.1002/adma.200600106 contributor: fullname: CM Soukoulis – ident: 357_CR1 doi: 10.1017/CBO9780511735110 – volume: 215 start-page: 549 year: 1990 ident: 357_CR36 publication-title: J Fluid Mech doi: 10.1017/S0022112090002750 contributor: fullname: CM Linton – volume: 47 start-page: 4161 issue: 8 year: 1993 ident: 357_CR38 publication-title: Phys Rev B doi: 10.1103/PhysRevB.47.4161 contributor: fullname: X Wang – ident: 357_CR65 doi: 10.1007/978-3-0348-7722-0_1 – volume: 64 issue: 3 year: 2001 ident: 357_CR63 publication-title: Phys Rev E doi: 10.1103/PhysRevE.64.036616 contributor: fullname: YY Chen – volume: 13 start-page: 392 issue: 6–7 year: 1947 ident: 357_CR33 publication-title: Physica. doi: 10.1016/0031-8914(47)90013-X contributor: fullname: J Korringa – volume: 92 start-page: 24007 issue: 2 year: 2010 ident: 357_CR48 publication-title: EPL (Europhysics Letters) doi: 10.1209/0295-5075/92/24007 contributor: fullname: S Castiñeira-Ibáñez – ident: 357_CR71 – ident: 357_CR69 – volume: 28 start-page: 59 issue: 3 year: 2006 ident: 357_CR60 publication-title: Math Intell doi: 10.1007/BF02986885 contributor: fullname: R Penrose – ident: 357_CR61 – volume: 58 start-page: 2059 issue: 20 year: 1987 ident: 357_CR26 publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.58.2059 contributor: fullname: E Yablonovitch – volume: 18 start-page: 81 issue: 2 year: 1999 ident: 357_CR76 publication-title: Polym Test doi: 10.1016/S0142-9418(98)00009-9 contributor: fullname: J Pfretzschner – volume: 133 start-page: 397 issue: 6 year: 2005 ident: 357_CR21 publication-title: Solid State Commun doi: 10.1016/j.ssc.2004.11.024 contributor: fullname: X Li – volume: 125 start-page: 3774 issue: 6 year: 2009 ident: 357_CR51 publication-title: J Acoust Soc Am doi: 10.1121/1.3126948 contributor: fullname: V Romero-García – volume: 75 start-page: 4753 issue: 9 year: 1994 ident: 357_CR10 publication-title: J Appl Phys doi: 10.1063/1.355934 contributor: fullname: RD Meade – volume: 47 start-page: 2075 issue: 11 year: 1999 ident: 357_CR46 publication-title: IEEE transactions on microwave theory and techniques doi: 10.1109/22.798002 contributor: fullname: JB Pendry – volume: 37 start-page: 455 issue: 4 year: 2012 ident: 357_CR52 publication-title: Archives of Acoustics doi: 10.2478/v10168-012-0057-9 contributor: fullname: S Castiñeira-Ibáñez – volume: 122 start-page: 8 year: 2017 ident: 357_CR29 publication-title: Appl Acoust doi: 10.1016/j.apacoust.2017.02.006 contributor: fullname: C Cai – ident: 357_CR74 – ident: 357_CR47 doi: 10.1109/JSAC.2005.851190 – volume: 291 start-page: 100 issue: 1–2 year: 2006 ident: 357_CR23 publication-title: J Sound Vib doi: 10.1016/j.jsv.2005.05.030 contributor: fullname: R Martínez-Sala – volume: 289 start-page: 1734 issue: 5485 year: 2000 ident: 357_CR32 publication-title: Science doi: 10.1126/science.289.5485.1734 contributor: fullname: Z Liu – volume: 123 start-page: 3037 issue: 5 year: 2008 ident: 357_CR3 publication-title: J Acoust Soc Am doi: 10.1121/1.2932706 contributor: fullname: F Asdrubali – ident: 357_CR59 doi: 10.15171/EHEM.2018.29 – ident: 357_CR16 – ident: 357_CR5 doi: 10.1117/12.344477 – volume-title: The fractal geometry of nature year: 1982 ident: 357_CR57 contributor: fullname: BB Mandelbrot – volume: 93 issue: 2 year: 2004 ident: 357_CR28 publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.93.024301 contributor: fullname: S Yang – volume: 48 start-page: 13434 issue: 18 year: 1993 ident: 357_CR27 publication-title: Phys Rev B doi: 10.1103/PhysRevB.48.13434 contributor: fullname: E Economou – volume: 88 start-page: 174104 issue: 17 year: 2006 ident: 357_CR24 publication-title: Appl Phys Lett doi: 10.1063/1.2198012 contributor: fullname: V Romero-García – volume: 37 start-page: 6963 issue: 12 year: 1988 ident: 357_CR72 publication-title: Phys Rev B doi: 10.1103/PhysRevB.37.6963 contributor: fullname: S John – volume: 58 start-page: 2486 issue: 23 year: 1987 ident: 357_CR62 publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.58.2486 contributor: fullname: S ohn – volume: 94 start-page: 1111 issue: 5 year: 1954 ident: 357_CR34 publication-title: Phys Rev doi: 10.1103/PhysRev.94.1111 contributor: fullname: W Kohn – volume: 70 start-page: 3218 issue: 24 year: 1997 ident: 357_CR14 publication-title: Appl Phys Lett doi: 10.1063/1.119130 contributor: fullname: MS Kushwaha – volume: 218 start-page: 241 issue: 2 year: 2004 ident: 357_CR70 publication-title: Proc Inst Mech Eng C J Mech Eng Sci doi: 10.1243/095440604322887099 contributor: fullname: F Scarpa – volume: 10 start-page: 404 issue: 2 year: 1993 ident: 357_CR9 publication-title: JOSA B doi: 10.1364/JOSAB.10.000404 contributor: fullname: E Brown – volume: 345 start-page: 1023 issue: 5 year: 1913 ident: 357_CR39 publication-title: Ann Phys doi: 10.1002/andp.19133450511 contributor: fullname: F Záviška – ident: 357_CR58 – volume: 67 start-page: 245107 issue: 24 year: 2003 ident: 357_CR42 publication-title: Phys Rev B doi: 10.1103/PhysRevB.67.245107 contributor: fullname: J Mei – volume: 62 start-page: 5536 issue: 9 year: 2000 ident: 357_CR43 publication-title: Phys Rev B doi: 10.1103/PhysRevB.62.5536 contributor: fullname: IE Psarobas – volume: 119 start-page: 278 issue: 1 year: 2006 ident: 357_CR22 publication-title: J Acoust Soc Am doi: 10.1121/1.2133715 contributor: fullname: O Umnova – volume: 463 start-page: 72 issue: 7277 year: 2010 ident: 357_CR35 publication-title: Nature. doi: 10.1038/nature08681 contributor: fullname: T Rocheleau |
SSID | ssj0001033895 |
Score | 2.230098 |
Snippet | Purpose
Nowadays, noise pollution is considered a major environmental problem which has affected the health and comfort of millions of people around the world.... Nowadays, noise pollution is considered a major environmental problem which has affected the health and comfort of millions of people around the world. Solving... PurposeNowadays, noise pollution is considered a major environmental problem which has affected the health and comfort of millions of people around the world.... |
SourceID | pubmedcentral proquest crossref pubmed springer |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 507 |
SubjectTerms | Acoustic absorption Acoustic insulation Acoustic noise Acoustics Computer programs Computer simulation Control systems Crystal structure Decision making Design of experiments Design optimization Earth and Environmental Science Electric power generation Environment Environmental Economics Environmental Engineering/Biotechnology Environmental Health Environmental Law/Policy/Ecojustice Flowers Fractals Frequency analysis Insulation Measurement methods Metamaterials Noise control Noise levels Noise pollution Noise reduction Performance enhancement Power plants Quality of Life Research Research Article Resonance Response surface methodology Software Software engineering Sound transmission Waste Management/Waste Technology |
Title | Designing, constructing and testing of a new generation of sound barriers |
URI | https://link.springer.com/article/10.1007/s40201-019-00357-y https://www.ncbi.nlm.nih.gov/pubmed/32030130 https://www.proquest.com/docview/2346500194 https://pubmed.ncbi.nlm.nih.gov/PMC6985335 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB5cDyKI-LY-lhy8udltmzRpjrK6KKIIKngrTdquC9oVqwf_vZO0XV3Fi7fShiTMTDrfJDNfAI4KLXiKbpnqQhjKNVNUSR1SgYtccMlCP7LFyee38vohPj2zNDlRWwvjkvaNnvTLp-d-OXl0uZUvz2bQ5okNbq6GQqGTYdGgAx3Eht9CdLex4mPUpaKmQMaVydkYyQbNitqDM0k_lmEJZ8Hsqd28P_oFMn_nSv44MHV-aLQGqw2AJCf1RNdhIS83YKXefSN1UdEmXJy6xAzsoEfMtCWJLcckLTPyZok18HlakJQgqiZjRz1tNWTfVfaiJaLTV3uXXbUF96Ozu-E5bS5NoCYK2BuNTMC1wH-cYIEOC64KjKgEVyY2wmRMaMvYl8aZn3Ffx6FM4zhXkonMMoUhWmTbsFhOy3wXiMbQjRUiiLX189gs04FMpa_iXJhQZh4ct6JLXmpujGTGguxknqDMEyfz5MODg1a6SbNOqiRkHCEituIe7NSCnnXVasgDOaeCWQPLjD3_BQ3GMWQ3BuJBr1XW15B_z3Dv3wPtw3JozculuRzAImo1P4ROlb13EaZfXHadiX4C0zPnRg |
link.rule.ids | 230,315,729,782,786,887,27935,27936,48346,48349,49651,49654,53803,53805 |
linkProvider | National Library of Medicine |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8QwDLbgGEBCvB-FAzKwQaS2SZNmPHGgQzwWQIKpavo4WHqIg4F_j522h47HAFvVOmlkO4kd218ADkurZIrbMrelyri0wnCjbcgVTnIltQj9iIqTBzf6-j7unxJMjmxrYVy2exuSdCv1pNiNPB1yfQ2n8Jfm77MwR2jnsgNzvfuHh_7n2YqPjpeJmhqZnxtP70PfjMvvOZJfAqVu_zlb_t_IV2CpsTdZr1aQVZgpqjVYrA_rWF2DtA7nfZfHgX0es2zUYspWQ5ZWOXslHA58HpUsZWiEs6FDqiaB0rsx3cvEbPpCV9-NN-Du7PT2ZMCbOxZ4FgXilUdZIK3CJVGJwIalNCU6YEqaLM5UlgtlCeAvjXM_l76NQ53GcWG0UDkBi6FxKTahU42qYhuYRU9PlCqILZkFSJbbQKfaN3GhslDnHhy1HE-eayiNZAKa7FiUIIsSx6Lk3YNuK5SkmVbjJBQSLUqkkh5s1fKZdIVqJSgM64GektyEgIC0p79UT48OUFsZNFpE5MFxK7_PX_4-wp2_kR_A_OD26jK5PL--2IWFkNTBpcV0oYNiLfZgdpy_7Te6_AFvc-6- |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT4QwEJ7omhgT4_uBzx68aSNQaOlx47q60RgTNfFGKIXVC2vc9eC_d4aXWR8H441AKTDflM50Zr4CHOVGBglOy9zkMuWBEZprZXwucZDLQAnfDak4-fJO3TxGvXOiyWmr-Mts9yYkWdU0EEtTMTl9sflpW_hGXg-5wZpTKEzx91mYo2Ux1PG57uD-ov-5zuKiE6bDul7m55un56Rvhub3fMkvQdNyLuov__8rVmCptkNZt1KcVZjJijVYrBbxWFWbtA6DXpnfgf2fsHTUcM0WQ5YUlk2InwOPRzlLGBrnbFgyWBPQdG5M-zUxk7zSlnjjDXjon9-fXfJ67wWehp6Y8DD1AiPxVymFZ_w80Dk6ZjLQaZTK1AppiPgviaxrA9dEvkqiKNNKSEuEY2h0ik3oFKMi2wZm0AMUufQiQ-YCNrPGU4lydZTJ1FfWgeNG-vFLRbERt2TKpYhiFFFciih-d2CvASiuh9s49hH5kKzVwIGtCqu2K1Q3QeFZB9QUim0DItievlI8P5VE21KjMSNCB04aLD8f-fsb7vyt-SHM3_b68fXg5moXFnzShjJbZg86iGq2D7Nj-3ZQq_UHxGv3VQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Designing%2C+constructing+and+testing+of+a+new+generation+of+sound+barriers&rft.jtitle=Journal+of+environmental+health+science+and+engineering&rft.au=Negahdari%2C+Hadi&rft.au=Javadpour%2C+Sirus&rft.au=Moattar%2C+Faramarz&rft.date=2019-12-01&rft.pub=Springer+International+Publishing&rft.eissn=2052-336X&rft.volume=17&rft.issue=2&rft.spage=507&rft.epage=527&rft_id=info:doi/10.1007%2Fs40201-019-00357-y&rft.externalDocID=10_1007_s40201_019_00357_y |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2052-336X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2052-336X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2052-336X&client=summon |