Maintenance of self‐renewal ability of mouse embryonic stem cells in the absence of DNA methyltransferases Dnmt1, Dnmt3a and Dnmt3b

DNA methyltransferases Dnmt1, Dnmt3a and Dnmt3b cooperatively regulate cytosine methylation in CpG dinucleotides in mammalian genomes, providing an epigenetic basis for gene silencing and maintenance of genome integrity. Proper CpG methylation is required for the normal growth of various somatic cel...

Full description

Saved in:
Bibliographic Details
Published in:Genes to cells : devoted to molecular & cellular mechanisms Vol. 11; no. 7; pp. 805 - 814
Main Authors: Tsumura, Akiko, Hayakawa, Tomohiro, Kumaki, Yuichi, Takebayashi, Shin‐ichiro, Sakaue, Morito, Matsuoka, Chisa, Shimotohno, Kunitada, Ishikawa, Fuyuki, Li, En, Ueda, Hiroki R., Nakayama, Jun‐ichi, Okano, Masaki
Format: Journal Article
Language:English
Published: Malden, USA Blackwell Publishing Inc 01-07-2006
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:DNA methyltransferases Dnmt1, Dnmt3a and Dnmt3b cooperatively regulate cytosine methylation in CpG dinucleotides in mammalian genomes, providing an epigenetic basis for gene silencing and maintenance of genome integrity. Proper CpG methylation is required for the normal growth of various somatic cell types, indicating its essential role in the basic cellular function of mammalian cells. Previous studies using Dnmt1−/– or Dnmt3a−/–Dnmt3b−/– ES cells, however, have shown that undifferentiated embryonic stem (ES) cells can tolerate hypomethylation for their proliferation. In an attempt to investigate the effects of the complete loss of CpG DNA methyltransferase function, we established mouse ES cells lacking all three of these enzymes by gene targeting. Despite the absence of CpG methylation, as demonstrated by genome‐wide methylation analysis, these triple knockout (TKO) ES cells grew robustly and maintained their undifferentiated characteristics. TKO ES cells retained pericentromeric heterochromatin domains marked with methylation at Lys9 of histone H3 and heterochromatin protein‐1, and maintained their normal chromosome numbers. Our results indicate that ES cells can maintain stem cell properties and chromosomal stability in the absence of CpG methylation and CpG DNA methyltransferases.
Bibliography:Communicated by
Fumio Hanaoka
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1356-9597
1365-2443
DOI:10.1111/j.1365-2443.2006.00984.x