Multiple Cracks Propagate Simultaneously in Polymer Liquids in Tension

Understanding the mechanism of fracture is essential for material and process design. While the initiation of fracture in brittle solids is generally associated with the preexistence of material imperfections, the mechanism for initiation of fracture in viscoelastic fluids, e.g., polymer melts and s...

Full description

Saved in:
Bibliographic Details
Published in:Physical review letters Vol. 117; no. 8; p. 087801
Main Authors: Huang, Qian, Alvarez, Nicolas J, Shabbir, Aamir, Hassager, Ole
Format: Journal Article
Language:English
Published: United States 19-08-2016
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Understanding the mechanism of fracture is essential for material and process design. While the initiation of fracture in brittle solids is generally associated with the preexistence of material imperfections, the mechanism for initiation of fracture in viscoelastic fluids, e.g., polymer melts and solutions, remains an open question. We use high speed imaging to visualize crack propagation in entangled polymer liquid filaments under tension. The images reveal the simultaneous propagation of multiple cracks. The critical stress and strain for the onset of crack propagation are found to be highly reproducible functions of the stretch rate, while the position of initiation is completely random. The reproducibility of conditions for fracture points to a mechanism for crack initiation that depends on the dynamic state of the material alone, while the crack profiles reveal the mechanism of energy dissipation during crack propagation.
AbstractList Understanding the mechanism of fracture is essential for material and process design. While the initiation of fracture in brittle solids is generally associated with the preexistence of material imperfections, the mechanism for initiation of fracture in viscoelastic fluids, e.g., polymer melts and solutions, remains an open question. We use high speed imaging to visualize crack propagation in entangled polymer liquid filaments under tension. The images reveal the simultaneous propagation of multiple cracks. The critical stress and strain for the onset of crack propagation are found to be highly reproducible functions of the stretch rate, while the position of initiation is completely random. The reproducibility of conditions for fracture points to a mechanism for crack initiation that depends on the dynamic state of the material alone, while the crack profiles reveal the mechanism of energy dissipation during crack propagation.
ArticleNumber 087801
Author Alvarez, Nicolas J
Huang, Qian
Hassager, Ole
Shabbir, Aamir
Author_xml – sequence: 1
  givenname: Qian
  surname: Huang
  fullname: Huang, Qian
  organization: Department of Chemical and Biochemical Engineering, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
– sequence: 2
  givenname: Nicolas J
  surname: Alvarez
  fullname: Alvarez, Nicolas J
  organization: Department of Chemical and Biological Engineering, Drexel University, Philadelphia, Pennsylvania 19104, USA
– sequence: 3
  givenname: Aamir
  surname: Shabbir
  fullname: Shabbir, Aamir
  organization: Department of Chemical and Biochemical Engineering, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
– sequence: 4
  givenname: Ole
  surname: Hassager
  fullname: Hassager, Ole
  organization: Department of Chemical and Biochemical Engineering, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27588883$$D View this record in MEDLINE/PubMed
BookMark eNqNkMtOwzAQRS1URB_wC1WWbFJmktiOl6jiJRVRQVlHjuOAIa_GSaX8Pa5SWDObke7cOzM6czKp6koTskRYIUJ403wOttWHQnedE_gKYh4DnpEZAhc-R4wmZAYQoi8A-JTMrf0CAAxYfEGmAaexq3BG7p_7ojNNob11K9W39bZt3cgP2WnvzZRuJitd97YYPFN527oYSt16G7PvTWaP0k5X1tTVJTnPZWH11akvyPv93W796G9eHp7WtxtfUcTOVyoCiZEQEgIVMFCM04jllEciy1MpgoBirgRKyYKMY6Y5xZRpEGEqMqBRuCDX496mrfe9tl1SGqt0UYxvJhhTGoqAY_wPKzIWxpGjuSBstKq2tg5rnjStKWU7JAjJEXeydbhf9WHjcDuBJyNuF1yebvRpqbO_2C_f8Ae_9YAF
CitedBy_id crossref_primary_10_1080_00224065_2018_1436834
crossref_primary_10_1122_8_0000184
crossref_primary_10_1039_C6SM01441K
crossref_primary_10_1122_1_4995497
crossref_primary_10_1002_adma_201704028
crossref_primary_10_1007_s00397_022_01359_8
crossref_primary_10_1122_1_5087431
crossref_primary_10_1063_1_5108510
crossref_primary_10_1007_s00397_021_01277_1
crossref_primary_10_1016_j_mtcomm_2019_100657
crossref_primary_10_1103_Physics_9_95
crossref_primary_10_1073_pnas_2105058118
crossref_primary_10_1021_acs_macromol_0c00693
crossref_primary_10_1007_s00603_021_02364_8
crossref_primary_10_1021_acs_macromol_1c02262
crossref_primary_10_1039_C8SM00238J
crossref_primary_10_1007_s00397_018_1081_0
crossref_primary_10_1002_marc_202200159
crossref_primary_10_1007_s00397_021_01304_1
crossref_primary_10_1016_j_jnnfm_2017_06_009
crossref_primary_10_1122_1_5038393
crossref_primary_10_1007_s00397_019_01159_7
crossref_primary_10_3390_polym10080856
crossref_primary_10_1007_s00397_023_01392_1
crossref_primary_10_1007_s00397_023_01393_0
crossref_primary_10_1007_s00397_024_01455_x
crossref_primary_10_1122_1_4998158
crossref_primary_10_1122_1_4997587
crossref_primary_10_1103_PhysRevResearch_4_043037
crossref_primary_10_1039_D1SM01075A
crossref_primary_10_1021_acs_macromol_6b02543
crossref_primary_10_1021_acsmacrolett_8b00485
crossref_primary_10_1073_pnas_2104790118
crossref_primary_10_1016_j_polymer_2017_12_042
crossref_primary_10_3390_polym15041051
crossref_primary_10_1039_C7SM00126F
crossref_primary_10_1016_j_compositesb_2020_107953
crossref_primary_10_1021_acs_macromol_1c01283
crossref_primary_10_1021_acs_macromol_8b02319
crossref_primary_10_1063_5_0076347
crossref_primary_10_1021_acs_macromol_2c01594
crossref_primary_10_1122_8_0000781
crossref_primary_10_1073_pnas_2105974118
Cites_doi 10.1126/science.280.5361.265
10.1039/c1sm06024d
10.1103/PhysRevLett.102.155501
10.1021/la950886y
10.1016/0377-0257(77)80005-0
10.1122/1.550881
10.1021/la0356607
10.1098/rsta.1921.0006
10.1122/1.1308522
10.1016/j.eml.2015.06.002
10.1007/s00397-016-0921-z
10.1016/j.jnnfm.2012.10.007
10.1021/ma021759t
10.1007/s00397-012-0668-0
10.1126/science.271.5248.482
10.1126/science.1248494
10.1103/PhysRevLett.107.258301
10.1103/PhysRevLett.114.158301
10.1103/PhysRevLett.115.078302
ContentType Journal Article
DBID NPM
AAYXX
CITATION
7X8
7U5
8FD
H8D
L7M
DOI 10.1103/physrevlett.117.087801
DatabaseName PubMed
CrossRef
MEDLINE - Academic
Solid State and Superconductivity Abstracts
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle PubMed
CrossRef
MEDLINE - Academic
Aerospace Database
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitleList MEDLINE - Academic
Aerospace Database
PubMed
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1079-7114
EndPage 087801
ExternalDocumentID 10_1103_PhysRevLett_117_087801
27588883
Genre Journal Article
GroupedDBID ---
-DZ
-~X
123
2-P
29O
3MX
5VS
85S
8NH
ACBEA
ACGFO
ACNCT
AENEX
AEQTI
AFFNX
AFGMR
AGDNE
AJQPL
ALMA_UNASSIGNED_HOLDINGS
APKKM
AUAIK
CS3
D0L
DU5
EBS
EJD
ER.
F5P
MVM
N9A
NPBMV
NPM
P2P
ROL
S7W
SJN
TN5
UBE
UCJ
VQA
WH7
XSW
YNT
ZPR
~02
186
3O-
41~
6TJ
8WZ
9M8
A6W
AAYJJ
AAYXX
ABTAH
ACKIV
CITATION
H~9
NEJ
NHB
OHT
OK1
P0-
RNS
T9H
UBC
VOH
XJT
XOL
YYP
ZCG
ZY4
7X8
7U5
8FD
H8D
L7M
ID FETCH-LOGICAL-c511t-cc40a1499a02c260c67546f5749dfba92251fc91aa62d71de751b6e093b9d0543
IEDL.DBID ZPR
ISSN 0031-9007
IngestDate Fri Oct 25 09:50:25 EDT 2024
Sat Oct 26 00:31:40 EDT 2024
Thu Sep 26 17:51:20 EDT 2024
Wed Oct 16 00:56:50 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c511t-cc40a1499a02c260c67546f5749dfba92251fc91aa62d71de751b6e093b9d0543
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://orbit.dtu.dk/files/125717061/PhysRevLett.117.087801.pdf
PMID 27588883
PQID 1816638410
PQPubID 23479
PageCount 1
ParticipantIDs proquest_miscellaneous_1855392718
proquest_miscellaneous_1816638410
crossref_primary_10_1103_PhysRevLett_117_087801
pubmed_primary_27588883
PublicationCentury 2000
PublicationDate 2016-Aug-19
PublicationDateYYYYMMDD 2016-08-19
PublicationDate_xml – month: 08
  year: 2016
  text: 2016-Aug-19
  day: 19
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Physical review letters
PublicationTitleAlternate Phys Rev Lett
PublicationYear 2016
References PhysRevLett.117.087801Cc4R1
PhysRevLett.117.087801Cc5R1
Y. Pomeau (PhysRevLett.117.087801Cc13R1) 1992
PhysRevLett.117.087801Cc2R1
PhysRevLett.117.087801Cc3R1
M. Doi (PhysRevLett.117.087801Cc16R1) 1986
PhysRevLett.117.087801Cc1R1
PhysRevLett.117.087801Cc21R1
PhysRevLett.117.087801Cc10R1
PhysRevLett.117.087801Cc20R1
PhysRevLett.117.087801Cc25R1
M. Rubinstein (PhysRevLett.117.087801Cc19R1) 2003
PhysRevLett.117.087801Cc24R1
PhysRevLett.117.087801Cc11R1
PhysRevLett.117.087801Cc23R1
PhysRevLett.117.087801Cc12R1
PhysRevLett.117.087801Cc18R1
PhysRevLett.117.087801Cc15R1
PhysRevLett.117.087801Cc8R1
PhysRevLett.117.087801Cc9R1
PhysRevLett.117.087801Cc6R1
R. B. Bird (PhysRevLett.117.087801Cc22R1) 1987
PhysRevLett.117.087801Cc7R1
References_xml – volume-title: Dynamics of Polymeric Liquids
  year: 1987
  ident: PhysRevLett.117.087801Cc22R1
  contributor:
    fullname: R. B. Bird
– ident: PhysRevLett.117.087801Cc6R1
  doi: 10.1126/science.280.5361.265
– ident: PhysRevLett.117.087801Cc11R1
  doi: 10.1039/c1sm06024d
– ident: PhysRevLett.117.087801Cc10R1
  doi: 10.1103/PhysRevLett.102.155501
– ident: PhysRevLett.117.087801Cc24R1
  doi: 10.1021/la950886y
– volume-title: The Theory of Polymer Dynamics
  year: 1986
  ident: PhysRevLett.117.087801Cc16R1
  contributor:
    fullname: M. Doi
– ident: PhysRevLett.117.087801Cc3R1
  doi: 10.1016/0377-0257(77)80005-0
– ident: PhysRevLett.117.087801Cc1R1
  doi: 10.1122/1.550881
– ident: PhysRevLett.117.087801Cc7R1
  doi: 10.1021/la0356607
– ident: PhysRevLett.117.087801Cc12R1
  doi: 10.1098/rsta.1921.0006
– ident: PhysRevLett.117.087801Cc18R1
  doi: 10.1122/1.1308522
– ident: PhysRevLett.117.087801Cc9R1
  doi: 10.1016/j.eml.2015.06.002
– start-page: 553
  year: 1992
  ident: PhysRevLett.117.087801Cc13R1
  publication-title: C. R. Acad. Sci. Paris
  contributor:
    fullname: Y. Pomeau
– volume-title: Polymer Physics
  year: 2003
  ident: PhysRevLett.117.087801Cc19R1
  contributor:
    fullname: M. Rubinstein
– ident: PhysRevLett.117.087801Cc20R1
  doi: 10.1007/s00397-016-0921-z
– ident: PhysRevLett.117.087801Cc21R1
  doi: 10.1016/j.jnnfm.2012.10.007
– ident: PhysRevLett.117.087801Cc25R1
  doi: 10.1021/ma021759t
– ident: PhysRevLett.117.087801Cc23R1
  doi: 10.1007/s00397-012-0668-0
– ident: PhysRevLett.117.087801Cc5R1
  doi: 10.1126/science.271.5248.482
– ident: PhysRevLett.117.087801Cc8R1
  doi: 10.1126/science.1248494
– ident: PhysRevLett.117.087801Cc2R1
  doi: 10.1103/PhysRevLett.107.258301
– ident: PhysRevLett.117.087801Cc4R1
  doi: 10.1103/PhysRevLett.114.158301
– ident: PhysRevLett.117.087801Cc15R1
  doi: 10.1103/PhysRevLett.115.078302
SSID ssj0001268
Score 2.4648628
Snippet Understanding the mechanism of fracture is essential for material and process design. While the initiation of fracture in brittle solids is generally...
SourceID proquest
crossref
pubmed
SourceType Aggregation Database
Index Database
StartPage 087801
SubjectTerms Crack initiation
Crack propagation
Filaments
Fracture mechanics
Imaging
Liquids
Melts
Propagation (polymerization)
Title Multiple Cracks Propagate Simultaneously in Polymer Liquids in Tension
URI https://www.ncbi.nlm.nih.gov/pubmed/27588883
https://search.proquest.com/docview/1816638410
https://search.proquest.com/docview/1855392718
Volume 117
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA46EHzxfpk3IvhalzRt0jzK3NiDytgm-FbSpIXCbHVdhf17T9puKDhhfSyll9OTnO_L-c4JQncJDCIFcQqcN5CO5xnjKNdEDpeCKBHxRFXbAQ3G4uUteOzZNjnk7ww-JaxjlZCj-MtWt9gM4z0JRFAXbAVCVgUjo9XUS11eT73M6g6IaEqC19_mdzRaAzGrUNPf3_wlD9BeAyvxQ-0Hh2grzo7QTiXv1MUx6j83ukHcndmiejycAVm2K2h4nFpNocrivCymC5xmeJhPF-_xDD-ln2VqCntqYmXueXaCXvu9SXfgNDsoOBqA1NzR2iMKOJBUxNXAXDTQA48nvvCkSSIlYTDTREuqFHeNoCYWPo14TCSLpAEwx05RK8uz-BxhqpkbSZ3Yhn9AqkTkKkIiybgGxgWoo406S0uGH3WjjLAiGISFP6xjm4uHtXXa6HZp8BB82iYq6o8NqU1mssCj5L9rfB-wHYTWNjqr_9bquS6QIDjYxcbvdIl2ARFxu2hM5RVqzWdlfI22C1PeVJ72DVjNz3s
link.rule.ids 315,782,786,2879,27933,27934
linkProvider American Physical Society
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiple+Cracks+Propagate+Simultaneously+in+Polymer+Liquids+in+Tension&rft.jtitle=Physical+review+letters&rft.au=Huang%2C+Qian&rft.au=Alvarez%2C+Nicolas+J&rft.au=Shabbir%2C+Aamir&rft.au=Hassager%2C+Ole&rft.date=2016-08-19&rft.eissn=1079-7114&rft.volume=117&rft.issue=8&rft.spage=087801&rft.epage=087801&rft_id=info:doi/10.1103%2FPhysRevLett.117.087801&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-9007&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-9007&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-9007&client=summon