Response of extreme precipitation to uniform surface warming in quasi-global aquaplanet simulations at high resolution

Projections of precipitation extremes in simulations with global climate models are very uncertain in the tropics, in part because of the use of parameterizations of deep convection and model deficiencies in simulating convective organization. Here, we analyse precipitation extremes in high-resoluti...

Full description

Saved in:
Bibliographic Details
Published in:Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences Vol. 379; no. 2195; p. 20190543
Main Authors: O'Gorman, P A, Li, Z, Boos, W R, Yuval, J
Format: Journal Article
Language:English
Published: England The Royal Society Publishing 19-04-2021
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Projections of precipitation extremes in simulations with global climate models are very uncertain in the tropics, in part because of the use of parameterizations of deep convection and model deficiencies in simulating convective organization. Here, we analyse precipitation extremes in high-resolution simulations that are run without a convective parameterization on a quasi-global aquaplanet. The frequency distributions of precipitation rates and precipitation cluster sizes in the tropics of a control simulation are similar to the observed distributions. In response to climate warming, 3 h precipitation extremes increase at rates of up to [Formula: see text] in the tropics because of a combination of positive thermodynamic and dynamic contributions. The dynamic contribution at different latitudes is connected to the vertical structure of warming using a moist static stability. When the precipitation rates are first averaged to a daily timescale and coarse-grained to a typical global climate-model resolution prior to calculating the precipitation extremes, the response of the precipitation extremes to warming becomes more similar to what was found previously in coarse-resolution aquaplanet studies. However, the simulations studied here do not exhibit the high rates of increase of tropical precipitation extremes found in projections with some global climate models. This article is part of a discussion meeting issue 'Intensification of short-duration rainfall extremes and implications for flash flood risks'.
Bibliography:USDOE Office of Science (SC)
SC0019367
ISSN:1364-503X
1471-2962
DOI:10.1098/rsta.2019.0543