Comparing the applications of machine learning, PBPK, and population pharmacokinetic models in pharmacokinetic drug–drug interaction prediction
The gold‐standard approach for modeling pharmacokinetic mediated drug–drug interactions is the use of physiologically‐based pharmacokinetic modeling and population pharmacokinetics. However, these models require extensive amounts of drug‐specific data generated from a wide variety of in vitro and in...
Saved in:
Published in: | CPT: pharmacometrics and systems pharmacology Vol. 11; no. 12; pp. 1560 - 1568 |
---|---|
Main Authors: | , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
John Wiley & Sons, Inc
01-12-2022
John Wiley and Sons Inc Wiley |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | The gold‐standard approach for modeling pharmacokinetic mediated drug–drug interactions is the use of physiologically‐based pharmacokinetic modeling and population pharmacokinetics. However, these models require extensive amounts of drug‐specific data generated from a wide variety of in vitro and in vivo models, which are later refined with clinical data and system‐specific parameters. Machine learning has the potential to be utilized for the prediction of drug–drug interactions much earlier in the drug discovery cycle, using inputs derived from, among others, chemical structure. This could lead to refined chemical designs in early drug discovery. Machine‐learning models have many advantages, such as the capacity to automate learning (increasing the speed and scalability of predictions), improved generalizability by learning from multicase historical data, and highlighting statistical and potentially clinically significant relationships between input variables. In contrast, the routinely used mechanistic models (physiologically‐based pharmacokinetic models and population pharmacokinetics) are currently considered more interpretable, reliable, and require a smaller sample size of data, although insights differ on a case‐by‐case basis. Therefore, they may be appropriate for later stages of drug–drug interaction assessment when more in vivo and clinical data are available. A combined approach of using mechanistic models to highlight features that can be used for training machine‐learning models may also be exploitable in the future to improve the performance of machine learning. In this review, we provide concepts, strategic considerations, and compare machine learning to mechanistic modeling for drug–drug interaction risk assessment across the stages of drug discovery and development. |
---|---|
AbstractList | The gold‐standard approach for modeling pharmacokinetic mediated drug–drug interactions is the use of physiologically‐based pharmacokinetic modeling and population pharmacokinetics. However, these models require extensive amounts of drug‐specific data generated from a wide variety of in vitro and in vivo models, which are later refined with clinical data and system‐specific parameters. Machine learning has the potential to be utilized for the prediction of drug–drug interactions much earlier in the drug discovery cycle, using inputs derived from, among others, chemical structure. This could lead to refined chemical designs in early drug discovery. Machine‐learning models have many advantages, such as the capacity to automate learning (increasing the speed and scalability of predictions), improved generalizability by learning from multicase historical data, and highlighting statistical and potentially clinically significant relationships between input variables. In contrast, the routinely used mechanistic models (physiologically‐based pharmacokinetic models and population pharmacokinetics) are currently considered more interpretable, reliable, and require a smaller sample size of data, although insights differ on a case‐by‐case basis. Therefore, they may be appropriate for later stages of drug–drug interaction assessment when more in vivo and clinical data are available. A combined approach of using mechanistic models to highlight features that can be used for training machine‐learning models may also be exploitable in the future to improve the performance of machine learning. In this review, we provide concepts, strategic considerations, and compare machine learning to mechanistic modeling for drug–drug interaction risk assessment across the stages of drug discovery and development. Abstract The gold‐standard approach for modeling pharmacokinetic mediated drug–drug interactions is the use of physiologically‐based pharmacokinetic modeling and population pharmacokinetics. However, these models require extensive amounts of drug‐specific data generated from a wide variety of in vitro and in vivo models, which are later refined with clinical data and system‐specific parameters. Machine learning has the potential to be utilized for the prediction of drug–drug interactions much earlier in the drug discovery cycle, using inputs derived from, among others, chemical structure. This could lead to refined chemical designs in early drug discovery. Machine‐learning models have many advantages, such as the capacity to automate learning (increasing the speed and scalability of predictions), improved generalizability by learning from multicase historical data, and highlighting statistical and potentially clinically significant relationships between input variables. In contrast, the routinely used mechanistic models (physiologically‐based pharmacokinetic models and population pharmacokinetics) are currently considered more interpretable, reliable, and require a smaller sample size of data, although insights differ on a case‐by‐case basis. Therefore, they may be appropriate for later stages of drug–drug interaction assessment when more in vivo and clinical data are available. A combined approach of using mechanistic models to highlight features that can be used for training machine‐learning models may also be exploitable in the future to improve the performance of machine learning. In this review, we provide concepts, strategic considerations, and compare machine learning to mechanistic modeling for drug–drug interaction risk assessment across the stages of drug discovery and development. |
Author | Miljković, Filip Martinsson, Anton Gill, Jaidip Moullet, Marie Arends, Rosalinda H. Pilla Reddy, Venkatesh Williamson, Beth |
AuthorAffiliation | 1 Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Sciences Biopharmaceuticals R&D, AstraZeneca Cambridge UK 4 Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Sciences Biopharmaceuticals R&D, AstraZeneca Gaithersburg MD USA 6 Present address: Bioinformatics & Data Science, Exelixis Alameda CA USA 3 Oncology DMPK Oncology R&D, AstraZeneca Cambridge UK 2 Imaging and Data Analytics, Clinical Pharmacology & Safety Sciences Biopharmaceuticals R&D, AstraZeneca Gothenburg Sweden 5 Present address: DMPK, UCB Surrey UK |
AuthorAffiliation_xml | – name: 2 Imaging and Data Analytics, Clinical Pharmacology & Safety Sciences Biopharmaceuticals R&D, AstraZeneca Gothenburg Sweden – name: 4 Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Sciences Biopharmaceuticals R&D, AstraZeneca Gaithersburg MD USA – name: 5 Present address: DMPK, UCB Surrey UK – name: 6 Present address: Bioinformatics & Data Science, Exelixis Alameda CA USA – name: 1 Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Sciences Biopharmaceuticals R&D, AstraZeneca Cambridge UK – name: 3 Oncology DMPK Oncology R&D, AstraZeneca Cambridge UK |
Author_xml | – sequence: 1 givenname: Jaidip surname: Gill fullname: Gill, Jaidip organization: Biopharmaceuticals R&D, AstraZeneca – sequence: 2 givenname: Marie surname: Moullet fullname: Moullet, Marie organization: Biopharmaceuticals R&D, AstraZeneca – sequence: 3 givenname: Anton orcidid: 0000-0003-3963-6105 surname: Martinsson fullname: Martinsson, Anton organization: Biopharmaceuticals R&D, AstraZeneca – sequence: 4 givenname: Filip orcidid: 0000-0001-5365-505X surname: Miljković fullname: Miljković, Filip organization: Biopharmaceuticals R&D, AstraZeneca – sequence: 5 givenname: Beth surname: Williamson fullname: Williamson, Beth organization: Oncology R&D, AstraZeneca – sequence: 6 givenname: Rosalinda H. surname: Arends fullname: Arends, Rosalinda H. organization: Biopharmaceuticals R&D, AstraZeneca – sequence: 7 givenname: Venkatesh orcidid: 0000-0002-7786-4371 surname: Pilla Reddy fullname: Pilla Reddy, Venkatesh email: venkatesh.reddy@astrazeneca.com organization: Biopharmaceuticals R&D, AstraZeneca |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36176050$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kt1qFDEUgINU7I-98QEk4J10a_4mmbkRdKlaLLigXodMcmY368wkZmaU3vkK4hv6JGZ3amkRDIQccj6-c0LOMTroQw8IPaHknBLCXsQhinPKSkUeoCNGJV-UnMiDO_EhOh2GLclLCUIr8ggdckmVJAU5Qj-XoYsm-X6Nxw1gE2PrrRl96AccGtwZu_E94BZM6jN0hlevV-_PsOkdjiFO7R7FcWNSRsOXzI7e4i44aAfs_824NK1___i1O3J6hGTsbEjg_D58jB42ph3g9OY8QZ_fXHxavltcfXh7uXx1tbAFpWTBK15zUwHwoqGM1k4KXnCmbG2UbYQgTAHjCkpraqFsWRmoSgPguBK7zU_Q5ex1wWx1TL4z6VoH4_X-IqS1Nim33IKWwijOXMmcEqIqZZmLyYJXDaONFKLIrpezK051B85CPybT3pPez_R-o9fhm65UUVSMZcGzG0EKXycYRr0NU-rz-zVThZCq4oRk6vlM2RSGIUFzW4ESvZsGvZsGvZ-GDD-929Mt-vfvM0Bn4Ltv4fo_Kr36uBKz9A_eXMRr |
CitedBy_id | crossref_primary_10_1016_j_ejps_2024_106838 crossref_primary_10_1007_s00228_024_03698_2 crossref_primary_10_3390_ijms25094671 crossref_primary_10_1016_j_phymed_2024_155479 crossref_primary_10_18231_j_ijcaap_2023_034 crossref_primary_10_1021_acsptsci_3c00256 crossref_primary_10_1080_00498254_2023_2246153 crossref_primary_10_1080_00498254_2023_2250856 crossref_primary_10_1038_s41598_024_54409_x crossref_primary_10_1080_17425247_2023_2167978 |
Cites_doi | 10.1109/BIBM.2018.8621405 10.7554/eLife.50135 10.1038/msb.2012.26 10.1073/pnas.1803294115 10.1093/bioinformatics/btac094 10.1186/s13321-017-0200-8 10.1613/jair.953 10.1002/psp4.12794 10.1021/acsomega.9b04162 10.1093/bioinformatics/btab169 10.1098/rsbl.2017.0660 10.1586/ecp.13.4 10.1186/s13321-021-00539-7 10.1186/s40537-019-0192-5 10.1002/minf.201900062 10.1038/s41573-019-0024-5 10.1016/j.apsb.2016.04.004 10.1093/bioinformatics/btx806 10.1038/s42256-020-00236-4 10.1161/CIRCULATIONAHA.115.001593 10.1038/s41746-022-00639-0 10.1016/j.archger.2018.06.018 10.1007/s10928-016-9464-2 |
ContentType | Journal Article |
Copyright | 2022 The Authors. published by Wiley Periodicals LLC on behalf of American Society for Clinical Pharmacology and Therapeutics. 2022 The Authors. CPT: Pharmacometrics & Systems Pharmacology published by Wiley Periodicals LLC on behalf of American Society for Clinical Pharmacology and Therapeutics. 2022. This work is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2022 The Authors. published by Wiley Periodicals LLC on behalf of American Society for Clinical Pharmacology and Therapeutics. – notice: 2022 The Authors. CPT: Pharmacometrics & Systems Pharmacology published by Wiley Periodicals LLC on behalf of American Society for Clinical Pharmacology and Therapeutics. – notice: 2022. This work is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P WIN CGR CUY CVF ECM EIF NPM AAYXX CITATION 3V. 7X7 7XB 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S PIMPY PQEST PQQKQ PQUKI PRINS 5PM DOA |
DOI | 10.1002/psp4.12870 |
DatabaseName | Wiley Online Library Open Access Wiley Online Library Open Access Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials ProQuest Databases ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni Edition) Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China PubMed Central (Full Participant titles) Directory of Open Access Journals |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Publicly Available Content Database ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Central China ProQuest Hospital Collection (Alumni) ProQuest Central ProQuest Health & Medical Complete Health Research Premium Collection ProQuest One Academic UKI Edition Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest One Academic ProQuest Central (Alumni) |
DatabaseTitleList | Publicly Available Content Database CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: http://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: ECM name: MEDLINE url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Pharmacy, Therapeutics, & Pharmacology |
DocumentTitleAlternate | ML vs PBPK vs Pop‐PK for DDI |
EISSN | 2163-8306 |
EndPage | 1568 |
ExternalDocumentID | oai_doaj_org_article_64a732d82d7449868d646539f21f6445 10_1002_psp4_12870 36176050 PSP412870 |
Genre | reviewArticle Journal Article Review |
GroupedDBID | 0R~ 1OC 24P 5VS 7X7 8FI 8FJ AAHHS AAZKR ABDBF ABUWG ACCFJ ACGFS ACXQS ADBBV ADKYN ADRAZ ADZMN ADZOD AEEZP AEQDE AFKRA AIWBW AJBDE ALAGY ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQN AOIJS AVUZU BAWUL BCNDV BENPR BPHCQ BVXVI CCPQU DIK EBS EJD FYUFA GODZA GROUPED_DOAJ GX1 HMCUK HYE IAO IHR INH KQ8 M48 M~E O9- OK1 OVD PIMPY PQQKQ PROAC RNTTT RPM TEORI TUS UKHRP WIN CGR CUY CVF ECM EIF ITC NPM AAYXX CITATION 3V. 7XB 8FK AZQEC DWQXO K9. PQEST PQUKI PRINS 5PM |
ID | FETCH-LOGICAL-c5110-393b3a9ee35f121bd6435327cba7cf44027e237e8cab47c89ae98aeed374d3743 |
IEDL.DBID | RPM |
ISSN | 2163-8306 |
IngestDate | Tue Oct 22 15:15:20 EDT 2024 Tue Sep 17 21:33:06 EDT 2024 Thu Oct 10 20:19:45 EDT 2024 Thu Nov 21 21:35:38 EST 2024 Sat Sep 28 08:17:51 EDT 2024 Sat Aug 24 00:57:31 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
License | Attribution-NonCommercial 2022 The Authors. CPT: Pharmacometrics & Systems Pharmacology published by Wiley Periodicals LLC on behalf of American Society for Clinical Pharmacology and Therapeutics. This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5110-393b3a9ee35f121bd6435327cba7cf44027e237e8cab47c89ae98aeed374d3743 |
ORCID | 0000-0003-3963-6105 0000-0002-7786-4371 0000-0001-5365-505X |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9755922/ |
PMID | 36176050 |
PQID | 2754679300 |
PQPubID | 4368367 |
PageCount | 9 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_64a732d82d7449868d646539f21f6445 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9755922 proquest_journals_2754679300 crossref_primary_10_1002_psp4_12870 pubmed_primary_36176050 wiley_primary_10_1002_psp4_12870_PSP412870 |
PublicationCentury | 2000 |
PublicationDate | December 2022 |
PublicationDateYYYYMMDD | 2022-12-01 |
PublicationDate_xml | – month: 12 year: 2022 text: December 2022 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Hoboken |
PublicationTitle | CPT: pharmacometrics and systems pharmacology |
PublicationTitleAlternate | CPT Pharmacometrics Syst Pharmacol |
PublicationYear | 2022 |
Publisher | John Wiley & Sons, Inc John Wiley and Sons Inc Wiley |
Publisher_xml | – name: John Wiley & Sons, Inc – name: John Wiley and Sons Inc – name: Wiley |
References | 2002; 16 2019; 6 2020; 39 2019; 18 2020; 34 2003 2013; 6 2017; 9 2021; 13 2016; 6 2021; 37 2017; 30 2020; 5 2020; 2 2022; 5 2020 2018; 115 2015; 131 2015; 132 2020; 9 2016; 43 2018 2013 2022; 11 2018; 78 2018; 34 2022; 38 2012; 8 2018; 14 e_1_2_10_21_1 e_1_2_10_22_1 e_1_2_10_20_1 Singh RRR (e_1_2_10_23_1) 2015; 131 Huang K (e_1_2_10_10_1) 2020; 34 e_1_2_10_2_1 e_1_2_10_4_1 e_1_2_10_18_1 Yu L (e_1_2_10_19_1) 2003 e_1_2_10_3_1 Research CfDEa (e_1_2_10_6_1) 2020 e_1_2_10_16_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_8_1 e_1_2_10_14_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_12_1 e_1_2_10_9_1 e_1_2_10_13_1 e_1_2_10_11_1 e_1_2_10_30_1 Lundberg SM (e_1_2_10_24_1) 2017; 30 e_1_2_10_29_1 e_1_2_10_27_1 e_1_2_10_28_1 e_1_2_10_25_1 e_1_2_10_26_1 |
References_xml | – volume: 37 start-page: 2651 issue: 17 year: 2021 end-page: 2658 article-title: MUFFIN: multi‐scale feature fusion for drug–drug interaction prediction publication-title: Bioinformatics – start-page: 1662 year: 2018 end-page: 1668 – volume: 34 start-page: 1538 issue: 9 year: 2018 end-page: 1546 article-title: DeepSynergy: predicting anti‐cancer drug synergy with deep learning publication-title: Bioinformatics – volume: 131 start-page: 4 issue: 16 year: 2015 end-page: 8 article-title: Review on class imbalance learning: binary and multiclass publication-title: Int J Comput Appl – volume: 6 start-page: 143 issue: 2 year: 2013 end-page: 157 article-title: Predicting drug–drug interactions: application of physiologically based pharmacokinetic models under a systems biology approach publication-title: Expert Rev Clin Pharmacol – start-page: 351 year: 2013 end-page: 355 – volume: 115 start-page: E4304 issue: 18 year: 2018 end-page: E4311 article-title: Deep learning improves prediction of drug–drug and drug–food interactions publication-title: Proc Natl Acad Sci USA – volume: 78 start-page: 213 year: 2018 end-page: 220 article-title: Polypharmacy prevalence among older adults based on the survey of health, ageing and retirement in Europe publication-title: Arch Gerontol Geriatr – volume: 132 start-page: 1920 issue: 20 year: 2015 end-page: 1930 article-title: Machine learning in medicine publication-title: Circulation – volume: 9 start-page: e50135 year: 2020 article-title: Duodenum intestine‐Chip for preclinical drug assessment in a human relevant model publication-title: Elife – volume: 5 start-page: 5150 issue: 10 year: 2020 end-page: 5159 article-title: graphDelta: MPNN scoring function for the affinity prediction of protein–ligand complexes publication-title: ACS Omega – volume: 30 start-page: 4765 year: 2017 end-page: 4774 article-title: A unified approach to interpreting model predictions publication-title: Adv Neural Inform Process Syst – start-page: 856 year: 2003 end-page: 863 – volume: 5 start-page: 88 issue: 1 year: 2022 article-title: Machine learning‐based quantitative prediction of drug exposure in drug–drug interactions using drug label information publication-title: Npj Digital Med – volume: 6 start-page: 27 issue: 1 year: 2019 article-title: Survey on deep learning with class imbalance publication-title: J Big Data – volume: 18 start-page: 463 issue: 6 year: 2019 end-page: 477 article-title: Applications of machine learning in drug discovery and development publication-title: Nat Rev Drug Discov – volume: 38 start-page: 2315 issue: 8 year: 2022 end-page: 2322 article-title: Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction publication-title: Bioinformatics – volume: 16 start-page: 321 year: 2002 end-page: 357 article-title: SMOTE: synthetic minority over‐sampling technique publication-title: J Artif Intell Res – volume: 13 start-page: 62 issue: 1 year: 2021 article-title: Probabilistic random Forest improves bioactivity predictions close to the classification threshold by taking into account experimental uncertainty publication-title: J Chem – volume: 8 start-page: 592 issue: 1 year: 2012 article-title: INDI: a computational framework for inferring drug interactions and their associated recommendations publication-title: Mol Syst Biol – volume: 43 start-page: 123 issue: 2 year: 2016 end-page: 135 article-title: Methods and strategies for assessing uncontrolled drug‐drug interactions in population pharmacokinetic analyses: results from the International Society of Pharmacometrics (ISOP) working group publication-title: J Pharmacokinet Pharmacodyn – volume: 2 start-page: 573 issue: 10 year: 2020 end-page: 584 article-title: Drug discovery with explainable artificial intelligence publication-title: Nat Machine Intell – volume: 34 start-page: 702 issue: 1 year: 2020 end-page: 709 article-title: CASTER: predicting drug interactions with chemical substructure representation publication-title: Proc AAAI Confer Artif Intell – year: 2020 – volume: 9 start-page: 16 issue: 1 year: 2017 article-title: Predicting drug–drug interactions through drug structural similarities and interaction networks incorporating pharmacokinetics and pharmacodynamics knowledge publication-title: J Cheminform – volume: 39 issue: 5 year: 2020 article-title: A machine learning approach for drug‐target interaction prediction using wrapper feature selection and class balancing publication-title: Mol Inform – volume: 11 start-page: 822 year: 2022 end-page: 832 article-title: Prediction of CYP‐mediated DDIs involving inhibition: approaches to address the requirements for system qualification of the Simcyp Simulator publication-title: CPT: Pharmacometrics Syst Pharmacol – volume: 14 start-page: 20170660 issue: 5 year: 2018 article-title: Mechanistic models versus machine learning, a fight worth fighting for the biological community? publication-title: Biol Lett – volume: 6 start-page: 430 issue: 5 year: 2016 end-page: 440 article-title: PBPK modeling and simulation in drug research and development publication-title: Acta Pharm Sin B – ident: e_1_2_10_17_1 doi: 10.1109/BIBM.2018.8621405 – ident: e_1_2_10_28_1 doi: 10.7554/eLife.50135 – ident: e_1_2_10_14_1 doi: 10.1038/msb.2012.26 – ident: e_1_2_10_9_1 doi: 10.1073/pnas.1803294115 – ident: e_1_2_10_11_1 doi: 10.1093/bioinformatics/btac094 – ident: e_1_2_10_15_1 doi: 10.1186/s13321-017-0200-8 – ident: e_1_2_10_21_1 doi: 10.1613/jair.953 – volume-title: Clinical Drug Interaction Studies — Cytochrome P450 Enzyme‐ and Transporter‐Mediated Drug Interactions Guidance for Industry year: 2020 ident: e_1_2_10_6_1 contributor: fullname: Research CfDEa – ident: e_1_2_10_29_1 doi: 10.1002/psp4.12794 – ident: e_1_2_10_30_1 doi: 10.1021/acsomega.9b04162 – ident: e_1_2_10_12_1 doi: 10.1093/bioinformatics/btab169 – volume: 30 start-page: 4765 year: 2017 ident: e_1_2_10_24_1 article-title: A unified approach to interpreting model predictions publication-title: Adv Neural Inform Process Syst contributor: fullname: Lundberg SM – start-page: 856 volume-title: Proceedings of the twentieth international conference on international conference on machine learning year: 2003 ident: e_1_2_10_19_1 contributor: fullname: Yu L – volume: 34 start-page: 702 issue: 1 year: 2020 ident: e_1_2_10_10_1 article-title: CASTER: predicting drug interactions with chemical substructure representation publication-title: Proc AAAI Confer Artif Intell contributor: fullname: Huang K – ident: e_1_2_10_27_1 doi: 10.1098/rsbl.2017.0660 – ident: e_1_2_10_3_1 doi: 10.1586/ecp.13.4 – ident: e_1_2_10_16_1 – ident: e_1_2_10_26_1 doi: 10.1186/s13321-021-00539-7 – ident: e_1_2_10_20_1 doi: 10.1186/s40537-019-0192-5 – ident: e_1_2_10_22_1 doi: 10.1002/minf.201900062 – volume: 131 start-page: 4 issue: 16 year: 2015 ident: e_1_2_10_23_1 article-title: Review on class imbalance learning: binary and multiclass publication-title: Int J Comput Appl contributor: fullname: Singh RRR – ident: e_1_2_10_5_1 doi: 10.1038/s41573-019-0024-5 – ident: e_1_2_10_4_1 doi: 10.1016/j.apsb.2016.04.004 – ident: e_1_2_10_18_1 doi: 10.1093/bioinformatics/btx806 – ident: e_1_2_10_25_1 doi: 10.1038/s42256-020-00236-4 – ident: e_1_2_10_8_1 doi: 10.1161/CIRCULATIONAHA.115.001593 – ident: e_1_2_10_13_1 doi: 10.1038/s41746-022-00639-0 – ident: e_1_2_10_2_1 doi: 10.1016/j.archger.2018.06.018 – ident: e_1_2_10_7_1 doi: 10.1007/s10928-016-9464-2 |
SSID | ssj0000740190 |
Score | 2.3654826 |
SecondaryResourceType | review_article |
Snippet | The gold‐standard approach for modeling pharmacokinetic mediated drug–drug interactions is the use of physiologically‐based pharmacokinetic modeling and... The gold-standard approach for modeling pharmacokinetic mediated drug-drug interactions is the use of physiologically-based pharmacokinetic modeling and... Abstract The gold‐standard approach for modeling pharmacokinetic mediated drug–drug interactions is the use of physiologically‐based pharmacokinetic modeling... |
SourceID | doaj pubmedcentral proquest crossref pubmed wiley |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 1560 |
SubjectTerms | Algorithms Candidates Classification Drug Discovery Drug dosages Drug Interactions Humans Knowledge representation Machine Learning Metabolism Mini‐Review Models, Biological Pharmacokinetics Proteins Reviews Variables |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NatwwEBZtTr2UpmmTbdMy0JJDWCf2SLuSj80fgUIwJIXchGzJ2xDqmHX3kFteofQN-yQdSY6zS0p76cHYWMKSPCPNN0jzDWMflSEsZDlPKrKtiUCUSakmaZJzh7UqM6tCLMzpuTy7VEfHniZnSPXlz4RFeuD44_anwkiOVqGVQuRqquzUU4LlNWY12fLIXppOl5ypsAb7RHN5OvCR4n7btWIv89t6KxYoEPX_CV0-PiS5DF6D9Tl5wZ73sBE-xe6usyeuecl2isg7fTuGi4cwqm4MO1A8MFLfbrAfhzHbYDMDwnuwvGkNNzV8CwcqHfQZJGZjKA6Kz2MwjYV2SPAFbf_Na6pL7UBIotPB1eMSO1_Mft399DfwfBTzGD0B7dxvC_nHV-zLyfHF4WnS52JIKoJktFTnvOQmd45P6gxJvIRkJhxlVRpZ1YK8UOmQS6cqUwpZKc_5rQwZYC6Fv_hrttbcNG6LgSIIYwiHCoFWmDSjiV-iqI0XY1ZZPmIf7uWj20i5oSO5MmovRR2kOGIHXnRDDU-THV6Q8uheefS_lGfEtu8Fr_u522mUE7IeOU-pjc2oA0MrnAAfOYBUIle0Y6UbqyXN1dfA2p1Lct4QR2w36NFfhqaL80KEpzf_Y5Bv2TP0MRvhDM42W_s-X7h37GlnF-_DpPkN3BkcSQ priority: 102 providerName: Directory of Open Access Journals |
Title | Comparing the applications of machine learning, PBPK, and population pharmacokinetic models in pharmacokinetic drug–drug interaction prediction |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpsp4.12870 https://www.ncbi.nlm.nih.gov/pubmed/36176050 https://www.proquest.com/docview/2754679300 https://pubmed.ncbi.nlm.nih.gov/PMC9755922 https://doaj.org/article/64a732d82d7449868d646539f21f6445 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwEB6xPaBeEP-ElsoSqAe02U1sp3aOdGlVCYEitUjcLMdOlhVsNkrYQ299BcQb8iSMnWS7qyIOHKJYsRU7mrHnczzzDcAbqRELWcZCg7Y15JSKMJdJFKasoKXMYyt9LMzFpfj0Rb4_czQ5yRAL4532Tb6YVN-Xk2rx1ftW1kszHfzEptnHWSoQB1M6HcEIseHWFt0vvy7HXBptqEjptG5rPondid4-3GdoshHCRzt2yNP1_w1j3nWV3Iaw3gadP4QHPXgk77pBPoJ7RfUYjrOOffp6TK5ug6naMTkm2S0v9fUT-Dnrcg5Wc4Koj2wfXZNVSZberbIgfR6J-Zhkp9mHMdGVJfUmzRep-3d-w7bYD_GpdFqyuFtjm_X8980vdyOOlaLpYihI3bjDIVd8Cp_Pz65mF2GfkSE0CMxwwU5ZznRaFCwpY4pCRjyTMCpMroUpOe5FRUGZKKTRORdGOuZvqdEMM8HdxZ7BXrWqihdAJAIZjWiUc2q5jmKc_jnlpaZuj2osC-D1IB9Vd8QbqqNYpsoJVHmBBnDqRLdp4ciy_YNVM1e9yqgTrgWjVlIrOE_licRhO0beksYlwsEkgMNB8Kqfwa2iIkEbkrII-3je6cCml0GHAhA72rEzjN0aVGXP3d2rbgBvvR7949NUdplxX3r5390cwD514Rre_eYQ9n406-IVjFq7PvI_H4781PkDmv4ftA |
link.rule.ids | 230,315,729,782,786,866,887,2106,27933,27934,53800,53802 |
linkProvider | National Library of Medicine |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtQwFL2iRYJueNMGClgCdYEmM4nt1M6SDq0G9aFIHSR2lvMaRu1kooRZdMcvIP6wX9JrJ5nOqIhFF1Gi2Iod-dj3WL73XIBPUiMXShlzE7StLqdUuLEMPDdkGc1l7KfSxsKMzsXZD_n10MjkBF0sjHXaT-Jpv7ic9YvpT-tbWc6SQecnNohOh6FAHkzpYAMe4nz1vJVNul2ATZa50FuKkdJBWZe875szvS14xNBoI4n31iyRFez_F8u86yy5SmKtFTp6es_-P4MnLe0kX5ri5_AgK17AXtToVl_1yPg2DKvukT0S3SpaX72EP8MmW2ExIcgXyeqhN5nnZGYdMjPSZqCY9Eh0EB33iC5SUi4ThJGy_eYF1sV2iE3CU5Pp3ZK0Wkyuf_81N2L0LKom-oKUlTlWMo-v4PvR4Xg4cttcDm6ClA6X-pDFTIdZxoLcpwgPZEIBoyKJtUhyjrtYkVEmMpnomItEGs1wqdGAM8HNxV7DZjEvsh0gEimQRh7LOU259nxcOGLKc03N7jZJmQMfu3FVZSPZoRpxZqoMEJQFggMHZsiXNYzMtn0xryaqHSy1z7VgNJU0FZyHcl9it42Wb079HIlk4MBuBxjVzv1aURGg9QmZh21sN9hZttJhzwGxhqq1bqyXIIis6ncLGgc-W_z959dUdB5x-_Tm3s18gMej8emJOvl2dvwWtqgJ-rBOPLuw-ataZO9go04X7-3EuwEj6zRO |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Pb9MwFH5iQ5p24TcjMMASaAfUtIntzM6RdauGBlOkDYmb5cRJqaBplNDDbvwLiP-Qv4RnJ81aDXGAQxQrtmJb_uz3WX7-HsBrqZELGcb8DG2rzykVfiqjwI9ZTguZhka6uzCnF-L8kzw-sTI5fagv57SfpbNh-XU-LGefnW9lNc9GKz-xUfJhHAvkwZSOKlOMtuA2ztmArm3U3SJsI83FQS9IioWbig9De663CzsMDTcS-WDDGjnR_j8xzZsOk-tE1lmiyd3_6MM9uNPRT_K2LXIfbuXlAzhIWv3qqwG5vL6O1QzIAUmula2vHsKPcRu1sJwS5I1k_fCbLAoyd46ZOekiUUwHJDlKzgZEl4ZUfaAwUnX__IJlsR7igvE0ZHYzx9TL6a_vP-2LWF2Lur2FQaraHi_Z5CP4ODm5HJ_6XUwHP0Nqh0t-zFKm4zxnURFShAkyoohRkaVaZAXH3azIKRO5zHTKRSatdrjUaMiZ4PZhj2G7XJT5EyASqZBGPss5NVwHIS4gKeWFpnaXmxnmwavV2Kqqle5QrUgzVRYMyoHBgyM77H0JK7ftPizqqeoGTB1yLRg1khrBeSwPJTbbavoWNCyQUEYe7K9Ao7o1oFFURGiFYhZgHXstfvpaVvjzQGwga6MZmzkIJKf-3QHHgzcOg3_pmkouEu5ST_-5mpewkxxP1Pt352fPYJfaux_Ol2cftr_Vy_w5bDVm-cLNvd-xQjbO |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparing+the+applications+of+machine+learning%2C+PBPK%2C+and+population+pharmacokinetic+models+in+pharmacokinetic+drug%E2%80%93drug+interaction+prediction&rft.jtitle=CPT%3A+pharmacometrics+and+systems+pharmacology&rft.au=Gill%2C+Jaidip&rft.au=Moullet%2C+Marie&rft.au=Martinsson%2C+Anton&rft.au=Miljkovi%C4%87%2C+Filip&rft.date=2022-12-01&rft.issn=2163-8306&rft.eissn=2163-8306&rft.volume=11&rft.issue=12&rft.spage=1560&rft.epage=1568&rft_id=info:doi/10.1002%2Fpsp4.12870&rft.externalDBID=10.1002%252Fpsp4.12870&rft.externalDocID=PSP412870 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2163-8306&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2163-8306&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2163-8306&client=summon |