Comparing the applications of machine learning, PBPK, and population pharmacokinetic models in pharmacokinetic drug–drug interaction prediction

The gold‐standard approach for modeling pharmacokinetic mediated drug–drug interactions is the use of physiologically‐based pharmacokinetic modeling and population pharmacokinetics. However, these models require extensive amounts of drug‐specific data generated from a wide variety of in vitro and in...

Full description

Saved in:
Bibliographic Details
Published in:CPT: pharmacometrics and systems pharmacology Vol. 11; no. 12; pp. 1560 - 1568
Main Authors: Gill, Jaidip, Moullet, Marie, Martinsson, Anton, Miljković, Filip, Williamson, Beth, Arends, Rosalinda H., Pilla Reddy, Venkatesh
Format: Journal Article
Language:English
Published: United States John Wiley & Sons, Inc 01-12-2022
John Wiley and Sons Inc
Wiley
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The gold‐standard approach for modeling pharmacokinetic mediated drug–drug interactions is the use of physiologically‐based pharmacokinetic modeling and population pharmacokinetics. However, these models require extensive amounts of drug‐specific data generated from a wide variety of in vitro and in vivo models, which are later refined with clinical data and system‐specific parameters. Machine learning has the potential to be utilized for the prediction of drug–drug interactions much earlier in the drug discovery cycle, using inputs derived from, among others, chemical structure. This could lead to refined chemical designs in early drug discovery. Machine‐learning models have many advantages, such as the capacity to automate learning (increasing the speed and scalability of predictions), improved generalizability by learning from multicase historical data, and highlighting statistical and potentially clinically significant relationships between input variables. In contrast, the routinely used mechanistic models (physiologically‐based pharmacokinetic models and population pharmacokinetics) are currently considered more interpretable, reliable, and require a smaller sample size of data, although insights differ on a case‐by‐case basis. Therefore, they may be appropriate for later stages of drug–drug interaction assessment when more in vivo and clinical data are available. A combined approach of using mechanistic models to highlight features that can be used for training machine‐learning models may also be exploitable in the future to improve the performance of machine learning. In this review, we provide concepts, strategic considerations, and compare machine learning to mechanistic modeling for drug–drug interaction risk assessment across the stages of drug discovery and development.
AbstractList The gold‐standard approach for modeling pharmacokinetic mediated drug–drug interactions is the use of physiologically‐based pharmacokinetic modeling and population pharmacokinetics. However, these models require extensive amounts of drug‐specific data generated from a wide variety of in vitro and in vivo models, which are later refined with clinical data and system‐specific parameters. Machine learning has the potential to be utilized for the prediction of drug–drug interactions much earlier in the drug discovery cycle, using inputs derived from, among others, chemical structure. This could lead to refined chemical designs in early drug discovery. Machine‐learning models have many advantages, such as the capacity to automate learning (increasing the speed and scalability of predictions), improved generalizability by learning from multicase historical data, and highlighting statistical and potentially clinically significant relationships between input variables. In contrast, the routinely used mechanistic models (physiologically‐based pharmacokinetic models and population pharmacokinetics) are currently considered more interpretable, reliable, and require a smaller sample size of data, although insights differ on a case‐by‐case basis. Therefore, they may be appropriate for later stages of drug–drug interaction assessment when more in vivo and clinical data are available. A combined approach of using mechanistic models to highlight features that can be used for training machine‐learning models may also be exploitable in the future to improve the performance of machine learning. In this review, we provide concepts, strategic considerations, and compare machine learning to mechanistic modeling for drug–drug interaction risk assessment across the stages of drug discovery and development.
Abstract The gold‐standard approach for modeling pharmacokinetic mediated drug–drug interactions is the use of physiologically‐based pharmacokinetic modeling and population pharmacokinetics. However, these models require extensive amounts of drug‐specific data generated from a wide variety of in vitro and in vivo models, which are later refined with clinical data and system‐specific parameters. Machine learning has the potential to be utilized for the prediction of drug–drug interactions much earlier in the drug discovery cycle, using inputs derived from, among others, chemical structure. This could lead to refined chemical designs in early drug discovery. Machine‐learning models have many advantages, such as the capacity to automate learning (increasing the speed and scalability of predictions), improved generalizability by learning from multicase historical data, and highlighting statistical and potentially clinically significant relationships between input variables. In contrast, the routinely used mechanistic models (physiologically‐based pharmacokinetic models and population pharmacokinetics) are currently considered more interpretable, reliable, and require a smaller sample size of data, although insights differ on a case‐by‐case basis. Therefore, they may be appropriate for later stages of drug–drug interaction assessment when more in vivo and clinical data are available. A combined approach of using mechanistic models to highlight features that can be used for training machine‐learning models may also be exploitable in the future to improve the performance of machine learning. In this review, we provide concepts, strategic considerations, and compare machine learning to mechanistic modeling for drug–drug interaction risk assessment across the stages of drug discovery and development.
Author Miljković, Filip
Martinsson, Anton
Gill, Jaidip
Moullet, Marie
Arends, Rosalinda H.
Pilla Reddy, Venkatesh
Williamson, Beth
AuthorAffiliation 1 Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Sciences Biopharmaceuticals R&D, AstraZeneca Cambridge UK
4 Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Sciences Biopharmaceuticals R&D, AstraZeneca Gaithersburg MD USA
6 Present address: Bioinformatics & Data Science, Exelixis Alameda CA USA
3 Oncology DMPK Oncology R&D, AstraZeneca Cambridge UK
2 Imaging and Data Analytics, Clinical Pharmacology & Safety Sciences Biopharmaceuticals R&D, AstraZeneca Gothenburg Sweden
5 Present address: DMPK, UCB Surrey UK
AuthorAffiliation_xml – name: 2 Imaging and Data Analytics, Clinical Pharmacology & Safety Sciences Biopharmaceuticals R&D, AstraZeneca Gothenburg Sweden
– name: 4 Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Sciences Biopharmaceuticals R&D, AstraZeneca Gaithersburg MD USA
– name: 5 Present address: DMPK, UCB Surrey UK
– name: 6 Present address: Bioinformatics & Data Science, Exelixis Alameda CA USA
– name: 1 Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Sciences Biopharmaceuticals R&D, AstraZeneca Cambridge UK
– name: 3 Oncology DMPK Oncology R&D, AstraZeneca Cambridge UK
Author_xml – sequence: 1
  givenname: Jaidip
  surname: Gill
  fullname: Gill, Jaidip
  organization: Biopharmaceuticals R&D, AstraZeneca
– sequence: 2
  givenname: Marie
  surname: Moullet
  fullname: Moullet, Marie
  organization: Biopharmaceuticals R&D, AstraZeneca
– sequence: 3
  givenname: Anton
  orcidid: 0000-0003-3963-6105
  surname: Martinsson
  fullname: Martinsson, Anton
  organization: Biopharmaceuticals R&D, AstraZeneca
– sequence: 4
  givenname: Filip
  orcidid: 0000-0001-5365-505X
  surname: Miljković
  fullname: Miljković, Filip
  organization: Biopharmaceuticals R&D, AstraZeneca
– sequence: 5
  givenname: Beth
  surname: Williamson
  fullname: Williamson, Beth
  organization: Oncology R&D, AstraZeneca
– sequence: 6
  givenname: Rosalinda H.
  surname: Arends
  fullname: Arends, Rosalinda H.
  organization: Biopharmaceuticals R&D, AstraZeneca
– sequence: 7
  givenname: Venkatesh
  orcidid: 0000-0002-7786-4371
  surname: Pilla Reddy
  fullname: Pilla Reddy, Venkatesh
  email: venkatesh.reddy@astrazeneca.com
  organization: Biopharmaceuticals R&D, AstraZeneca
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36176050$$D View this record in MEDLINE/PubMed
BookMark eNp9kt1qFDEUgINU7I-98QEk4J10a_4mmbkRdKlaLLigXodMcmY368wkZmaU3vkK4hv6JGZ3amkRDIQccj6-c0LOMTroQw8IPaHknBLCXsQhinPKSkUeoCNGJV-UnMiDO_EhOh2GLclLCUIr8ggdckmVJAU5Qj-XoYsm-X6Nxw1gE2PrrRl96AccGtwZu_E94BZM6jN0hlevV-_PsOkdjiFO7R7FcWNSRsOXzI7e4i44aAfs_824NK1___i1O3J6hGTsbEjg_D58jB42ph3g9OY8QZ_fXHxavltcfXh7uXx1tbAFpWTBK15zUwHwoqGM1k4KXnCmbG2UbYQgTAHjCkpraqFsWRmoSgPguBK7zU_Q5ex1wWx1TL4z6VoH4_X-IqS1Nim33IKWwijOXMmcEqIqZZmLyYJXDaONFKLIrpezK051B85CPybT3pPez_R-o9fhm65UUVSMZcGzG0EKXycYRr0NU-rz-zVThZCq4oRk6vlM2RSGIUFzW4ESvZsGvZsGvZ-GDD-929Mt-vfvM0Bn4Ltv4fo_Kr36uBKz9A_eXMRr
CitedBy_id crossref_primary_10_1016_j_ejps_2024_106838
crossref_primary_10_1007_s00228_024_03698_2
crossref_primary_10_3390_ijms25094671
crossref_primary_10_1016_j_phymed_2024_155479
crossref_primary_10_18231_j_ijcaap_2023_034
crossref_primary_10_1021_acsptsci_3c00256
crossref_primary_10_1080_00498254_2023_2246153
crossref_primary_10_1080_00498254_2023_2250856
crossref_primary_10_1038_s41598_024_54409_x
crossref_primary_10_1080_17425247_2023_2167978
Cites_doi 10.1109/BIBM.2018.8621405
10.7554/eLife.50135
10.1038/msb.2012.26
10.1073/pnas.1803294115
10.1093/bioinformatics/btac094
10.1186/s13321-017-0200-8
10.1613/jair.953
10.1002/psp4.12794
10.1021/acsomega.9b04162
10.1093/bioinformatics/btab169
10.1098/rsbl.2017.0660
10.1586/ecp.13.4
10.1186/s13321-021-00539-7
10.1186/s40537-019-0192-5
10.1002/minf.201900062
10.1038/s41573-019-0024-5
10.1016/j.apsb.2016.04.004
10.1093/bioinformatics/btx806
10.1038/s42256-020-00236-4
10.1161/CIRCULATIONAHA.115.001593
10.1038/s41746-022-00639-0
10.1016/j.archger.2018.06.018
10.1007/s10928-016-9464-2
ContentType Journal Article
Copyright 2022 The Authors. published by Wiley Periodicals LLC on behalf of American Society for Clinical Pharmacology and Therapeutics.
2022 The Authors. CPT: Pharmacometrics & Systems Pharmacology published by Wiley Periodicals LLC on behalf of American Society for Clinical Pharmacology and Therapeutics.
2022. This work is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 The Authors. published by Wiley Periodicals LLC on behalf of American Society for Clinical Pharmacology and Therapeutics.
– notice: 2022 The Authors. CPT: Pharmacometrics & Systems Pharmacology published by Wiley Periodicals LLC on behalf of American Society for Clinical Pharmacology and Therapeutics.
– notice: 2022. This work is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
WIN
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
3V.
7X7
7XB
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
5PM
DOA
DOI 10.1002/psp4.12870
DatabaseName Wiley Online Library Open Access
Wiley Online Library Open Access
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
ProQuest Databases
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
PubMed Central (Full Participant titles)
Directory of Open Access Journals
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Publicly Available Content Database
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Central China
ProQuest Hospital Collection (Alumni)
ProQuest Central
ProQuest Health & Medical Complete
Health Research Premium Collection
ProQuest One Academic UKI Edition
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest One Academic
ProQuest Central (Alumni)
DatabaseTitleList Publicly Available Content Database

CrossRef


MEDLINE
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: http://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: ECM
  name: MEDLINE
  url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Pharmacy, Therapeutics, & Pharmacology
DocumentTitleAlternate ML vs PBPK vs Pop‐PK for DDI
EISSN 2163-8306
EndPage 1568
ExternalDocumentID oai_doaj_org_article_64a732d82d7449868d646539f21f6445
10_1002_psp4_12870
36176050
PSP412870
Genre reviewArticle
Journal Article
Review
GroupedDBID 0R~
1OC
24P
5VS
7X7
8FI
8FJ
AAHHS
AAZKR
ABDBF
ABUWG
ACCFJ
ACGFS
ACXQS
ADBBV
ADKYN
ADRAZ
ADZMN
ADZOD
AEEZP
AEQDE
AFKRA
AIWBW
AJBDE
ALAGY
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AOIJS
AVUZU
BAWUL
BCNDV
BENPR
BPHCQ
BVXVI
CCPQU
DIK
EBS
EJD
FYUFA
GODZA
GROUPED_DOAJ
GX1
HMCUK
HYE
IAO
IHR
INH
KQ8
M48
M~E
O9-
OK1
OVD
PIMPY
PQQKQ
PROAC
RNTTT
RPM
TEORI
TUS
UKHRP
WIN
CGR
CUY
CVF
ECM
EIF
ITC
NPM
AAYXX
CITATION
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PQEST
PQUKI
PRINS
5PM
ID FETCH-LOGICAL-c5110-393b3a9ee35f121bd6435327cba7cf44027e237e8cab47c89ae98aeed374d3743
IEDL.DBID RPM
ISSN 2163-8306
IngestDate Tue Oct 22 15:15:20 EDT 2024
Tue Sep 17 21:33:06 EDT 2024
Thu Oct 10 20:19:45 EDT 2024
Thu Nov 21 21:35:38 EST 2024
Sat Sep 28 08:17:51 EDT 2024
Sat Aug 24 00:57:31 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License Attribution-NonCommercial
2022 The Authors. CPT: Pharmacometrics & Systems Pharmacology published by Wiley Periodicals LLC on behalf of American Society for Clinical Pharmacology and Therapeutics.
This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5110-393b3a9ee35f121bd6435327cba7cf44027e237e8cab47c89ae98aeed374d3743
ORCID 0000-0003-3963-6105
0000-0002-7786-4371
0000-0001-5365-505X
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9755922/
PMID 36176050
PQID 2754679300
PQPubID 4368367
PageCount 9
ParticipantIDs doaj_primary_oai_doaj_org_article_64a732d82d7449868d646539f21f6445
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9755922
proquest_journals_2754679300
crossref_primary_10_1002_psp4_12870
pubmed_primary_36176050
wiley_primary_10_1002_psp4_12870_PSP412870
PublicationCentury 2000
PublicationDate December 2022
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: December 2022
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle CPT: pharmacometrics and systems pharmacology
PublicationTitleAlternate CPT Pharmacometrics Syst Pharmacol
PublicationYear 2022
Publisher John Wiley & Sons, Inc
John Wiley and Sons Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: John Wiley and Sons Inc
– name: Wiley
References 2002; 16
2019; 6
2020; 39
2019; 18
2020; 34
2003
2013; 6
2017; 9
2021; 13
2016; 6
2021; 37
2017; 30
2020; 5
2020; 2
2022; 5
2020
2018; 115
2015; 131
2015; 132
2020; 9
2016; 43
2018
2013
2022; 11
2018; 78
2018; 34
2022; 38
2012; 8
2018; 14
e_1_2_10_21_1
e_1_2_10_22_1
e_1_2_10_20_1
Singh RRR (e_1_2_10_23_1) 2015; 131
Huang K (e_1_2_10_10_1) 2020; 34
e_1_2_10_2_1
e_1_2_10_4_1
e_1_2_10_18_1
Yu L (e_1_2_10_19_1) 2003
e_1_2_10_3_1
Research CfDEa (e_1_2_10_6_1) 2020
e_1_2_10_16_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_12_1
e_1_2_10_9_1
e_1_2_10_13_1
e_1_2_10_11_1
e_1_2_10_30_1
Lundberg SM (e_1_2_10_24_1) 2017; 30
e_1_2_10_29_1
e_1_2_10_27_1
e_1_2_10_28_1
e_1_2_10_25_1
e_1_2_10_26_1
References_xml – volume: 37
  start-page: 2651
  issue: 17
  year: 2021
  end-page: 2658
  article-title: MUFFIN: multi‐scale feature fusion for drug–drug interaction prediction
  publication-title: Bioinformatics
– start-page: 1662
  year: 2018
  end-page: 1668
– volume: 34
  start-page: 1538
  issue: 9
  year: 2018
  end-page: 1546
  article-title: DeepSynergy: predicting anti‐cancer drug synergy with deep learning
  publication-title: Bioinformatics
– volume: 131
  start-page: 4
  issue: 16
  year: 2015
  end-page: 8
  article-title: Review on class imbalance learning: binary and multiclass
  publication-title: Int J Comput Appl
– volume: 6
  start-page: 143
  issue: 2
  year: 2013
  end-page: 157
  article-title: Predicting drug–drug interactions: application of physiologically based pharmacokinetic models under a systems biology approach
  publication-title: Expert Rev Clin Pharmacol
– start-page: 351
  year: 2013
  end-page: 355
– volume: 115
  start-page: E4304
  issue: 18
  year: 2018
  end-page: E4311
  article-title: Deep learning improves prediction of drug–drug and drug–food interactions
  publication-title: Proc Natl Acad Sci USA
– volume: 78
  start-page: 213
  year: 2018
  end-page: 220
  article-title: Polypharmacy prevalence among older adults based on the survey of health, ageing and retirement in Europe
  publication-title: Arch Gerontol Geriatr
– volume: 132
  start-page: 1920
  issue: 20
  year: 2015
  end-page: 1930
  article-title: Machine learning in medicine
  publication-title: Circulation
– volume: 9
  start-page: e50135
  year: 2020
  article-title: Duodenum intestine‐Chip for preclinical drug assessment in a human relevant model
  publication-title: Elife
– volume: 5
  start-page: 5150
  issue: 10
  year: 2020
  end-page: 5159
  article-title: graphDelta: MPNN scoring function for the affinity prediction of protein–ligand complexes
  publication-title: ACS Omega
– volume: 30
  start-page: 4765
  year: 2017
  end-page: 4774
  article-title: A unified approach to interpreting model predictions
  publication-title: Adv Neural Inform Process Syst
– start-page: 856
  year: 2003
  end-page: 863
– volume: 5
  start-page: 88
  issue: 1
  year: 2022
  article-title: Machine learning‐based quantitative prediction of drug exposure in drug–drug interactions using drug label information
  publication-title: Npj Digital Med
– volume: 6
  start-page: 27
  issue: 1
  year: 2019
  article-title: Survey on deep learning with class imbalance
  publication-title: J Big Data
– volume: 18
  start-page: 463
  issue: 6
  year: 2019
  end-page: 477
  article-title: Applications of machine learning in drug discovery and development
  publication-title: Nat Rev Drug Discov
– volume: 38
  start-page: 2315
  issue: 8
  year: 2022
  end-page: 2322
  article-title: Effective knowledge graph embeddings based on multidirectional semantics relations for polypharmacy side effects prediction
  publication-title: Bioinformatics
– volume: 16
  start-page: 321
  year: 2002
  end-page: 357
  article-title: SMOTE: synthetic minority over‐sampling technique
  publication-title: J Artif Intell Res
– volume: 13
  start-page: 62
  issue: 1
  year: 2021
  article-title: Probabilistic random Forest improves bioactivity predictions close to the classification threshold by taking into account experimental uncertainty
  publication-title: J Chem
– volume: 8
  start-page: 592
  issue: 1
  year: 2012
  article-title: INDI: a computational framework for inferring drug interactions and their associated recommendations
  publication-title: Mol Syst Biol
– volume: 43
  start-page: 123
  issue: 2
  year: 2016
  end-page: 135
  article-title: Methods and strategies for assessing uncontrolled drug‐drug interactions in population pharmacokinetic analyses: results from the International Society of Pharmacometrics (ISOP) working group
  publication-title: J Pharmacokinet Pharmacodyn
– volume: 2
  start-page: 573
  issue: 10
  year: 2020
  end-page: 584
  article-title: Drug discovery with explainable artificial intelligence
  publication-title: Nat Machine Intell
– volume: 34
  start-page: 702
  issue: 1
  year: 2020
  end-page: 709
  article-title: CASTER: predicting drug interactions with chemical substructure representation
  publication-title: Proc AAAI Confer Artif Intell
– year: 2020
– volume: 9
  start-page: 16
  issue: 1
  year: 2017
  article-title: Predicting drug–drug interactions through drug structural similarities and interaction networks incorporating pharmacokinetics and pharmacodynamics knowledge
  publication-title: J Cheminform
– volume: 39
  issue: 5
  year: 2020
  article-title: A machine learning approach for drug‐target interaction prediction using wrapper feature selection and class balancing
  publication-title: Mol Inform
– volume: 11
  start-page: 822
  year: 2022
  end-page: 832
  article-title: Prediction of CYP‐mediated DDIs involving inhibition: approaches to address the requirements for system qualification of the Simcyp Simulator
  publication-title: CPT: Pharmacometrics Syst Pharmacol
– volume: 14
  start-page: 20170660
  issue: 5
  year: 2018
  article-title: Mechanistic models versus machine learning, a fight worth fighting for the biological community?
  publication-title: Biol Lett
– volume: 6
  start-page: 430
  issue: 5
  year: 2016
  end-page: 440
  article-title: PBPK modeling and simulation in drug research and development
  publication-title: Acta Pharm Sin B
– ident: e_1_2_10_17_1
  doi: 10.1109/BIBM.2018.8621405
– ident: e_1_2_10_28_1
  doi: 10.7554/eLife.50135
– ident: e_1_2_10_14_1
  doi: 10.1038/msb.2012.26
– ident: e_1_2_10_9_1
  doi: 10.1073/pnas.1803294115
– ident: e_1_2_10_11_1
  doi: 10.1093/bioinformatics/btac094
– ident: e_1_2_10_15_1
  doi: 10.1186/s13321-017-0200-8
– ident: e_1_2_10_21_1
  doi: 10.1613/jair.953
– volume-title: Clinical Drug Interaction Studies — Cytochrome P450 Enzyme‐ and Transporter‐Mediated Drug Interactions Guidance for Industry
  year: 2020
  ident: e_1_2_10_6_1
  contributor:
    fullname: Research CfDEa
– ident: e_1_2_10_29_1
  doi: 10.1002/psp4.12794
– ident: e_1_2_10_30_1
  doi: 10.1021/acsomega.9b04162
– ident: e_1_2_10_12_1
  doi: 10.1093/bioinformatics/btab169
– volume: 30
  start-page: 4765
  year: 2017
  ident: e_1_2_10_24_1
  article-title: A unified approach to interpreting model predictions
  publication-title: Adv Neural Inform Process Syst
  contributor:
    fullname: Lundberg SM
– start-page: 856
  volume-title: Proceedings of the twentieth international conference on international conference on machine learning
  year: 2003
  ident: e_1_2_10_19_1
  contributor:
    fullname: Yu L
– volume: 34
  start-page: 702
  issue: 1
  year: 2020
  ident: e_1_2_10_10_1
  article-title: CASTER: predicting drug interactions with chemical substructure representation
  publication-title: Proc AAAI Confer Artif Intell
  contributor:
    fullname: Huang K
– ident: e_1_2_10_27_1
  doi: 10.1098/rsbl.2017.0660
– ident: e_1_2_10_3_1
  doi: 10.1586/ecp.13.4
– ident: e_1_2_10_16_1
– ident: e_1_2_10_26_1
  doi: 10.1186/s13321-021-00539-7
– ident: e_1_2_10_20_1
  doi: 10.1186/s40537-019-0192-5
– ident: e_1_2_10_22_1
  doi: 10.1002/minf.201900062
– volume: 131
  start-page: 4
  issue: 16
  year: 2015
  ident: e_1_2_10_23_1
  article-title: Review on class imbalance learning: binary and multiclass
  publication-title: Int J Comput Appl
  contributor:
    fullname: Singh RRR
– ident: e_1_2_10_5_1
  doi: 10.1038/s41573-019-0024-5
– ident: e_1_2_10_4_1
  doi: 10.1016/j.apsb.2016.04.004
– ident: e_1_2_10_18_1
  doi: 10.1093/bioinformatics/btx806
– ident: e_1_2_10_25_1
  doi: 10.1038/s42256-020-00236-4
– ident: e_1_2_10_8_1
  doi: 10.1161/CIRCULATIONAHA.115.001593
– ident: e_1_2_10_13_1
  doi: 10.1038/s41746-022-00639-0
– ident: e_1_2_10_2_1
  doi: 10.1016/j.archger.2018.06.018
– ident: e_1_2_10_7_1
  doi: 10.1007/s10928-016-9464-2
SSID ssj0000740190
Score 2.3654826
SecondaryResourceType review_article
Snippet The gold‐standard approach for modeling pharmacokinetic mediated drug–drug interactions is the use of physiologically‐based pharmacokinetic modeling and...
The gold-standard approach for modeling pharmacokinetic mediated drug-drug interactions is the use of physiologically-based pharmacokinetic modeling and...
Abstract The gold‐standard approach for modeling pharmacokinetic mediated drug–drug interactions is the use of physiologically‐based pharmacokinetic modeling...
SourceID doaj
pubmedcentral
proquest
crossref
pubmed
wiley
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 1560
SubjectTerms Algorithms
Candidates
Classification
Drug Discovery
Drug dosages
Drug Interactions
Humans
Knowledge representation
Machine Learning
Metabolism
Mini‐Review
Models, Biological
Pharmacokinetics
Proteins
Reviews
Variables
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NatwwEBZtTr2UpmmTbdMy0JJDWCf2SLuSj80fgUIwJIXchGzJ2xDqmHX3kFteofQN-yQdSY6zS0p76cHYWMKSPCPNN0jzDWMflSEsZDlPKrKtiUCUSakmaZJzh7UqM6tCLMzpuTy7VEfHniZnSPXlz4RFeuD44_anwkiOVqGVQuRqquzUU4LlNWY12fLIXppOl5ypsAb7RHN5OvCR4n7btWIv89t6KxYoEPX_CV0-PiS5DF6D9Tl5wZ73sBE-xe6usyeuecl2isg7fTuGi4cwqm4MO1A8MFLfbrAfhzHbYDMDwnuwvGkNNzV8CwcqHfQZJGZjKA6Kz2MwjYV2SPAFbf_Na6pL7UBIotPB1eMSO1_Mft399DfwfBTzGD0B7dxvC_nHV-zLyfHF4WnS52JIKoJktFTnvOQmd45P6gxJvIRkJhxlVRpZ1YK8UOmQS6cqUwpZKc_5rQwZYC6Fv_hrttbcNG6LgSIIYwiHCoFWmDSjiV-iqI0XY1ZZPmIf7uWj20i5oSO5MmovRR2kOGIHXnRDDU-THV6Q8uheefS_lGfEtu8Fr_u522mUE7IeOU-pjc2oA0MrnAAfOYBUIle0Y6UbqyXN1dfA2p1Lct4QR2w36NFfhqaL80KEpzf_Y5Bv2TP0MRvhDM42W_s-X7h37GlnF-_DpPkN3BkcSQ
  priority: 102
  providerName: Directory of Open Access Journals
Title Comparing the applications of machine learning, PBPK, and population pharmacokinetic models in pharmacokinetic drug–drug interaction prediction
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpsp4.12870
https://www.ncbi.nlm.nih.gov/pubmed/36176050
https://www.proquest.com/docview/2754679300
https://pubmed.ncbi.nlm.nih.gov/PMC9755922
https://doaj.org/article/64a732d82d7449868d646539f21f6445
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwEB6xPaBeEP-ElsoSqAe02U1sp3aOdGlVCYEitUjcLMdOlhVsNkrYQ299BcQb8iSMnWS7qyIOHKJYsRU7mrHnczzzDcAbqRELWcZCg7Y15JSKMJdJFKasoKXMYyt9LMzFpfj0Rb4_czQ5yRAL4532Tb6YVN-Xk2rx1ftW1kszHfzEptnHWSoQB1M6HcEIseHWFt0vvy7HXBptqEjptG5rPondid4-3GdoshHCRzt2yNP1_w1j3nWV3Iaw3gadP4QHPXgk77pBPoJ7RfUYjrOOffp6TK5ug6naMTkm2S0v9fUT-Dnrcg5Wc4Koj2wfXZNVSZberbIgfR6J-Zhkp9mHMdGVJfUmzRep-3d-w7bYD_GpdFqyuFtjm_X8980vdyOOlaLpYihI3bjDIVd8Cp_Pz65mF2GfkSE0CMxwwU5ZznRaFCwpY4pCRjyTMCpMroUpOe5FRUGZKKTRORdGOuZvqdEMM8HdxZ7BXrWqihdAJAIZjWiUc2q5jmKc_jnlpaZuj2osC-D1IB9Vd8QbqqNYpsoJVHmBBnDqRLdp4ciy_YNVM1e9yqgTrgWjVlIrOE_licRhO0beksYlwsEkgMNB8Kqfwa2iIkEbkrII-3je6cCml0GHAhA72rEzjN0aVGXP3d2rbgBvvR7949NUdplxX3r5390cwD514Rre_eYQ9n406-IVjFq7PvI_H4781PkDmv4ftA
link.rule.ids 230,315,729,782,786,866,887,2106,27933,27934,53800,53802
linkProvider National Library of Medicine
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtQwFL2iRYJueNMGClgCdYEmM4nt1M6SDq0G9aFIHSR2lvMaRu1kooRZdMcvIP6wX9JrJ5nOqIhFF1Gi2Iod-dj3WL73XIBPUiMXShlzE7StLqdUuLEMPDdkGc1l7KfSxsKMzsXZD_n10MjkBF0sjHXaT-Jpv7ic9YvpT-tbWc6SQecnNohOh6FAHkzpYAMe4nz1vJVNul2ATZa50FuKkdJBWZe875szvS14xNBoI4n31iyRFez_F8u86yy5SmKtFTp6es_-P4MnLe0kX5ri5_AgK17AXtToVl_1yPg2DKvukT0S3SpaX72EP8MmW2ExIcgXyeqhN5nnZGYdMjPSZqCY9Eh0EB33iC5SUi4ThJGy_eYF1sV2iE3CU5Pp3ZK0Wkyuf_81N2L0LKom-oKUlTlWMo-v4PvR4Xg4cttcDm6ClA6X-pDFTIdZxoLcpwgPZEIBoyKJtUhyjrtYkVEmMpnomItEGs1wqdGAM8HNxV7DZjEvsh0gEimQRh7LOU259nxcOGLKc03N7jZJmQMfu3FVZSPZoRpxZqoMEJQFggMHZsiXNYzMtn0xryaqHSy1z7VgNJU0FZyHcl9it42Wb079HIlk4MBuBxjVzv1aURGg9QmZh21sN9hZttJhzwGxhqq1bqyXIIis6ncLGgc-W_z959dUdB5x-_Tm3s18gMej8emJOvl2dvwWtqgJ-rBOPLuw-ataZO9go04X7-3EuwEj6zRO
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Pb9MwFH5iQ5p24TcjMMASaAfUtIntzM6RdauGBlOkDYmb5cRJqaBplNDDbvwLiP-Qv4RnJ81aDXGAQxQrtmJb_uz3WX7-HsBrqZELGcb8DG2rzykVfiqjwI9ZTguZhka6uzCnF-L8kzw-sTI5fagv57SfpbNh-XU-LGefnW9lNc9GKz-xUfJhHAvkwZSOKlOMtuA2ztmArm3U3SJsI83FQS9IioWbig9De663CzsMDTcS-WDDGjnR_j8xzZsOk-tE1lmiyd3_6MM9uNPRT_K2LXIfbuXlAzhIWv3qqwG5vL6O1QzIAUmula2vHsKPcRu1sJwS5I1k_fCbLAoyd46ZOekiUUwHJDlKzgZEl4ZUfaAwUnX__IJlsR7igvE0ZHYzx9TL6a_vP-2LWF2Lur2FQaraHi_Z5CP4ODm5HJ_6XUwHP0Nqh0t-zFKm4zxnURFShAkyoohRkaVaZAXH3azIKRO5zHTKRSatdrjUaMiZ4PZhj2G7XJT5EyASqZBGPss5NVwHIS4gKeWFpnaXmxnmwavV2Kqqle5QrUgzVRYMyoHBgyM77H0JK7ftPizqqeoGTB1yLRg1khrBeSwPJTbbavoWNCyQUEYe7K9Ao7o1oFFURGiFYhZgHXstfvpaVvjzQGwga6MZmzkIJKf-3QHHgzcOg3_pmkouEu5ST_-5mpewkxxP1Pt352fPYJfaux_Ol2cftr_Vy_w5bDVm-cLNvd-xQjbO
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparing+the+applications+of+machine+learning%2C+PBPK%2C+and+population+pharmacokinetic+models+in+pharmacokinetic+drug%E2%80%93drug+interaction+prediction&rft.jtitle=CPT%3A+pharmacometrics+and+systems+pharmacology&rft.au=Gill%2C+Jaidip&rft.au=Moullet%2C+Marie&rft.au=Martinsson%2C+Anton&rft.au=Miljkovi%C4%87%2C+Filip&rft.date=2022-12-01&rft.issn=2163-8306&rft.eissn=2163-8306&rft.volume=11&rft.issue=12&rft.spage=1560&rft.epage=1568&rft_id=info:doi/10.1002%2Fpsp4.12870&rft.externalDBID=10.1002%252Fpsp4.12870&rft.externalDocID=PSP412870
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2163-8306&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2163-8306&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2163-8306&client=summon