Comparative genomics uncovers novel structural and functional features of the heterotrimeric GTPase signaling system
Though the heterotrimeric G-proteins signaling system is one of the best studied in eukaryotes, its provenance and its prevalence outside of model eukaryotes remains poorly understood. We utilized the wealth of sequence data from recently sequenced eukaryotic genomes to uncover robust G-protein sign...
Saved in:
Published in: | Gene Vol. 475; no. 2; pp. 63 - 78 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
Netherlands
Elsevier B.V
15-04-2011
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Though the heterotrimeric G-proteins signaling system is one of the best studied in eukaryotes, its provenance and its prevalence outside of model eukaryotes remains poorly understood. We utilized the wealth of sequence data from recently sequenced eukaryotic genomes to uncover robust G-protein signaling systems in several poorly studied eukaryotic lineages such as the parabasalids, heteroloboseans and stramenopiles. This indicated that the Gα subunit is likely to have separated from the ARF-like GTPases prior to the last eukaryotic common ancestor. We systematically identified the structure and sequence features associated with this divergence and found that most of the neomorphic positions in Gα form a ring of residues centered on the nucleotide binding site, several of which are likely to be critical for interactions with the RGS domain for its GAP function. We also present evidence that in some of the potentially early branching eukaryotic lineages, like
Trichomonas, Gα is likely to function independently of the Gβγ subunits. We were able to identify previously unknown Gγ subunits in
Naegleria, suggesting that the trimeric version was already present by the time of the divergence of the heteroloboseans from the remaining eukaryotes. Evolution of Gα subunits is dominated by several independent lineage-specific expansions (LSEs). In most of these cases there are concomitant, independent LSEs of RGS proteins along with an extraordinary diversification of their domain architectures. The diversity of RGS domains from
Naegleria in particular, which has the largest complement of Gα and RGS proteins for any eukaryote, provides new insights into RGS function and evolution. We uncovered a new class of soluble ligand receptors of bacterial origin with RGS domains and an extraordinary diversity of membrane-linked, redox-associated, adhesion-dependent and small molecule-induced G-protein signaling networks that evolved in early-branching eukaryotes, independently of parallel systems in animals. Furthermore, this newly characterized diversity of RGS domains helps in defining their ancestral conserved interfaces with Gα and also those interfaces that are prone to extensive lineage-specific diversification and are thereby responsible for selectivity in Gα–RGS interactions. Several mushrooms show LSEs of Gαs but not of RGS proteins pointing to the probable differentiation of Gαs in conjunction with mating-type diversity. When combined with the characterization of the 7TM receptors (GPCRs), it becomes apparent that, through much of eukaryotic evolution, cells contained both 7TM receptors that acted as GEFs and those as GAPs (with C-terminal RGS domains) for Gαs. Only in some lineages like animals and stramenopiles the 7TM receptors were restricted to GEF only roles, probably due to selection imposed by the rate-constants of the Gαs that underwent lineage-specific expansion in them. In the alveolate lineage the 7TM receptors occur independently of heterotrimeric G-proteins, suggesting the prevalence of G-protein-independent signaling in these organisms. |
---|---|
Bibliography: | http://dx.doi.org/10.1016/j.gene.2010.12.001 ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ISSN: | 0378-1119 1879-0038 |
DOI: | 10.1016/j.gene.2010.12.001 |