In Vitro and in Vivo Comparative Study of Oral Nanoparticles and Gut Iontophoresis as Oral Delivery Systems for Insulin
Multiple daily injections of insulin for diabetes cause many hazards for diabetic patients. Oral noninvasive insulin delivery could be more convenient and less painful than parenteral route. In past decades transdermal iontophoresis had been studied for insulin delivery across the skin with or witho...
Saved in:
Published in: | Biological & pharmaceutical bulletin Vol. 44; no. 2; pp. 251 - 258 |
---|---|
Main Authors: | , , |
Format: | Journal Article |
Language: | English |
Published: |
Japan
The Pharmaceutical Society of Japan
01-02-2021
Japan Science and Technology Agency |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Multiple daily injections of insulin for diabetes cause many hazards for diabetic patients. Oral noninvasive insulin delivery could be more convenient and less painful than parenteral route. In past decades transdermal iontophoresis had been studied for insulin delivery across the skin with or without chemical permeation enhancers. However, the results of these studies were not efficacious and serum insulin levels were not therapeutically effective. In the present study an advanced technology “gut iontophoresis” for insulin delivery across the gut wall was compared with traditional oral insulin delivery in the form of nanoparticles. In vitro application of electric current to the intestinal membrane could enhance the flux of insulin nanoparticles (3.4 fold enhancement of insulin transport) from the donor to the receptor compartment in the Franz cell. In vivo iontophoresis of insulin nanoparticles through the gut wall would produce intense hypoglycemia (57% glycemia drop in 3 h) without damage of the intestinal tissues. Cell viability assay indicated that 50–500 µg/mL nanoparticles had no toxic effect on Caco-2 cells. Nanoparticles gut iontophoresis could be a promising non-invasive technique for oral insulin delivery. |
---|---|
AbstractList | Multiple daily injections of insulin for diabetes cause many hazards for diabetic patients. Oral noninvasive insulin delivery could be more convenient and less painful than parenteral route. In past decades transdermal iontophoresis had been studied for insulin delivery across the skin with or without chemical permeation enhancers. However, the results of these studies were not efficacious and serum insulin levels were not therapeutically effective. In the present study an advanced technology "gut iontophoresis" for insulin delivery across the gut wall was compared with traditional oral insulin delivery in the form of nanoparticles. In vitro application of electric current to the intestinal membrane could enhance the flux of insulin nanoparticles (3.4 fold enhancement of insulin transport) from the donor to the receptor compartment in the Franz cell. In vivo iontophoresis of insulin nanoparticles through the gut wall would produce intense hypoglycemia (57% glycemia drop in 3 h) without damage of the intestinal tissues. Cell viability assay indicated that 50-500 µg/mL nanoparticles had no toxic effect on Caco-2 cells. Nanoparticles gut iontophoresis could be a promising non-invasive technique for oral insulin delivery. Multiple daily injections of insulin for diabetes cause many hazards for diabetic patients. Oral noninvasive insulin delivery could be more convenient and less painful than parenteral route. In past decades transdermal iontophoresis had been studied for insulin delivery across the skin with or without chemical permeation enhancers. However, the results of these studies were not efficacious and serum insulin levels were not therapeutically effective. In the present study an advanced technology “gut iontophoresis” for insulin delivery across the gut wall was compared with traditional oral insulin delivery in the form of nanoparticles. In vitro application of electric current to the intestinal membrane could enhance the flux of insulin nanoparticles (3.4 fold enhancement of insulin transport) from the donor to the receptor compartment in the Franz cell. In vivo iontophoresis of insulin nanoparticles through the gut wall would produce intense hypoglycemia (57% glycemia drop in 3 h) without damage of the intestinal tissues. Cell viability assay indicated that 50–500 µg/mL nanoparticles had no toxic effect on Caco-2 cells. Nanoparticles gut iontophoresis could be a promising non-invasive technique for oral insulin delivery. Graphical Abstract |
Author | Ali, Amir I. Elkhatib, Mona M. Al-badrawy, Ali S. |
Author_xml | – sequence: 1 fullname: Elkhatib, Mona M. organization: Department of Pharmaceutics, Faculty of Pharmacy, Cairo University – sequence: 2 fullname: Ali, Amir I. organization: Military Medical Academy – sequence: 3 fullname: Al-badrawy, Ali S. organization: Military Medical Academy |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33518677$$D View this record in MEDLINE/PubMed |
BookMark | eNo9kElPwzAQRi0EghY4ckWWOKd4S5wcUdkqIXpguVp2YkOq1A62U9R_j7vQy1jjefON9Mbg2DqrAbjCaIIJK29VryaKoAwhTvkRGGHKeJYTnB-DEapwmRU4L8_AOIQFSgwi9BScUZrjsuB8BH5nFn620TsobQPbTbNycOqWvfQytisN3-LQrKEzcO5lB1-ldWkU27rTYbvzNEQ4cza6_tt5Hdr0G3bsve5SgF_Dt3WIehmgcR7ObBi61l6AEyO7oC_37zn4eHx4nz5nL_On2fTuJatzjGJGqS6NKqRiNC9Khomq6qpRilYEmapoTGpojYwkTFIs61wbRrhRqqGq0UzTc3Czy-29-xl0iGLhBm_TSZHsFZjzgqNEZTuq9i4Er43ofbuUfi0wEhvNImkWSbPYak789T51UEvdHOh_rwmY7oBFiPJLH4C9uW0cY4JsyiH2MK2_pRfa0j8lrpQ4 |
CitedBy_id | crossref_primary_10_1159_000536500 crossref_primary_10_3390_pharmaceutics14071406 crossref_primary_10_1016_j_jddst_2022_103728 crossref_primary_10_3390_molecules28207115 crossref_primary_10_1016_j_addr_2021_113926 crossref_primary_10_3390_life13081663 |
Cites_doi | 10.1208/s12249-012-9807-2 10.1023/B:PHAM.0000029282.44140.2e 10.1016/j.ijbiomac.2014.05.036 10.1016/j.sna.2011.05.024 10.5402/2011/780150 10.1016/j.colsurfb.2011.11.016 10.21577/0100-4042.20160159 10.1016/j.addr.2017.11.003 10.1016/j.jconrel.2006.10.023 10.3109/02652048.2011.638992 10.1016/S0168-3659(99)00285-0 10.3390/pharmaceutics10040214 10.1016/j.ejpb.2004.10.006 10.1016/S0378-5173(03)00034-6 10.1016/j.jsps.2012.02.001 10.1016/j.ijpharm.2010.04.006 10.3390/nano9081081 10.1016/S2222-1808(14)60590-9 10.1007/s11095-007-9367-4 10.1159/000081114 10.3390/ijms17071171 10.1016/0169-409X(92)90024-K |
ContentType | Journal Article |
Copyright | 2021 The Pharmaceutical Society of Japan Copyright Japan Science and Technology Agency 2021 |
Copyright_xml | – notice: 2021 The Pharmaceutical Society of Japan – notice: Copyright Japan Science and Technology Agency 2021 |
DBID | NPM AAYXX CITATION 7QP 7QR 7TK 7U9 8FD FR3 H94 P64 |
DOI | 10.1248/bpb.b20-00737 |
DatabaseName | PubMed CrossRef Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Neurosciences Abstracts Virology and AIDS Abstracts Technology Research Database Engineering Research Database AIDS and Cancer Research Abstracts Biotechnology and BioEngineering Abstracts |
DatabaseTitle | PubMed CrossRef Virology and AIDS Abstracts Technology Research Database AIDS and Cancer Research Abstracts Chemoreception Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts |
DatabaseTitleList | PubMed Virology and AIDS Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry Pharmacy, Therapeutics, & Pharmacology |
EISSN | 1347-5215 |
EndPage | 258 |
ExternalDocumentID | 10_1248_bpb_b20_00737 33518677 article_bpb_44_2_44_b20_00737_article_char_en |
Genre | Journal Article |
GroupedDBID | --- 23N 2WC 5GY 6J9 ACGFO ACIWK ACPRK ADBBV AENEX AFFNX AFRAH ALMA_UNASSIGNED_HOLDINGS BAWUL BKOMP CS3 DIK DU5 E3Z EBS EJD F5P GX1 HH5 JMI JSF JSH KQ8 MOJWN OK1 P2P RJT RZJ TR2 XSB .55 1CY 53G ABJNI ABTAH AI. NPM TKC VH1 X7M ZXP ZY4 AAYXX CITATION 7QP 7QR 7TK 7U9 8FD FR3 H94 P64 |
ID | FETCH-LOGICAL-c510t-33e8fb6ab43568412b9c9dbb3920f96df9db3c0fa24a31ac5ef427fbbd3bde4e3 |
ISSN | 0918-6158 |
IngestDate | Thu Oct 17 04:14:26 EDT 2024 Fri Aug 23 01:03:16 EDT 2024 Thu May 23 23:40:57 EDT 2024 Thu Aug 17 20:32:59 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | nanoparticle insulin gut iontophoresis oral delivery |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c510t-33e8fb6ab43568412b9c9dbb3920f96df9db3c0fa24a31ac5ef427fbbd3bde4e3 |
OpenAccessLink | https://www.jstage.jst.go.jp/article/bpb/44/2/44_b20-00737/_article/-char/en |
PMID | 33518677 |
PQID | 2486177670 |
PQPubID | 1966364 |
PageCount | 8 |
ParticipantIDs | proquest_journals_2486177670 crossref_primary_10_1248_bpb_b20_00737 pubmed_primary_33518677 jstage_primary_article_bpb_44_2_44_b20_00737_article_char_en |
PublicationCentury | 2000 |
PublicationDate | 2021-02-01 |
PublicationDateYYYYMMDD | 2021-02-01 |
PublicationDate_xml | – month: 02 year: 2021 text: 2021-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Japan |
PublicationPlace_xml | – name: Japan – name: Tokyo |
PublicationTitle | Biological & pharmaceutical bulletin |
PublicationTitleAlternate | Biol Pharm Bull |
PublicationYear | 2021 |
Publisher | The Pharmaceutical Society of Japan Japan Science and Technology Agency |
Publisher_xml | – name: The Pharmaceutical Society of Japan – name: Japan Science and Technology Agency |
References | 30) Krueger E, Claudino Junior JL, Scheeren EM, Neves EB, Mulinari E, Nohama P. Iontophoresis: principles and application. Fisioter. Mov., 27, 469–481 (2014). 21) Lim ST, Martin GP, Berry DJ, Brown MB. Preparation and evaluation of the in vitro drug release properties and mucoadhesion of novel microspheres of hyaluronic acid and Chitosan. J. Control. Release, 66, 281–292 (2000). 23) Damayanthi RD, Tharani CB, Narayanan N. Optimization of rifampicin loaded alginate–chitosan nanoparticles by box behnken design. Int. J. Adv. Pharm. Res., 4, 2522–2528 (2013). 13) Sharma G, van der Walle CF, Ravi Kumar MNV. Antacid co-encapsulated polyester nanoparticles for peroral delivery of insulin: Development, pharmacokinetics, biodistribution and pharmacodynamics. Int. J. Pharm., 440, 99–110 (2013). 24) Azevedo MA, Bourbon AI, Vicente AA, Cerqueira MA. Alginate / Chitosan nanoparticles for encapsulation and controlled release of vitamin B2. Int. J. Biol. Macromol., 71, 141–146 (2014). 34) Sarmento B, Ribeiro A, Veiga FJB, Sampaio P, Neufeld R, Ferreira D. Alginate/chitosan nanoparticles are effective for oral insulin delivery. Pharm. Res., 24, 2198–2206 (2007). 35) Damgé C, Maincent P, Ubrich N. Oral delivery of insulin associated to polymeric nanoparticles in diabetic rats. J. Control. Release, 117, 163–170 (2007). 1) Liu W, Pan H, Zhang C, Zhao L, Zhao R, Zhu Y, Pan W. Developments in methods for measuring the intestinal absorption of nanoparticle-bound drugs. Int. J. Mol. Sci., 17, 1171 (2016). 28) Pignatello R, Fresta M, Puglisi G. Transdermal drug delivery by iontophoresis. I. Fundamentals and theoretical aspects. J. Appl. Cosmetol., 14, 59–72 (1996). 3) Pillai O, Borkute SD, Sivaprasad N, Panchagnula R. Transdermal iontophoresis of insulin II. Physicochemical considerations. Int. J. Pharm., 254, 271–280 (2003). 20) Motwani SK, Chopra S, Talegaonkar S, Kohli K, Ahmad F, Khar RK. Chitosan–sodium alginate nanoparticles as submicroscopic reservoirs for ocular delivery: Formulation, optimization and in vitro characterization. Eur. J. Pharm. Biopharm., 68, 513–525 (2008). 7) Tomoda K, Terashima H, Suzuki K, Inagi T, Terada H, Makino K. Enhanced transdermal delivery of indomethacin using combination of PLGA nanoparticles and iontophoresis in vivo. Colloids Surf. B Biointerfaces, 92, 50–54 (2012). 37) Lee HJ, Choi N, Yoon ES, Cho IJ. MEMES devices for drug delivery. Adv. Drug Deliv. Rev., 128, 132–147 (2018). 22) Saraei F, Dounighi M, Zolfagharian H, Bedhendi M, Khaki P, Inanlou F. Design and evaluate alginate nanoparticles as protein delivery system. Arch. Razi Inst., 68, 139–146 (2013). 32) Pillai O, Kumar N, Dey CS, Borkute S, Nagalingam S, Panchagnula R. Transdermal iontophoresis of insulin. Part 1: a study on the issues associated with the use of platinum electrodes on rat skin. J. Pharm. Pharmacol., 55, 1505–1513 (2003). 17) Abuzaid II, Hussein MA, Mousa GG, Mohamed AR, Badr NM, Hamid AA. Acetylchloine iontophoresis in diabetic patients with and without neuropathy: a potential therapeutic tool. Egypt. J. Intern. Med., 28, 140–145 (2018). 6) Pikal MG. The role of electroosmotic flow in transdermal iontophoresis. Adv. Drug Deliv. Rev., 9, 201–237 (1992). 2) Malakar J, Sen SO, Nayak AK, Sen KK. Development and evaluation of microemulsions for transdermal delivery of insulin. ISRN Pharm., 2011, 780150 (2011). 27) Martanto W, Davis SP, Holiday NR, Wang J, Gill HS, Prausnitz MR. Transdermal delivery of insulin using microneedles in vivo. Pharm. Res., 21, 947–952 (2004). 5) Pillai O, Panchagnula R. Transdermal delivery of insulin. VI. Influence of pretreatment with fatty acids on permeation across rat skin. Skin Pharmacol. Physiol., 17, 289–297 (2004). 4) Dixit N, Bali V, Baboota S, Ahuja A, Ali J. Iontophresis—an approach for controlled drug delivery: a review. Curr. Drug Deliv., 4, 1–10 (2007). 36) Dudhani AR, Kosaraju SL. Bioadhesive chitosan nanoparticles: Preparation and characterization. Carbohydr. Polym., 81, 243–251 (2010). 25) Zhang N, Li J, Jiang W, Ren C, Li J, Xin J, Li K. Effective protection and controlled release of insulin by cationic β-cyclodextrin polymers from alginate/chitosan nanoparticles. Int. J. Pharm., 393, 213–218 (2010). 26) Kulkarni RV, Biswanath SA. Electrically responsive smart hydrogels in drug delivery: a review. Journal of Applied Biomaterials & Functional Materials, 5, 125–139 (2007). 9) Andreani T, Fangueiro JF, Severino P, De Souza ALR, Martins-Gomes C, Fernandes PMV, Calpena AN, Gremiao MP, Souto EB, Silva AM. The influence of polysaccharide coating on the physicochemical parameters and cytotoxicity of silica nanoparticles for hydrophilic biomolecules delivery. Nanomaterials (Basel), 9, 1081 (2019). 14) Panchagnula R, Bindra P, Kumar N, Dey CS, Pillai O. Stability of insulin under iontophoretic conditions. Pharmazie, 61, 1014–1018 (2006). 16) Matos BN, Melo LMA, Pereira MN, Reis TA, Cunha-Filho M, Gratieri T, Gelfuso GM. Iontophoresis on minoxidil sulphate loaded chitosan nanoparticles accelerates drug release, decreasing their targeting effect to hair follicles. Quim. Nova, 40, 154–157 (2017). 12) Bilati U, Allemann E, Doelker E. Strategic approaches for overcoming peptide and protein instability within biodegradable nano- and microparticles. Eur. J. Pharm. Biopharm., 59, 375–388 (2005). 8) Han L, Zhao Y, Yin L, Li R, Liang Y, Huang H, Pan S, Wu C, Feng M. Insulin-loaded pH sensitive hyaluronic acid nanoparticles enhance transcellular delivery. AAPS PharmSciTech, 13, 836–845 (2012). 38) Zhuang Y, Hou W, Zheng X, Wang Z, Zheng J, Pi X, Cui J, Jiang Y, Qian S, Peng C. A MEMS-based electronic capsule for time-controlled drug delivery in the alimentary canal. Sens. Actuators A Phys., 169, 211–216 (2011). 40) Rafiee A, Alimohammadian MH, Gazori T, Riazi-rad F, Fatemi SMR, Parizadeh A, Haririan I, Havaskary M. Comparison of chitosan, alginate and chitosan/alginate nanoparticles with respect to their size, stability, toxicity and transfection. Asian Pac. J. Trop. Dis., 4, 372–377 (2014). 11) Kumari SC, Tharani CB, Kumari CS. Formulation and characterization of methotrexate loaded sodium alginate Chitosan nanoparticles. Int. J. Res. Pharm. Biotechnol., 6, 915–921 (2013). 39) Reis CP, Neufeld R, Veiga F, Figueiredo IV, Jones J, Soares AF, Nunes P, Damgé C, Carvalho RA. Effects of an oral insulin nanoparticle administration on hepatic glucose metabolism assessed by C-13 and H-2 isotopomer analysis. J. Microencapsul., 29, 167–176 (2012). 29) Dalmolin LF, Lopez R F V. Nanoemulsion as a platform for iontophoretic delivery of lipophilic drugs in skin tumors. Pharmaceutics., 10, 214 (2018). 33) Sharma G, Van der Walle CF, Ravi Kumar MNV. Antacid co-encapsulated polyester nanoparticles for peroral delivery of insulin: Development, pharmacokinetics, biodistribution and pharmacodynamics. Int. J. Pharm., 440, 99–110 (2013). 15) Malakar J, Sen OS, Nayak AK, Sen KK. Formulation, optimization and evaluation of tranferosomal gel for transdermal insulin delivery. Saudi Pharm. J., 20, 355–363 (2012). 19) Takeuchi I, Kobayashi S, Hida Y, Makino K. Estradiol-loaded PLGA nanoparticles for improving low bone mineral density of cancellous bone caused by osteoporosis: application of enhanced charged nanoparticles with iontophoresis. Colloids Surf. B Biointerfaces, 155, 35–40 (2017). 18) Banerjee A, Chen R, Arafin S, Mitragotri S. Intestinal iontophoresis from mucoadhesive patches: a strategy for oral delivery. J. Control. Release, 297, 71–78 (2019). 31) Ahmad A, Othman L, Zaini A, Chowdhury EH. Oral nano-insulin therapy: current progress on nanoparticle-based devices for intestinal epithelium-targeted insulin delivery. J. Nanomed. Nanotechnol., 4, 1–10 (2012). 10) Budama-Kilinc Y, Cakir-Koc R, Horzum-Bayir O. The cytotoxicity, characteristics and optimization of insulin loaded nanoparticles. Orbital: Elrctron. J. Chem., 9, 66–71 (2017). 22 23 24 25 26 27 28 29 30 31 10 32 11 33 12 34 13 35 14 36 15 37 16 38 17 39 18 19 1 2 3 4 5 6 7 8 9 40 20 21 |
References_xml | – ident: 18 – ident: 8 doi: 10.1208/s12249-012-9807-2 – ident: 27 doi: 10.1023/B:PHAM.0000029282.44140.2e – ident: 4 – ident: 24 doi: 10.1016/j.ijbiomac.2014.05.036 – ident: 38 doi: 10.1016/j.sna.2011.05.024 – ident: 2 doi: 10.5402/2011/780150 – ident: 7 doi: 10.1016/j.colsurfb.2011.11.016 – ident: 33 – ident: 10 – ident: 16 doi: 10.21577/0100-4042.20160159 – ident: 14 – ident: 31 – ident: 37 doi: 10.1016/j.addr.2017.11.003 – ident: 28 – ident: 35 doi: 10.1016/j.jconrel.2006.10.023 – ident: 39 doi: 10.3109/02652048.2011.638992 – ident: 20 – ident: 26 – ident: 22 – ident: 17 – ident: 21 doi: 10.1016/S0168-3659(99)00285-0 – ident: 29 doi: 10.3390/pharmaceutics10040214 – ident: 12 doi: 10.1016/j.ejpb.2004.10.006 – ident: 36 – ident: 11 – ident: 19 – ident: 13 – ident: 3 doi: 10.1016/S0378-5173(03)00034-6 – ident: 32 – ident: 30 – ident: 15 doi: 10.1016/j.jsps.2012.02.001 – ident: 25 doi: 10.1016/j.ijpharm.2010.04.006 – ident: 9 doi: 10.3390/nano9081081 – ident: 40 doi: 10.1016/S2222-1808(14)60590-9 – ident: 34 doi: 10.1007/s11095-007-9367-4 – ident: 5 doi: 10.1159/000081114 – ident: 1 doi: 10.3390/ijms17071171 – ident: 6 doi: 10.1016/0169-409X(92)90024-K – ident: 23 |
SSID | ssj0007023 |
Score | 2.3937752 |
Snippet | Multiple daily injections of insulin for diabetes cause many hazards for diabetic patients. Oral noninvasive insulin delivery could be more convenient and less... |
SourceID | proquest crossref pubmed jstage |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 251 |
SubjectTerms | Blood glucose Cell viability Diabetes mellitus Digestive system Gastrointestinal tract gut iontophoresis Hypoglycemia Insulin Intestine Iontophoresis nanoparticle Nanoparticles oral delivery |
Title | In Vitro and in Vivo Comparative Study of Oral Nanoparticles and Gut Iontophoresis as Oral Delivery Systems for Insulin |
URI | https://www.jstage.jst.go.jp/article/bpb/44/2/44_b20-00737/_article/-char/en https://www.ncbi.nlm.nih.gov/pubmed/33518677 https://www.proquest.com/docview/2486177670 |
Volume | 44 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Biological and Pharmaceutical Bulletin, 2021/02/01, Vol.44(2), pp.251-258 |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLa6gQQvCDouhYH8gPrSZSSOWycSL9HWsYppQ1qH9hbZiUMDW1L1sqn_nuNLkkYIBA-8RI1ru0m_L8c-zjmfEXofZIIlqZ84MhXCoTDkOUHIfEe4fJQST3pCZ72fXrLz6-B4TMedTrVLVlP2X5GGMsBaZc7-A9p1p1AAnwFzOALqcPwr3CfF4Gu-WpRWVglO7krz1FuN78tKRvpC5eaDdQW32UbH6Taf1qvBRKkazGcl-OL5Um1Fo-seyxsVxbGpZM51iOLEBLO3Xg7ntUVVxJrPWsvmYlvwW0eN_JjBlen3QmBheLM-G5nU7eg2XzSLu9GNI3i64Pcbk5-T28Vbu3JBvCrYuRpVYDbQmDB1g83bhEGkM0-3lyu9ANxcI_N-KI2x9ikDR9qkg1bW3KhJWtaSbdNshG1_GTIIVWkQYi4OBVFJ9syI0LSluc8v4pOrs7N4Or6e7qAHBKya9t8nn-thn7l6L8H6Qq2gK3T_odV5awL08Dv4AN_k790bPc2ZPkVPrH-CI8OIZ6gjiy7aiwq-Km83uI91xLD-87ro0VG1W2AX9b8YlDcHeNqk9C0PdJNaHX2zh-4nBdYExYAFztXJXYm3CIo1QXGZYUU63CKobgMExS2CYr40dSuCYktQDATFlqDP0dXJeHp06tjdP5wExomV4_sSDMmIC5jQjwLqEREmIRgUmNC7WThKMzjxEzfjhHLf48lQZpSwTIjUF6mk0n-BdouykK8QZkRSRt0kCZKQymDIOfMoT1KaJmmQeWEP9StI4rkReYmVcwzYxYBdDNjFGrse-mgAq6vZ-9fVKI2JOtTV629VBiUYpx7ar2COrclYxvAj4EWwEXN76KWBvu7d94dacPL1nxu-QY-b52sf7a4Wa_kW7SzT9TvN0Z9UB8Zq |
link.rule.ids | 315,782,786,27933,27934 |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=In+Vitro+and+in+Vivo+Comparative+Study+of+Oral+Nanoparticles+and+Gut+Iontophoresis+as+Oral+Delivery+Systems+for+Insulin&rft.jtitle=Biological+%26+pharmaceutical+bulletin&rft.au=Elkhatib%2C+Mona+M&rft.au=Ali%2C+Amir+I&rft.au=Al-badrawy%2C+Ali+S&rft.date=2021-02-01&rft.pub=Japan+Science+and+Technology+Agency&rft.issn=0918-6158&rft.eissn=1347-5215&rft.volume=44&rft.issue=2&rft.spage=251&rft_id=info:doi/10.1248%2Fbpb.b20-00737&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0918-6158&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0918-6158&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0918-6158&client=summon |