In Vitro and in Vivo Comparative Study of Oral Nanoparticles and Gut Iontophoresis as Oral Delivery Systems for Insulin

Multiple daily injections of insulin for diabetes cause many hazards for diabetic patients. Oral noninvasive insulin delivery could be more convenient and less painful than parenteral route. In past decades transdermal iontophoresis had been studied for insulin delivery across the skin with or witho...

Full description

Saved in:
Bibliographic Details
Published in:Biological & pharmaceutical bulletin Vol. 44; no. 2; pp. 251 - 258
Main Authors: Elkhatib, Mona M., Ali, Amir I., Al-badrawy, Ali S.
Format: Journal Article
Language:English
Published: Japan The Pharmaceutical Society of Japan 01-02-2021
Japan Science and Technology Agency
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Multiple daily injections of insulin for diabetes cause many hazards for diabetic patients. Oral noninvasive insulin delivery could be more convenient and less painful than parenteral route. In past decades transdermal iontophoresis had been studied for insulin delivery across the skin with or without chemical permeation enhancers. However, the results of these studies were not efficacious and serum insulin levels were not therapeutically effective. In the present study an advanced technology “gut iontophoresis” for insulin delivery across the gut wall was compared with traditional oral insulin delivery in the form of nanoparticles. In vitro application of electric current to the intestinal membrane could enhance the flux of insulin nanoparticles (3.4 fold enhancement of insulin transport) from the donor to the receptor compartment in the Franz cell. In vivo iontophoresis of insulin nanoparticles through the gut wall would produce intense hypoglycemia (57% glycemia drop in 3 h) without damage of the intestinal tissues. Cell viability assay indicated that 50–500 µg/mL nanoparticles had no toxic effect on Caco-2 cells. Nanoparticles gut iontophoresis could be a promising non-invasive technique for oral insulin delivery.
AbstractList Multiple daily injections of insulin for diabetes cause many hazards for diabetic patients. Oral noninvasive insulin delivery could be more convenient and less painful than parenteral route. In past decades transdermal iontophoresis had been studied for insulin delivery across the skin with or without chemical permeation enhancers. However, the results of these studies were not efficacious and serum insulin levels were not therapeutically effective. In the present study an advanced technology "gut iontophoresis" for insulin delivery across the gut wall was compared with traditional oral insulin delivery in the form of nanoparticles. In vitro application of electric current to the intestinal membrane could enhance the flux of insulin nanoparticles (3.4 fold enhancement of insulin transport) from the donor to the receptor compartment in the Franz cell. In vivo iontophoresis of insulin nanoparticles through the gut wall would produce intense hypoglycemia (57% glycemia drop in 3 h) without damage of the intestinal tissues. Cell viability assay indicated that 50-500 µg/mL nanoparticles had no toxic effect on Caco-2 cells. Nanoparticles gut iontophoresis could be a promising non-invasive technique for oral insulin delivery.
Multiple daily injections of insulin for diabetes cause many hazards for diabetic patients. Oral noninvasive insulin delivery could be more convenient and less painful than parenteral route. In past decades transdermal iontophoresis had been studied for insulin delivery across the skin with or without chemical permeation enhancers. However, the results of these studies were not efficacious and serum insulin levels were not therapeutically effective. In the present study an advanced technology “gut iontophoresis” for insulin delivery across the gut wall was compared with traditional oral insulin delivery in the form of nanoparticles. In vitro application of electric current to the intestinal membrane could enhance the flux of insulin nanoparticles (3.4 fold enhancement of insulin transport) from the donor to the receptor compartment in the Franz cell. In vivo iontophoresis of insulin nanoparticles through the gut wall would produce intense hypoglycemia (57% glycemia drop in 3 h) without damage of the intestinal tissues. Cell viability assay indicated that 50–500 µg/mL nanoparticles had no toxic effect on Caco-2 cells. Nanoparticles gut iontophoresis could be a promising non-invasive technique for oral insulin delivery. Graphical Abstract
Author Ali, Amir I.
Elkhatib, Mona M.
Al-badrawy, Ali S.
Author_xml – sequence: 1
  fullname: Elkhatib, Mona M.
  organization: Department of Pharmaceutics, Faculty of Pharmacy, Cairo University
– sequence: 2
  fullname: Ali, Amir I.
  organization: Military Medical Academy
– sequence: 3
  fullname: Al-badrawy, Ali S.
  organization: Military Medical Academy
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33518677$$D View this record in MEDLINE/PubMed
BookMark eNo9kElPwzAQRi0EghY4ckWWOKd4S5wcUdkqIXpguVp2YkOq1A62U9R_j7vQy1jjefON9Mbg2DqrAbjCaIIJK29VryaKoAwhTvkRGGHKeJYTnB-DEapwmRU4L8_AOIQFSgwi9BScUZrjsuB8BH5nFn620TsobQPbTbNycOqWvfQytisN3-LQrKEzcO5lB1-ldWkU27rTYbvzNEQ4cza6_tt5Hdr0G3bsve5SgF_Dt3WIehmgcR7ObBi61l6AEyO7oC_37zn4eHx4nz5nL_On2fTuJatzjGJGqS6NKqRiNC9Khomq6qpRilYEmapoTGpojYwkTFIs61wbRrhRqqGq0UzTc3Czy-29-xl0iGLhBm_TSZHsFZjzgqNEZTuq9i4Er43ofbuUfi0wEhvNImkWSbPYak789T51UEvdHOh_rwmY7oBFiPJLH4C9uW0cY4JsyiH2MK2_pRfa0j8lrpQ4
CitedBy_id crossref_primary_10_1159_000536500
crossref_primary_10_3390_pharmaceutics14071406
crossref_primary_10_1016_j_jddst_2022_103728
crossref_primary_10_3390_molecules28207115
crossref_primary_10_1016_j_addr_2021_113926
crossref_primary_10_3390_life13081663
Cites_doi 10.1208/s12249-012-9807-2
10.1023/B:PHAM.0000029282.44140.2e
10.1016/j.ijbiomac.2014.05.036
10.1016/j.sna.2011.05.024
10.5402/2011/780150
10.1016/j.colsurfb.2011.11.016
10.21577/0100-4042.20160159
10.1016/j.addr.2017.11.003
10.1016/j.jconrel.2006.10.023
10.3109/02652048.2011.638992
10.1016/S0168-3659(99)00285-0
10.3390/pharmaceutics10040214
10.1016/j.ejpb.2004.10.006
10.1016/S0378-5173(03)00034-6
10.1016/j.jsps.2012.02.001
10.1016/j.ijpharm.2010.04.006
10.3390/nano9081081
10.1016/S2222-1808(14)60590-9
10.1007/s11095-007-9367-4
10.1159/000081114
10.3390/ijms17071171
10.1016/0169-409X(92)90024-K
ContentType Journal Article
Copyright 2021 The Pharmaceutical Society of Japan
Copyright Japan Science and Technology Agency 2021
Copyright_xml – notice: 2021 The Pharmaceutical Society of Japan
– notice: Copyright Japan Science and Technology Agency 2021
DBID NPM
AAYXX
CITATION
7QP
7QR
7TK
7U9
8FD
FR3
H94
P64
DOI 10.1248/bpb.b20-00737
DatabaseName PubMed
CrossRef
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Neurosciences Abstracts
Virology and AIDS Abstracts
Technology Research Database
Engineering Research Database
AIDS and Cancer Research Abstracts
Biotechnology and BioEngineering Abstracts
DatabaseTitle PubMed
CrossRef
Virology and AIDS Abstracts
Technology Research Database
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
DatabaseTitleList PubMed
Virology and AIDS Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
Pharmacy, Therapeutics, & Pharmacology
EISSN 1347-5215
EndPage 258
ExternalDocumentID 10_1248_bpb_b20_00737
33518677
article_bpb_44_2_44_b20_00737_article_char_en
Genre Journal Article
GroupedDBID ---
23N
2WC
5GY
6J9
ACGFO
ACIWK
ACPRK
ADBBV
AENEX
AFFNX
AFRAH
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BKOMP
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
GX1
HH5
JMI
JSF
JSH
KQ8
MOJWN
OK1
P2P
RJT
RZJ
TR2
XSB
.55
1CY
53G
ABJNI
ABTAH
AI.
NPM
TKC
VH1
X7M
ZXP
ZY4
AAYXX
CITATION
7QP
7QR
7TK
7U9
8FD
FR3
H94
P64
ID FETCH-LOGICAL-c510t-33e8fb6ab43568412b9c9dbb3920f96df9db3c0fa24a31ac5ef427fbbd3bde4e3
ISSN 0918-6158
IngestDate Thu Oct 17 04:14:26 EDT 2024
Fri Aug 23 01:03:16 EDT 2024
Thu May 23 23:40:57 EDT 2024
Thu Aug 17 20:32:59 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords nanoparticle
insulin
gut iontophoresis
oral delivery
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c510t-33e8fb6ab43568412b9c9dbb3920f96df9db3c0fa24a31ac5ef427fbbd3bde4e3
OpenAccessLink https://www.jstage.jst.go.jp/article/bpb/44/2/44_b20-00737/_article/-char/en
PMID 33518677
PQID 2486177670
PQPubID 1966364
PageCount 8
ParticipantIDs proquest_journals_2486177670
crossref_primary_10_1248_bpb_b20_00737
pubmed_primary_33518677
jstage_primary_article_bpb_44_2_44_b20_00737_article_char_en
PublicationCentury 2000
PublicationDate 2021-02-01
PublicationDateYYYYMMDD 2021-02-01
PublicationDate_xml – month: 02
  year: 2021
  text: 2021-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Japan
PublicationPlace_xml – name: Japan
– name: Tokyo
PublicationTitle Biological & pharmaceutical bulletin
PublicationTitleAlternate Biol Pharm Bull
PublicationYear 2021
Publisher The Pharmaceutical Society of Japan
Japan Science and Technology Agency
Publisher_xml – name: The Pharmaceutical Society of Japan
– name: Japan Science and Technology Agency
References 30) Krueger E, Claudino Junior JL, Scheeren EM, Neves EB, Mulinari E, Nohama P. Iontophoresis: principles and application. Fisioter. Mov., 27, 469–481 (2014).
21) Lim ST, Martin GP, Berry DJ, Brown MB. Preparation and evaluation of the in vitro drug release properties and mucoadhesion of novel microspheres of hyaluronic acid and Chitosan. J. Control. Release, 66, 281–292 (2000).
23) Damayanthi RD, Tharani CB, Narayanan N. Optimization of rifampicin loaded alginate–chitosan nanoparticles by box behnken design. Int. J. Adv. Pharm. Res., 4, 2522–2528 (2013).
13) Sharma G, van der Walle CF, Ravi Kumar MNV. Antacid co-encapsulated polyester nanoparticles for peroral delivery of insulin: Development, pharmacokinetics, biodistribution and pharmacodynamics. Int. J. Pharm., 440, 99–110 (2013).
24) Azevedo MA, Bourbon AI, Vicente AA, Cerqueira MA. Alginate / Chitosan nanoparticles for encapsulation and controlled release of vitamin B2. Int. J. Biol. Macromol., 71, 141–146 (2014).
34) Sarmento B, Ribeiro A, Veiga FJB, Sampaio P, Neufeld R, Ferreira D. Alginate/chitosan nanoparticles are effective for oral insulin delivery. Pharm. Res., 24, 2198–2206 (2007).
35) Damgé C, Maincent P, Ubrich N. Oral delivery of insulin associated to polymeric nanoparticles in diabetic rats. J. Control. Release, 117, 163–170 (2007).
1) Liu W, Pan H, Zhang C, Zhao L, Zhao R, Zhu Y, Pan W. Developments in methods for measuring the intestinal absorption of nanoparticle-bound drugs. Int. J. Mol. Sci., 17, 1171 (2016).
28) Pignatello R, Fresta M, Puglisi G. Transdermal drug delivery by iontophoresis. I. Fundamentals and theoretical aspects. J. Appl. Cosmetol., 14, 59–72 (1996).
3) Pillai O, Borkute SD, Sivaprasad N, Panchagnula R. Transdermal iontophoresis of insulin II. Physicochemical considerations. Int. J. Pharm., 254, 271–280 (2003).
20) Motwani SK, Chopra S, Talegaonkar S, Kohli K, Ahmad F, Khar RK. Chitosan–sodium alginate nanoparticles as submicroscopic reservoirs for ocular delivery: Formulation, optimization and in vitro characterization. Eur. J. Pharm. Biopharm., 68, 513–525 (2008).
7) Tomoda K, Terashima H, Suzuki K, Inagi T, Terada H, Makino K. Enhanced transdermal delivery of indomethacin using combination of PLGA nanoparticles and iontophoresis in vivo. Colloids Surf. B Biointerfaces, 92, 50–54 (2012).
37) Lee HJ, Choi N, Yoon ES, Cho IJ. MEMES devices for drug delivery. Adv. Drug Deliv. Rev., 128, 132–147 (2018).
22) Saraei F, Dounighi M, Zolfagharian H, Bedhendi M, Khaki P, Inanlou F. Design and evaluate alginate nanoparticles as protein delivery system. Arch. Razi Inst., 68, 139–146 (2013).
32) Pillai O, Kumar N, Dey CS, Borkute S, Nagalingam S, Panchagnula R. Transdermal iontophoresis of insulin. Part 1: a study on the issues associated with the use of platinum electrodes on rat skin. J. Pharm. Pharmacol., 55, 1505–1513 (2003).
17) Abuzaid II, Hussein MA, Mousa GG, Mohamed AR, Badr NM, Hamid AA. Acetylchloine iontophoresis in diabetic patients with and without neuropathy: a potential therapeutic tool. Egypt. J. Intern. Med., 28, 140–145 (2018).
6) Pikal MG. The role of electroosmotic flow in transdermal iontophoresis. Adv. Drug Deliv. Rev., 9, 201–237 (1992).
2) Malakar J, Sen SO, Nayak AK, Sen KK. Development and evaluation of microemulsions for transdermal delivery of insulin. ISRN Pharm., 2011, 780150 (2011).
27) Martanto W, Davis SP, Holiday NR, Wang J, Gill HS, Prausnitz MR. Transdermal delivery of insulin using microneedles in vivo. Pharm. Res., 21, 947–952 (2004).
5) Pillai O, Panchagnula R. Transdermal delivery of insulin. VI. Influence of pretreatment with fatty acids on permeation across rat skin. Skin Pharmacol. Physiol., 17, 289–297 (2004).
4) Dixit N, Bali V, Baboota S, Ahuja A, Ali J. Iontophresis—an approach for controlled drug delivery: a review. Curr. Drug Deliv., 4, 1–10 (2007).
36) Dudhani AR, Kosaraju SL. Bioadhesive chitosan nanoparticles: Preparation and characterization. Carbohydr. Polym., 81, 243–251 (2010).
25) Zhang N, Li J, Jiang W, Ren C, Li J, Xin J, Li K. Effective protection and controlled release of insulin by cationic β-cyclodextrin polymers from alginate/chitosan nanoparticles. Int. J. Pharm., 393, 213–218 (2010).
26) Kulkarni RV, Biswanath SA. Electrically responsive smart hydrogels in drug delivery: a review. Journal of Applied Biomaterials & Functional Materials, 5, 125–139 (2007).
9) Andreani T, Fangueiro JF, Severino P, De Souza ALR, Martins-Gomes C, Fernandes PMV, Calpena AN, Gremiao MP, Souto EB, Silva AM. The influence of polysaccharide coating on the physicochemical parameters and cytotoxicity of silica nanoparticles for hydrophilic biomolecules delivery. Nanomaterials (Basel), 9, 1081 (2019).
14) Panchagnula R, Bindra P, Kumar N, Dey CS, Pillai O. Stability of insulin under iontophoretic conditions. Pharmazie, 61, 1014–1018 (2006).
16) Matos BN, Melo LMA, Pereira MN, Reis TA, Cunha-Filho M, Gratieri T, Gelfuso GM. Iontophoresis on minoxidil sulphate loaded chitosan nanoparticles accelerates drug release, decreasing their targeting effect to hair follicles. Quim. Nova, 40, 154–157 (2017).
12) Bilati U, Allemann E, Doelker E. Strategic approaches for overcoming peptide and protein instability within biodegradable nano- and microparticles. Eur. J. Pharm. Biopharm., 59, 375–388 (2005).
8) Han L, Zhao Y, Yin L, Li R, Liang Y, Huang H, Pan S, Wu C, Feng M. Insulin-loaded pH sensitive hyaluronic acid nanoparticles enhance transcellular delivery. AAPS PharmSciTech, 13, 836–845 (2012).
38) Zhuang Y, Hou W, Zheng X, Wang Z, Zheng J, Pi X, Cui J, Jiang Y, Qian S, Peng C. A MEMS-based electronic capsule for time-controlled drug delivery in the alimentary canal. Sens. Actuators A Phys., 169, 211–216 (2011).
40) Rafiee A, Alimohammadian MH, Gazori T, Riazi-rad F, Fatemi SMR, Parizadeh A, Haririan I, Havaskary M. Comparison of chitosan, alginate and chitosan/alginate nanoparticles with respect to their size, stability, toxicity and transfection. Asian Pac. J. Trop. Dis., 4, 372–377 (2014).
11) Kumari SC, Tharani CB, Kumari CS. Formulation and characterization of methotrexate loaded sodium alginate Chitosan nanoparticles. Int. J. Res. Pharm. Biotechnol., 6, 915–921 (2013).
39) Reis CP, Neufeld R, Veiga F, Figueiredo IV, Jones J, Soares AF, Nunes P, Damgé C, Carvalho RA. Effects of an oral insulin nanoparticle administration on hepatic glucose metabolism assessed by C-13 and H-2 isotopomer analysis. J. Microencapsul., 29, 167–176 (2012).
29) Dalmolin LF, Lopez R F V. Nanoemulsion as a platform for iontophoretic delivery of lipophilic drugs in skin tumors. Pharmaceutics., 10, 214 (2018).
33) Sharma G, Van der Walle CF, Ravi Kumar MNV. Antacid co-encapsulated polyester nanoparticles for peroral delivery of insulin: Development, pharmacokinetics, biodistribution and pharmacodynamics. Int. J. Pharm., 440, 99–110 (2013).
15) Malakar J, Sen OS, Nayak AK, Sen KK. Formulation, optimization and evaluation of tranferosomal gel for transdermal insulin delivery. Saudi Pharm. J., 20, 355–363 (2012).
19) Takeuchi I, Kobayashi S, Hida Y, Makino K. Estradiol-loaded PLGA nanoparticles for improving low bone mineral density of cancellous bone caused by osteoporosis: application of enhanced charged nanoparticles with iontophoresis. Colloids Surf. B Biointerfaces, 155, 35–40 (2017).
18) Banerjee A, Chen R, Arafin S, Mitragotri S. Intestinal iontophoresis from mucoadhesive patches: a strategy for oral delivery. J. Control. Release, 297, 71–78 (2019).
31) Ahmad A, Othman L, Zaini A, Chowdhury EH. Oral nano-insulin therapy: current progress on nanoparticle-based devices for intestinal epithelium-targeted insulin delivery. J. Nanomed. Nanotechnol., 4, 1–10 (2012).
10) Budama-Kilinc Y, Cakir-Koc R, Horzum-Bayir O. The cytotoxicity, characteristics and optimization of insulin loaded nanoparticles. Orbital: Elrctron. J. Chem., 9, 66–71 (2017).
22
23
24
25
26
27
28
29
30
31
10
32
11
33
12
34
13
35
14
36
15
37
16
38
17
39
18
19
1
2
3
4
5
6
7
8
9
40
20
21
References_xml – ident: 18
– ident: 8
  doi: 10.1208/s12249-012-9807-2
– ident: 27
  doi: 10.1023/B:PHAM.0000029282.44140.2e
– ident: 4
– ident: 24
  doi: 10.1016/j.ijbiomac.2014.05.036
– ident: 38
  doi: 10.1016/j.sna.2011.05.024
– ident: 2
  doi: 10.5402/2011/780150
– ident: 7
  doi: 10.1016/j.colsurfb.2011.11.016
– ident: 33
– ident: 10
– ident: 16
  doi: 10.21577/0100-4042.20160159
– ident: 14
– ident: 31
– ident: 37
  doi: 10.1016/j.addr.2017.11.003
– ident: 28
– ident: 35
  doi: 10.1016/j.jconrel.2006.10.023
– ident: 39
  doi: 10.3109/02652048.2011.638992
– ident: 20
– ident: 26
– ident: 22
– ident: 17
– ident: 21
  doi: 10.1016/S0168-3659(99)00285-0
– ident: 29
  doi: 10.3390/pharmaceutics10040214
– ident: 12
  doi: 10.1016/j.ejpb.2004.10.006
– ident: 36
– ident: 11
– ident: 19
– ident: 13
– ident: 3
  doi: 10.1016/S0378-5173(03)00034-6
– ident: 32
– ident: 30
– ident: 15
  doi: 10.1016/j.jsps.2012.02.001
– ident: 25
  doi: 10.1016/j.ijpharm.2010.04.006
– ident: 9
  doi: 10.3390/nano9081081
– ident: 40
  doi: 10.1016/S2222-1808(14)60590-9
– ident: 34
  doi: 10.1007/s11095-007-9367-4
– ident: 5
  doi: 10.1159/000081114
– ident: 1
  doi: 10.3390/ijms17071171
– ident: 6
  doi: 10.1016/0169-409X(92)90024-K
– ident: 23
SSID ssj0007023
Score 2.3937752
Snippet Multiple daily injections of insulin for diabetes cause many hazards for diabetic patients. Oral noninvasive insulin delivery could be more convenient and less...
SourceID proquest
crossref
pubmed
jstage
SourceType Aggregation Database
Index Database
Publisher
StartPage 251
SubjectTerms Blood glucose
Cell viability
Diabetes mellitus
Digestive system
Gastrointestinal tract
gut iontophoresis
Hypoglycemia
Insulin
Intestine
Iontophoresis
nanoparticle
Nanoparticles
oral delivery
Title In Vitro and in Vivo Comparative Study of Oral Nanoparticles and Gut Iontophoresis as Oral Delivery Systems for Insulin
URI https://www.jstage.jst.go.jp/article/bpb/44/2/44_b20-00737/_article/-char/en
https://www.ncbi.nlm.nih.gov/pubmed/33518677
https://www.proquest.com/docview/2486177670
Volume 44
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Biological and Pharmaceutical Bulletin, 2021/02/01, Vol.44(2), pp.251-258
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLa6gQQvCDouhYH8gPrSZSSOWycSL9HWsYppQ1qH9hbZiUMDW1L1sqn_nuNLkkYIBA-8RI1ru0m_L8c-zjmfEXofZIIlqZ84MhXCoTDkOUHIfEe4fJQST3pCZ72fXrLz6-B4TMedTrVLVlP2X5GGMsBaZc7-A9p1p1AAnwFzOALqcPwr3CfF4Gu-WpRWVglO7krz1FuN78tKRvpC5eaDdQW32UbH6Taf1qvBRKkazGcl-OL5Um1Fo-seyxsVxbGpZM51iOLEBLO3Xg7ntUVVxJrPWsvmYlvwW0eN_JjBlen3QmBheLM-G5nU7eg2XzSLu9GNI3i64Pcbk5-T28Vbu3JBvCrYuRpVYDbQmDB1g83bhEGkM0-3lyu9ANxcI_N-KI2x9ikDR9qkg1bW3KhJWtaSbdNshG1_GTIIVWkQYi4OBVFJ9syI0LSluc8v4pOrs7N4Or6e7qAHBKya9t8nn-thn7l6L8H6Qq2gK3T_odV5awL08Dv4AN_k790bPc2ZPkVPrH-CI8OIZ6gjiy7aiwq-Km83uI91xLD-87ro0VG1W2AX9b8YlDcHeNqk9C0PdJNaHX2zh-4nBdYExYAFztXJXYm3CIo1QXGZYUU63CKobgMExS2CYr40dSuCYktQDATFlqDP0dXJeHp06tjdP5wExomV4_sSDMmIC5jQjwLqEREmIRgUmNC7WThKMzjxEzfjhHLf48lQZpSwTIjUF6mk0n-BdouykK8QZkRSRt0kCZKQymDIOfMoT1KaJmmQeWEP9StI4rkReYmVcwzYxYBdDNjFGrse-mgAq6vZ-9fVKI2JOtTV629VBiUYpx7ar2COrclYxvAj4EWwEXN76KWBvu7d94dacPL1nxu-QY-b52sf7a4Wa_kW7SzT9TvN0Z9UB8Zq
link.rule.ids 315,782,786,27933,27934
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=In+Vitro+and+in+Vivo+Comparative+Study+of+Oral+Nanoparticles+and+Gut+Iontophoresis+as+Oral+Delivery+Systems+for+Insulin&rft.jtitle=Biological+%26+pharmaceutical+bulletin&rft.au=Elkhatib%2C+Mona+M&rft.au=Ali%2C+Amir+I&rft.au=Al-badrawy%2C+Ali+S&rft.date=2021-02-01&rft.pub=Japan+Science+and+Technology+Agency&rft.issn=0918-6158&rft.eissn=1347-5215&rft.volume=44&rft.issue=2&rft.spage=251&rft_id=info:doi/10.1248%2Fbpb.b20-00737&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0918-6158&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0918-6158&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0918-6158&client=summon