Multigenerational memory and adaptive adhesion in early bacterial biofilm communities

Using multigenerational, single-cell tracking we explore the earliest events of biofilm formation by Pseudomonas aeruginosa. During initial stages of surface engagement (≤20 h), the surface cell population of this microbe comprises overwhelmingly cells that attach poorly (∼95% stay <30 s, well be...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS Vol. 115; no. 17; pp. 4471 - 4476
Main Authors: Lee, Calvin K., de Anda, Jaime, Baker, Amy E., Bennett, Rachel R., Luo, Yun, Lee, Ernest Y., Keefe, Joshua A., Helali, Joshua S., Ma, Jie, Zhao, Kun, Golestanian, Ramin, O’Toole, George A., Wong, Gerard C. L.
Format: Journal Article
Language:English
Published: United States National Academy of Sciences 24-04-2018
Series:From the Cover
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Using multigenerational, single-cell tracking we explore the earliest events of biofilm formation by Pseudomonas aeruginosa. During initial stages of surface engagement (≤20 h), the surface cell population of this microbe comprises overwhelmingly cells that attach poorly (∼95% stay <30 s, well below the ∼1-h division time) with little increase in surface population. If we harvest cells previously exposed to a surface and direct them to a virgin surface, we find that these surface-exposed cells and their descendants attach strongly and then rapidly increase the surface cell population. This “adaptive,” time-delayed adhesion requires determinants we showed previously are critical for surface sensing: type IV pili (TFP) and cAMP signaling via the Pil-Chp-TFP system. We show that these surface-adapted cells exhibit damped, coupled out-of-phase oscillations of intracellular cAMP levels and associated TFP activity that persist for multiple generations, whereas surface-naïve cells show uncorrelated cAMP and TFP activity. These correlated cAMP–TFP oscillations, which effectively impart intergenerational memory to cells in a lineage, can be understood in terms of a Turing stochastic model based on the Pil-Chp-TFP framework. Importantly, these cAMP–TFP oscillations create a state characterized by a suppression of TFP motility coordinated across entire lineages and lead to a drastic increase in the number of surface-associated cells with near-zero translational motion. The appearance of this surface-adapted state, which can serve to define the historical classification of “irreversibly attached” cells, correlates with family tree architectures that facilitate exponential increases in surface cell populations necessary for biofilm formation.
AbstractList Using multigenerational, single-cell tracking we explore the earliest events of biofilm formation by During initial stages of surface engagement (≤20 h), the surface cell population of this microbe comprises overwhelmingly cells that attach poorly (∼95% stay <30 s, well below the ∼1-h division time) with little increase in surface population. If we harvest cells previously exposed to a surface and direct them to a virgin surface, we find that these surface-exposed cells and their descendants attach strongly and then rapidly increase the surface cell population. This "adaptive," time-delayed adhesion requires determinants we showed previously are critical for surface sensing: type IV pili (TFP) and cAMP signaling via the Pil-Chp-TFP system. We show that these surface-adapted cells exhibit damped, coupled out-of-phase oscillations of intracellular cAMP levels and associated TFP activity that persist for multiple generations, whereas surface-naïve cells show uncorrelated cAMP and TFP activity. These correlated cAMP-TFP oscillations, which effectively impart intergenerational memory to cells in a lineage, can be understood in terms of a Turing stochastic model based on the Pil-Chp-TFP framework. Importantly, these cAMP-TFP oscillations create a state characterized by a suppression of TFP motility coordinated across entire lineages and lead to a drastic increase in the number of surface-associated cells with near-zero translational motion. The appearance of this surface-adapted state, which can serve to define the historical classification of "irreversibly attached" cells, correlates with family tree architectures that facilitate exponential increases in surface cell populations necessary for biofilm formation.
Bacteria use multigenerational memory based on coupled oscillations of cAMP levels and type IV pili (TFP) activity to adaptively adhere to surfaces. These oscillations create cells with a “surface-sentient” state intermediate between planktonic and sessile, characterized by coordinated surface motility suppression. This intermediate state drastically increases the number of surface nonmotile cells and correlates with a transition in family tree architectures toward exponential surface population growth. Our data support the idea that reversible attachment is vital for irreversible attachment. That is, repeated sensing, division, and detachment cycles create a planktonic population with robust cAMP–TFP-based memory of the surface, allowing cells to return to the surface progressively better adapted for sensing and attachment, ultimately dominating the surface ecology via exponential surface population increase. Using multigenerational, single-cell tracking we explore the earliest events of biofilm formation by Pseudomonas aeruginosa . During initial stages of surface engagement (≤20 h), the surface cell population of this microbe comprises overwhelmingly cells that attach poorly (∼95% stay <30 s, well below the ∼1-h division time) with little increase in surface population. If we harvest cells previously exposed to a surface and direct them to a virgin surface, we find that these surface-exposed cells and their descendants attach strongly and then rapidly increase the surface cell population. This “adaptive,” time-delayed adhesion requires determinants we showed previously are critical for surface sensing: type IV pili (TFP) and cAMP signaling via the Pil-Chp-TFP system. We show that these surface-adapted cells exhibit damped, coupled out-of-phase oscillations of intracellular cAMP levels and associated TFP activity that persist for multiple generations, whereas surface-naïve cells show uncorrelated cAMP and TFP activity. These correlated cAMP–TFP oscillations, which effectively impart intergenerational memory to cells in a lineage, can be understood in terms of a Turing stochastic model based on the Pil-Chp-TFP framework. Importantly, these cAMP–TFP oscillations create a state characterized by a suppression of TFP motility coordinated across entire lineages and lead to a drastic increase in the number of surface-associated cells with near-zero translational motion. The appearance of this surface-adapted state, which can serve to define the historical classification of “irreversibly attached” cells, correlates with family tree architectures that facilitate exponential increases in surface cell populations necessary for biofilm formation.
Using multigenerational, single-cell tracking we explore the earliest events of biofilm formation by Pseudomonas aeruginosa. During initial stages of surface engagement (≤20 h), the surface cell population of this microbe comprises overwhelmingly cells that attach poorly (∼95% stay <30 s, well below the ∼1-h division time) with little increase in surface population. If we harvest cells previously exposed to a surface and direct them to a virgin surface, we find that these surface-exposed cells and their descendants attach strongly and then rapidly increase the surface cell population. This “adaptive,” time-delayed adhesion requires determinants we showed previously are critical for surface sensing: type IV pili (TFP) and cAMP signaling via the Pil-Chp-TFP system. We show that these surface-adapted cells exhibit damped, coupled out-of-phase oscillations of intracellular cAMP levels and associated TFP activity that persist for multiple generations, whereas surface-naïve cells show uncorrelated cAMP and TFP activity. These correlated cAMP–TFP oscillations, which effectively impart intergenerational memory to cells in a lineage, can be understood in terms of a Turing stochastic model based on the Pil-Chp-TFP framework. Importantly, these cAMP–TFP oscillations create a state characterized by a suppression of TFP motility coordinated across entire lineages and lead to a drastic increase in the number of surface-associated cells with near-zero translational motion. The appearance of this surface-adapted state, which can serve to define the historical classification of “irreversibly attached” cells, correlates with family tree architectures that facilitate exponential increases in surface cell populations necessary for biofilm formation.
Using multigenerational, single-cell tracking we explore the earliest events of biofilm formation by Pseudomonas aeruginosa. During initial stages of surface engagement (≤20 h), the surface cell population of this microbe comprises overwhelmingly cells that attach poorly (~95% stay <30 s, well below the ∼1-h division time) with little increase in surface population. If we harvest cells previously exposed to a surface and direct them to a virgin surface, we find that these surface-exposed cells and their descendants attach strongly and then rapidly increase the surface cell population. This “adaptive,” time-delayed adhesion requires determinants we showed previously are critical for surface sensing: type IV pili (TFP) and cAMP signaling via the Pil-Chp-TFP system. We show that these surface-adapted cells exhibit damped, coupled out-of-phase oscillations of intracellular cAMP levels and associated TFP activity that persist for multiple generations, whereas surface-naïve cells show uncorrelated cAMP and TFP activity. These correlated cAMP–TFP oscillations, which effectively impart intergenerational memory to cells in a lineage, can be understood in terms of a Turing stochastic model based on the Pil-Chp-TFP framework. Importantly, these cAMP–TFP oscillations create a state characterized by a suppression of TFP motility coordinated across entire lineages and lead to a drastic increase in the number of surface-associated cells with near-zero translational motion. The appearance of this surface-adapted state, which can serve to define the historical classification of “irreversibly attached” cells, correlates with family tree architectures that facilitate exponential increases in surface cell populations necessary for biofilm formation.
Author Luo, Yun
Keefe, Joshua A.
Helali, Joshua S.
de Anda, Jaime
O’Toole, George A.
Golestanian, Ramin
Lee, Ernest Y.
Baker, Amy E.
Lee, Calvin K.
Bennett, Rachel R.
Wong, Gerard C. L.
Ma, Jie
Zhao, Kun
Author_xml – sequence: 1
  givenname: Calvin K.
  surname: Lee
  fullname: Lee, Calvin K.
  organization: Department of Chemistry and Biochemistry, University of California Los Angeles, CA 90095
– sequence: 2
  givenname: Jaime
  surname: de Anda
  fullname: de Anda, Jaime
  organization: Department of Chemistry and Biochemistry, University of California Los Angeles, CA 90095
– sequence: 3
  givenname: Amy E.
  surname: Baker
  fullname: Baker, Amy E.
  organization: Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
– sequence: 4
  givenname: Rachel R.
  surname: Bennett
  fullname: Bennett, Rachel R.
  organization: Rudolf Peierls Centre for Theoretical Physics, University of Oxford, OX1 3NP Oxford, United Kingdom
– sequence: 5
  givenname: Yun
  surname: Luo
  fullname: Luo, Yun
  organization: DuPont Industrial Bioscience, Palo Alto, CA 94304
– sequence: 6
  givenname: Ernest Y.
  surname: Lee
  fullname: Lee, Ernest Y.
  organization: Department of Chemistry and Biochemistry, University of California Los Angeles, CA 90095
– sequence: 7
  givenname: Joshua A.
  surname: Keefe
  fullname: Keefe, Joshua A.
  organization: Department of Chemistry and Biochemistry, University of California Los Angeles, CA 90095
– sequence: 8
  givenname: Joshua S.
  surname: Helali
  fullname: Helali, Joshua S.
  organization: Department of Chemistry and Biochemistry, University of California Los Angeles, CA 90095
– sequence: 9
  givenname: Jie
  surname: Ma
  fullname: Ma, Jie
  organization: Department of Chemistry and Biochemistry, University of California Los Angeles, CA 90095
– sequence: 10
  givenname: Kun
  surname: Zhao
  fullname: Zhao, Kun
  organization: SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, People’s Republic of China
– sequence: 11
  givenname: Ramin
  surname: Golestanian
  fullname: Golestanian, Ramin
  organization: Rudolf Peierls Centre for Theoretical Physics, University of Oxford, OX1 3NP Oxford, United Kingdom
– sequence: 12
  givenname: George A.
  surname: O’Toole
  fullname: O’Toole, George A.
  organization: Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
– sequence: 13
  givenname: Gerard C. L.
  surname: Wong
  fullname: Wong, Gerard C. L.
  organization: Department of Chemistry and Biochemistry, University of California Los Angeles, CA 90095
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29559526$$D View this record in MEDLINE/PubMed
BookMark eNpdkc1r3DAQxUVJSTZpzj21GHLpxYm-ZV0KJaRpISWX5ixkeZxosaWtJAf2v6-WzVcLghG837yR5h2jgxADIPSR4HOCFbvYBJvPiaIYK0KIeIdWBGvSSq7xAVphTFXbccqP0HHOa4yxFh0-REdUC6EFlSt092uZir-HAMkWH4OdmhnmmLaNDUNjB7sp_hHq5QFylRsfGrBp2ja9dQWSr3zv4-inuXFxnpfgi4f8Ab0f7ZTh9KmeoLvvV78vf7Q3t9c_L7_dtE5gXdqRaCs4DH2vB1aPGmVnmesJpuNIOket41LrgTsnuOiBMaIY54OiQqrOKnaCvu59N0s_w-AglGQns0l-tmlrovXmXyX4B3MfH43QtK5IV4MvTwYp_lkgFzP77GCabIC4ZEMxkYIxrnhFz_5D13FJdWE7SmutpCSsUhd7yqWYc4Lx5TEEm11kZheZeY2sdnx--4cX_jmjCnzaA-tcYnrVpcDdbuZf2aCfgw
CitedBy_id crossref_primary_10_1016_j_isci_2019_100792
crossref_primary_10_1016_j_biosystems_2023_105107
crossref_primary_10_1016_j_heliyon_2023_e19287
crossref_primary_10_1099_mic_0_000772
crossref_primary_10_1007_s11274_022_03376_4
crossref_primary_10_1371_journal_ppat_1008149
crossref_primary_10_1038_s41522_019_0082_9
crossref_primary_10_1073_pnas_2012443117
crossref_primary_10_1128_JB_00118_19
crossref_primary_10_1088_1478_3975_abdc0e
crossref_primary_10_1073_pnas_2010199117
crossref_primary_10_1128_spectrum_01606_22
crossref_primary_10_1002_pro_3835
crossref_primary_10_1128_jb_00084_22
crossref_primary_10_3389_fmicb_2021_757327
crossref_primary_10_1016_j_jbc_2021_100279
crossref_primary_10_1016_j_chom_2018_12_011
crossref_primary_10_1073_pnas_2112226119
crossref_primary_10_1021_acs_bioconjchem_1c00116
crossref_primary_10_1016_j_cocis_2021_101426
crossref_primary_10_3390_surfaces6010002
crossref_primary_10_1371_journal_pcbi_1011696
crossref_primary_10_3389_fphar_2023_1207141
crossref_primary_10_1038_s41467_020_15331_8
crossref_primary_10_1128_jb_00442_23
crossref_primary_10_1128_mBio_00670_19
crossref_primary_10_1021_acs_langmuir_9b01378
crossref_primary_10_1073_pnas_1804084115
crossref_primary_10_1111_1462_2920_15036
crossref_primary_10_1073_pnas_2116830119
crossref_primary_10_1038_s41564_019_0455_0
crossref_primary_10_1371_journal_pcbi_1012063
crossref_primary_10_1016_j_ijfoodmicro_2020_108804
crossref_primary_10_1016_j_isci_2021_102443
crossref_primary_10_1038_s42003_021_02372_y
crossref_primary_10_1038_s41579_018_0057_5
crossref_primary_10_1038_s41529_022_00234_4
crossref_primary_10_1073_pnas_2105566118
crossref_primary_10_1016_j_watres_2021_116925
crossref_primary_10_1038_s41579_019_0195_4
crossref_primary_10_1128_MMBR_00151_20
crossref_primary_10_1039_C9SM00541B
crossref_primary_10_53447_communc_1317798
crossref_primary_10_7554_eLife_45084
crossref_primary_10_1016_j_ijantimicag_2023_106925
crossref_primary_10_1128_jb_00179_23
crossref_primary_10_1016_j_chom_2018_11_008
crossref_primary_10_1038_s41522_023_00436_x
crossref_primary_10_1080_21541264_2024_2334110
crossref_primary_10_1103_PRXLife_2_023003
crossref_primary_10_1016_j_jmb_2019_09_004
crossref_primary_10_1038_s41598_021_94827_9
crossref_primary_10_1007_s11274_021_03073_8
crossref_primary_10_3389_fmicb_2021_707086
crossref_primary_10_1016_j_envint_2019_105326
crossref_primary_10_1016_j_mib_2021_02_004
crossref_primary_10_1016_j_bbrc_2023_09_091
crossref_primary_10_3389_fphys_2019_00340
crossref_primary_10_1088_1478_3975_aca6c9
crossref_primary_10_1128_msystems_00342_22
crossref_primary_10_1038_s41522_023_00442_z
crossref_primary_10_1094_MPMI_04_19_0111_R
crossref_primary_10_1016_j_watres_2020_116147
crossref_primary_10_1016_j_isci_2022_105532
crossref_primary_10_1073_pnas_2309082120
crossref_primary_10_1371_journal_pbio_3001846
crossref_primary_10_1128_jb_00528_21
crossref_primary_10_1128_mSphere_00369_21
crossref_primary_10_1039_D2SM01039A
crossref_primary_10_1371_journal_pbio_3001960
crossref_primary_10_1146_annurev_biophys_062920_063646
crossref_primary_10_1016_j_envint_2020_105722
crossref_primary_10_3390_pathogens13020144
crossref_primary_10_1021_acsami_0c04329
crossref_primary_10_1016_j_micres_2021_126911
crossref_primary_10_1016_j_watres_2024_121283
crossref_primary_10_3390_microorganisms10020303
crossref_primary_10_1128_mbio_03754_21
crossref_primary_10_1016_j_chemosphere_2021_132603
crossref_primary_10_1111_1758_2229_12978
crossref_primary_10_1093_femsre_fuz029
crossref_primary_10_1097_CM9_0000000000000523
crossref_primary_10_1146_annurev_micro_012120_063427
crossref_primary_10_1073_pnas_2307718120
crossref_primary_10_1016_j_mib_2020_01_013
crossref_primary_10_1038_s41396_019_0412_1
crossref_primary_10_1039_D4NR01415D
crossref_primary_10_1038_s41467_019_10469_6
crossref_primary_10_1371_journal_pgen_1008703
crossref_primary_10_1039_D2SC02980D
crossref_primary_10_1128_mBio_02644_19
crossref_primary_10_1242_jcs_227694
crossref_primary_10_1016_j_isci_2023_107433
crossref_primary_10_1021_acsami_2c05936
crossref_primary_10_1016_j_memsci_2023_121867
crossref_primary_10_7554_eLife_43959
crossref_primary_10_1128_JB_00265_21
crossref_primary_10_1128_jb_00186_22
crossref_primary_10_3390_nano11113000
crossref_primary_10_1038_s41396_019_0404_1
crossref_primary_10_3390_ijms23031183
crossref_primary_10_1073_pnas_2014926118
crossref_primary_10_1038_s41522_019_0104_7
crossref_primary_10_1038_s41579_019_0314_2
Cites_doi 10.1016/S0092-8674(02)00829-2
10.1128/JB.186.14.4476-4485.2004
10.1146/annurev.bi.63.070194.002223
10.1021/acsnano.6b05123
10.1214/aos/1013699998
10.1146/annurev-micro-092611-150055
10.1111/1462-2920.12849
10.1038/nature12155
10.1126/science.aan5353
10.1099/mic.0.2007/011320-0
10.1128/JB.01642-09
10.1128/jb.104.1.313-322.1970
10.1073/pnas.1105073108
10.1016/j.mib.2016.02.004
10.1038/ncomms5913
10.1073/pnas.1502025112
10.1016/j.bpj.2011.02.020
10.1126/science.aah4204
10.1016/j.cell.2016.12.014
10.1126/science.1194238
10.1126/science.280.5361.295
10.1098/rstb.1952.0012
10.1126/science.aan5706
10.1021/acsnano.7b04738
10.1038/nature14660
ContentType Journal Article
Copyright Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles
Copyright National Academy of Sciences Apr 24, 2018
2018
Copyright_xml – notice: Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles
– notice: Copyright National Academy of Sciences Apr 24, 2018
– notice: 2018
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
DOI 10.1073/pnas.1720071115
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE
CrossRef

MEDLINE - Academic
Virology and AIDS Abstracts

Database_xml – sequence: 1
  dbid: ECM
  name: MEDLINE
  url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
EndPage 4476
ExternalDocumentID 10_1073_pnas_1720071115
29559526
26508661
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIAMS NIH HHS
  grantid: T32 AR071307
– fundername: NIGMS NIH HHS
  grantid: T32 GM008185
– fundername: NIAID NIH HHS
  grantid: R37 AI083256
– fundername: NIAID NIH HHS
  grantid: R01 AI143730
– fundername: NIAID NIH HHS
  grantid: R01 AI102584
– fundername: NCI NIH HHS
  grantid: U54 CA193417
– fundername: HHS | National Institutes of Health (NIH)
  grantid: R37 AI83256
– fundername: HHS | NIH | National Cancer Institute (NCI)
  grantid: U54 CA193417
– fundername: HHS | National Institutes of Health (NIH)
  grantid: R01AI102584
– fundername: National Science Foundation (NSF)
  grantid: NSF-DMR-1506625
– fundername: Human Frontier Science Program (HFSP)
  grantid: RGP0061/2013
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
79B
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACIWK
ACNCT
ACPRK
ADULT
ADZLD
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
ASUFR
BKOMP
CS3
D0L
DCCCD
DIK
DNJUQ
DOOOF
DU5
DWIUU
E3Z
EBS
EJD
F5P
FRP
GX1
HH5
HYE
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JSODD
JST
KQ8
L7B
LU7
N9A
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHF
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
VQA
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZA5
ZCA
~02
~KM
ADACV
CGR
CUY
CVF
ECM
EIF
H13
IPSME
NPM
AAYXX
CITATION
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c509t-f19a54edbb9d39d37f68a3cb102ff18c2ac4699d4cc545be3317344d725678a73
IEDL.DBID RPM
ISSN 0027-8424
IngestDate Tue Sep 17 21:21:28 EDT 2024
Sat Aug 17 05:47:04 EDT 2024
Tue Nov 12 22:03:25 EST 2024
Thu Nov 21 22:19:05 EST 2024
Sat Nov 02 11:57:39 EDT 2024
Fri Feb 02 07:49:14 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 17
Keywords Pseudomonas aeruginosa
bacteria biofilms
cyclic AMP
surface sensing
type IV pili
Language English
License Published under the PNAS license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c509t-f19a54edbb9d39d37f68a3cb102ff18c2ac4699d4cc545be3317344d725678a73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
1C.K.L. and J.d.A. contributed equally to this work.
Edited by Caroline S. Harwood, University of Washington, Seattle, WA, and approved February 27, 2018 (received for review November 30, 2017)
Author contributions: C.K.L., J.d.A., K.Z., R.G., G.A.O., and G.C.L.W. designed research; C.K.L., J.d.A., A.E.B., J.A.K., J.S.H., and K.Z. performed research; C.K.L., J.d.A., A.E.B., R.R.B., Y.L., E.Y.L., K.Z., R.G., G.A.O., and G.C.L.W. contributed new reagents/analytic tools; C.K.L., J.d.A., A.E.B., R.R.B., J.A.K., J.S.H., J.M., K.Z., and R.G. analyzed data; and C.K.L., J.d.A., A.E.B., R.G., G.A.O., and G.C.L.W. wrote the paper.
ORCID 0000-0003-2129-0775
0000-0002-2861-4392
0000-0001-5144-2552
0000-0001-6789-0317
OpenAccessLink https://www.pnas.org/content/pnas/115/17/4471.full.pdf
PMID 29559526
PQID 2099976613
PQPubID 42026
PageCount 6
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5924909
proquest_miscellaneous_2016533474
proquest_journals_2099976613
crossref_primary_10_1073_pnas_1720071115
pubmed_primary_29559526
jstor_primary_26508661
PublicationCentury 2000
PublicationDate 2018-04-24
PublicationDateYYYYMMDD 2018-04-24
PublicationDate_xml – month: 04
  year: 2018
  text: 2018-04-24
  day: 24
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationSeriesTitle From the Cover
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2018
Publisher National Academy of Sciences
Publisher_xml – name: National Academy of Sciences
References 29632199 - Proc Natl Acad Sci U S A. 2018 Apr 24;115(17):4317-4319
Turing AM (e_1_3_4_22_2) 1952; 237
Gibiansky ML (e_1_3_4_23_2) 2010; 330
Jin F (e_1_3_4_21_2) 2011; 108
Hug I (e_1_3_4_11_2) 2017; 358
Chiang P (e_1_3_4_15_2) 2008; 154
O’Toole GA (e_1_3_4_7_2) 2016; 30
Utada AS (e_1_3_4_19_2) 2014; 5
Nealson KH (e_1_3_4_6_2) 1970; 104
Kuchma SL (e_1_3_4_14_2) 2010; 192
Davies DG (e_1_3_4_5_2) 1998; 280
de Anda J (e_1_3_4_26_2) 2017; 11
Benjamini Y (e_1_3_4_17_2) 2001; 29
Luo Y (e_1_3_4_8_2) 2015; 6
Conrad JC (e_1_3_4_18_2) 2011; 100
Liu J (e_1_3_4_3_2) 2017; 356
Burrows LL (e_1_3_4_12_2) 2012; 66
Miller MB (e_1_3_4_4_2) 2002; 110
Leighton TL (e_1_3_4_13_2) 2015; 17
Liu J (e_1_3_4_1_2) 2015; 523
Zhao K (e_1_3_4_20_2) 2013; 497
Persat A (e_1_3_4_9_2) 2015; 112
Ellison CK (e_1_3_4_10_2) 2017; 358
Humphries J (e_1_3_4_2_2) 2017; 168
Lee CK (e_1_3_4_25_2) 2016; 10
Caiazza NC (e_1_3_4_16_2) 2004; 186
Brun YV (e_1_3_4_27_2) 1994; 63
Tolker-Nielsen T (e_1_3_4_24_2) 2005
References_xml – volume: 110
  start-page: 303
  year: 2002
  ident: e_1_3_4_4_2
  article-title: Parallel quorum sensing systems converge to regulate virulence in Vibrio cholerae
  publication-title: Cell
  doi: 10.1016/S0092-8674(02)00829-2
  contributor:
    fullname: Miller MB
– volume: 186
  start-page: 4476
  year: 2004
  ident: e_1_3_4_16_2
  article-title: SadB is required for the transition from reversible to irreversible attachment during biofilm formation by Pseudomonas aeruginosa PA14
  publication-title: J Bacteriol
  doi: 10.1128/JB.186.14.4476-4485.2004
  contributor:
    fullname: Caiazza NC
– volume: 63
  start-page: 419
  year: 1994
  ident: e_1_3_4_27_2
  article-title: The expression of asymmetry during Caulobacter cell differentiation
  publication-title: Annu Rev Biochem
  doi: 10.1146/annurev.bi.63.070194.002223
  contributor:
    fullname: Brun YV
– volume: 10
  start-page: 9183
  year: 2016
  ident: e_1_3_4_25_2
  article-title: Evolution of cell size homeostasis and growth rate diversity during initial surface colonization of Shewanella oneidensis
  publication-title: ACS Nano
  doi: 10.1021/acsnano.6b05123
  contributor:
    fullname: Lee CK
– volume: 29
  start-page: 1165
  year: 2001
  ident: e_1_3_4_17_2
  article-title: The control of the false discovery rate in multiple testing under dependency
  publication-title: Ann Stat
  doi: 10.1214/aos/1013699998
  contributor:
    fullname: Benjamini Y
– volume: 66
  start-page: 493
  year: 2012
  ident: e_1_3_4_12_2
  article-title: Pseudomonas aeruginosa twitching motility: Type IV pili in action
  publication-title: Annu Rev Microbiol
  doi: 10.1146/annurev-micro-092611-150055
  contributor:
    fullname: Burrows LL
– volume: 17
  start-page: 4148
  year: 2015
  ident: e_1_3_4_13_2
  article-title: Biogenesis of Pseudomonas aeruginosa type IV pili and regulation of their function
  publication-title: Environ Microbiol
  doi: 10.1111/1462-2920.12849
  contributor:
    fullname: Leighton TL
– volume: 497
  start-page: 388
  year: 2013
  ident: e_1_3_4_20_2
  article-title: Psl trails guide exploration and microcolony formation in Pseudomonas aeruginosa biofilms
  publication-title: Nature
  doi: 10.1038/nature12155
  contributor:
    fullname: Zhao K
– volume: 358
  start-page: 531
  year: 2017
  ident: e_1_3_4_11_2
  article-title: Second messenger-mediated tactile response by a bacterial rotary motor
  publication-title: Science
  doi: 10.1126/science.aan5353
  contributor:
    fullname: Hug I
– volume: 154
  start-page: 114
  year: 2008
  ident: e_1_3_4_15_2
  article-title: Functional role of conserved residues in the characteristic secretion NTPase motifs of the Pseudomonas aeruginosa type IV pilus motor proteins PilB, PilT and PilU
  publication-title: Microbiology
  doi: 10.1099/mic.0.2007/011320-0
  contributor:
    fullname: Chiang P
– volume: 192
  start-page: 2950
  year: 2010
  ident: e_1_3_4_14_2
  article-title: Cyclic-di-GMP-mediated repression of swarming motility by Pseudomonas aeruginosa: The pilY1 gene and its impact on surface-associated behaviors
  publication-title: J Bacteriol
  doi: 10.1128/JB.01642-09
  contributor:
    fullname: Kuchma SL
– volume: 104
  start-page: 313
  year: 1970
  ident: e_1_3_4_6_2
  article-title: Cellular control of the synthesis and activity of the bacterial luminescent system
  publication-title: J Bacteriol
  doi: 10.1128/jb.104.1.313-322.1970
  contributor:
    fullname: Nealson KH
– volume: 6
  start-page: 1
  year: 2015
  ident: e_1_3_4_8_2
  article-title: A hierarchical cascade of second messengers regulates Pseudomonas aeruginosa surface behaviors
  publication-title: MBio
  contributor:
    fullname: Luo Y
– volume: 108
  start-page: 12617
  year: 2011
  ident: e_1_3_4_21_2
  article-title: Bacteria use type-IV pili to slingshot on surfaces
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1105073108
  contributor:
    fullname: Jin F
– volume: 30
  start-page: 139
  year: 2016
  ident: e_1_3_4_7_2
  article-title: Sensational biofilms: Surface sensing in bacteria
  publication-title: Curr Opin Microbiol
  doi: 10.1016/j.mib.2016.02.004
  contributor:
    fullname: O’Toole GA
– volume: 5
  start-page: 4913
  year: 2014
  ident: e_1_3_4_19_2
  article-title: Vibrio cholerae use pili and flagella synergistically to effect motility switching and conditional surface attachment
  publication-title: Nat Commun
  doi: 10.1038/ncomms5913
  contributor:
    fullname: Utada AS
– volume: 112
  start-page: 7563
  year: 2015
  ident: e_1_3_4_9_2
  article-title: Type IV pili mechanochemically regulate virulence factors in Pseudomonas aeruginosa
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1502025112
  contributor:
    fullname: Persat A
– volume: 100
  start-page: 1608
  year: 2011
  ident: e_1_3_4_18_2
  article-title: Flagella and pili-mediated near-surface single-cell motility mechanisms in P. aeruginosa
  publication-title: Biophys J
  doi: 10.1016/j.bpj.2011.02.020
  contributor:
    fullname: Conrad JC
– volume: 356
  start-page: 638
  year: 2017
  ident: e_1_3_4_3_2
  article-title: Coupling between distant biofilms and emergence of nutrient time-sharing
  publication-title: Science
  doi: 10.1126/science.aah4204
  contributor:
    fullname: Liu J
– volume: 168
  start-page: 200
  year: 2017
  ident: e_1_3_4_2_2
  article-title: Species-independent attraction to biofilms through electrical signaling
  publication-title: Cell
  doi: 10.1016/j.cell.2016.12.014
  contributor:
    fullname: Humphries J
– volume: 330
  start-page: 197
  year: 2010
  ident: e_1_3_4_23_2
  article-title: Bacteria use type IV pili to walk upright and detach from surfaces
  publication-title: Science
  doi: 10.1126/science.1194238
  contributor:
    fullname: Gibiansky ML
– volume: 280
  start-page: 295
  year: 1998
  ident: e_1_3_4_5_2
  article-title: The involvement of cell-to-cell signals in the development of a bacterial biofilm
  publication-title: Science
  doi: 10.1126/science.280.5361.295
  contributor:
    fullname: Davies DG
– volume: 237
  start-page: 37
  year: 1952
  ident: e_1_3_4_22_2
  article-title: The chemical basis of morphogenesis
  publication-title: Philos Trans R Soc Lond B Biol Sci
  doi: 10.1098/rstb.1952.0012
  contributor:
    fullname: Turing AM
– volume: 358
  start-page: 535
  year: 2017
  ident: e_1_3_4_10_2
  article-title: Obstruction of pilus retraction stimulates bacterial surface sensing
  publication-title: Science
  doi: 10.1126/science.aan5706
  contributor:
    fullname: Ellison CK
– volume: 11
  start-page: 9340
  year: 2017
  ident: e_1_3_4_26_2
  article-title: High-speed “4D” computational microscopy of bacterial surface motility
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b04738
  contributor:
    fullname: de Anda J
– volume-title: Current Protocols in Microbiology
  year: 2005
  ident: e_1_3_4_24_2
  contributor:
    fullname: Tolker-Nielsen T
– volume: 523
  start-page: 550
  year: 2015
  ident: e_1_3_4_1_2
  article-title: Metabolic co-dependence gives rise to collective oscillations within biofilms
  publication-title: Nature
  doi: 10.1038/nature14660
  contributor:
    fullname: Liu J
SSID ssj0009580
Score 2.6177065
Snippet Using multigenerational, single-cell tracking we explore the earliest events of biofilm formation by Pseudomonas aeruginosa. During initial stages of surface...
Using multigenerational, single-cell tracking we explore the earliest events of biofilm formation by During initial stages of surface engagement (≤20 h), the...
Bacteria use multigenerational memory based on coupled oscillations of cAMP levels and type IV pili (TFP) activity to adaptively adhere to surfaces. These...
Using multigenerational, single-cell tracking we explore the earliest events of biofilm formation by Pseudomonas aeruginosa During initial stages of surface...
SourceID pubmedcentral
proquest
crossref
pubmed
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 4471
SubjectTerms Adhesion
Bacteria
Bacterial Adhesion - physiology
Biofilms
Biofilms - growth & development
Biological Sciences
Cell adhesion & migration
Cyclic AMP
Cyclic AMP - metabolism
Division
Family trees
Fimbriae, Bacterial - physiology
Memory
Oscillations
Pseudomonas aeruginosa
Pseudomonas aeruginosa - physiology
Second Messenger Systems - physiology
Stochastic models
Stochasticity
Translational motion
SummonAdditionalLinks – databaseName: JSTOR Life Sciences Collection
  dbid: JLS
  link: http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEB7Ukxffj_oigoIeqm2TNulRfODJiwreSl7VBa2L6x7898407bqKgtBDSoY2ZJLMl2TmG4CD0uaJcc7ERIcWC5nYuOSokDR3WFYu0TUFCl_fypsHdXFJNDmHfSwMuVW2foHtLT4CJPPsTzOCEQVtcmZVooLf3hSzrgpxJhkutyITPX-P5KfDRo9O0EKTHU0p8e2U6Qneh7_hyp_ukVP25mrxny1dgoUOULKzMAKWYcY3K7DcTdkRO-p4pY9X4b4Ntn1s38MJIHshP9sPphvHtNNDWvqw8OTpCI0NGuaJ_piZwOiM8mZAGb5fmA1hJUTGugb3V5d359dxl1UhRrWU73GdljoX3hlTOo6PrAuluTWINOo6VTbTFrfMpRPWIroyniPC4EI4ieBIKi35Osw1r43fBFakhntK1VHzWvCkND5JNOVjx01dbgsXwVHf4dUwkGdU7aW35BXppvrSTQTrbWdO5PqejGCn11DVTa9RRfG-iKMQikSwP6nGiUG3Hbrxr2OSSQuKM5Yigo2g0K-PE-9enhURyG-qnggQ6fb3mmbw1JJv57RhTcqtv9q7DfP4Z0UXTpnYgbn3t7HfhdmRG--14_YT-_nqnQ
  priority: 102
  providerName: JSTOR
Title Multigenerational memory and adaptive adhesion in early bacterial biofilm communities
URI https://www.jstor.org/stable/26508661
https://www.ncbi.nlm.nih.gov/pubmed/29559526
https://www.proquest.com/docview/2099976613
https://search.proquest.com/docview/2016533474
https://pubmed.ncbi.nlm.nih.gov/PMC5924909
Volume 115
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JT-swEB5RTlwQ-wtLZSQOvEPaJHbq5IhYxAWEBEjvFnnLoxJ1K0oP_HtmnKQs4oSUgyNPImvGy2d75huAk9LkibZWx0SHFguZmLjkaJA0t1gubKJqChS-vpe3_4qLS6LJybtYmOC0b_R44J8nAz9-Cr6Vs4kZdn5iw7ub85w2DUk57EEPsWG3RV8y7RZN3EmG06_IRMfnI_lw5tV8gCs2rauIhIgImAjYcmJW-LQqNY6JP0HO756Tn5aiqw1YbzEkO2vaugkrzm_BZjtK5-y0pZL-uw2PIb72f3hvDv3YhFxr35jylimrZjTbYeHJ0akZG3vmiPGY6YbEGeX1mJJ6T5hpIkmIf3UHHq8uH86v4zaRQoyWKF_jOi1VLpzVurQcH1mPCsWNRnBR12lhMmVwl1xaYQwCKu04ggouhJWIh2ShJN-FVT_17g-wUaq5o-wcNa8FT0rtkkRRCnY0SW5GNoLTTpHVrOHLqMI9t-QVqb_6UH8Eu0HRS7mM0CLihQgOO81X7YiaVxTii9AJ0UcEx8tqHAt0waG8my5IJh1RaLEUEew1hvr4eWvpCOQXEy4FiGf7aw12v8C33Xa3_V9_eQBr2LSCLqEycQirry8LdwS9uV30gw9qPyS66Id-_A4CyfUe
link.rule.ids 230,315,729,782,786,808,811,887,27934,27935,53802,53804,58027,58039,58260,58272
linkProvider National Library of Medicine
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4VeoALhfJKu21dCSQ4BJLYiZMjane1CMqlIHGL_AqsBGHFsgf-fWfiZHdBIFXKwZFHkeWx4288M98A7BUmjbS1OiQ6tFDIyIQFR4XEqcV2biNVUaLw8K-8uM5_94kmZ7_LhaGwyiYusPHiI0DSd-44IRiRkZHzMc3RjvKFARa4dXOfaZLgD1ckomPwkfx4XKvJEZ7RdJLGVPp24fDx8YdvIcvXAZILJ87g03-OdR3WWkjJTvwa2IAPrv4MG-2mnbCDlln6cBOumnTbm-bd3wGye4q0fWaqtkxZNaafHzZuHV2isVHNHBEgM-05nVFej6jG9z0zPrGE6Fi34GrQv_w1DNu6CiEqpngKq7hQqXBW68JyfGSV5YobjVijquLcJMqg0VxYYQziK-04YgwuhJUIj2SuJN-G5fqhdrvAslhzR8U6Kl4JHhXaRZGiiuxo1qUmswEcdBNejj19Rtm4vSUvSTflXDcBbDeTOZPrZjKAXqehst1gk5IyfhFJIRgJ4OesG7cG-TtU7R6mJBNnlGksRQA7XqHzjxPzXppkAcgXqp4JEO32y556dNvQb6dkskbFl_fG-wNWhpd_zsvz04uzr7CKo8jJ_ZSIHiw_PU7dN1ia2On3Zg3_A2Qu7eU
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS-RAEC5cBdmLj10f8bUt7EEPcZJ0J50cRR2UXURQwVvoV3RA4-A4B_-9VelkHEUPQg4dughNV3fq666qrwD-FiaNtLU6JDq0UMjIhAVHhcSpxXZuI1VRovDppTy_yY9PiCZnv8uFobDKJi6w8eIjQNL3rje0VS8hKJHRQWcuzROZ-Oi9KX7d3GebJPjTFYnoWHwk7w1rNTpAO03WNKbyt1MGyMcgfoYuPwZJTlmd_uI3xrsECy20ZId-LSzDjKt_wXK7eUdsr2WY3v8N103a7W3z7u8C2QNF3L4wVVumrBrSTxAbd44u09igZo6IkJn23M4orwdU6_uBGZ9gQrSsK3DdP7k6Og3b-gohKqh4Dqu4UKlwVuvCcnxkleWKG42Yo6ri3CTK4OG5sMIYxFnaccQaXAgrESbJXEm-CrP1Y-3WgWWx5o6KdlS8EjwqtIsiRZXZ8XiXmswGsNdNejn0NBpl4_6WvCT9lG_6CWC1mdCJXDeTAWx1WirbjTYqKfMXERWCkgB2J924RcjvoWr3OCaZOKOMYykCWPNKffs4MfClSRaAfKfuiQDRb7_vqQd3DQ13SkfXqNj4arx_YP7iuF_-Pzv_twk_cRA5eaESsQWzz09jtw0_Rna80yzjVyPM8G8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multigenerational+memory+and+adaptive+adhesion+in+early+bacterial+biofilm+communities&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Lee%2C+Calvin+K.&rft.au=de+Anda%2C+Jaime&rft.au=Baker%2C+Amy+E.&rft.au=Bennett%2C+Rachel+R.&rft.date=2018-04-24&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=115&rft.issue=17&rft.spage=4471&rft.epage=4476&rft_id=info:doi/10.1073%2Fpnas.1720071115&rft.externalDocID=26508661
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon