Multigenerational memory and adaptive adhesion in early bacterial biofilm communities
Using multigenerational, single-cell tracking we explore the earliest events of biofilm formation by Pseudomonas aeruginosa. During initial stages of surface engagement (≤20 h), the surface cell population of this microbe comprises overwhelmingly cells that attach poorly (∼95% stay <30 s, well be...
Saved in:
Published in: | Proceedings of the National Academy of Sciences - PNAS Vol. 115; no. 17; pp. 4471 - 4476 |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
National Academy of Sciences
24-04-2018
|
Series: | From the Cover |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Using multigenerational, single-cell tracking we explore the earliest events of biofilm formation by Pseudomonas aeruginosa. During initial stages of surface engagement (≤20 h), the surface cell population of this microbe comprises overwhelmingly cells that attach poorly (∼95% stay <30 s, well below the ∼1-h division time) with little increase in surface population. If we harvest cells previously exposed to a surface and direct them to a virgin surface, we find that these surface-exposed cells and their descendants attach strongly and then rapidly increase the surface cell population. This “adaptive,” time-delayed adhesion requires determinants we showed previously are critical for surface sensing: type IV pili (TFP) and cAMP signaling via the Pil-Chp-TFP system. We show that these surface-adapted cells exhibit damped, coupled out-of-phase oscillations of intracellular cAMP levels and associated TFP activity that persist for multiple generations, whereas surface-naïve cells show uncorrelated cAMP and TFP activity. These correlated cAMP–TFP oscillations, which effectively impart intergenerational memory to cells in a lineage, can be understood in terms of a Turing stochastic model based on the Pil-Chp-TFP framework. Importantly, these cAMP–TFP oscillations create a state characterized by a suppression of TFP motility coordinated across entire lineages and lead to a drastic increase in the number of surface-associated cells with near-zero translational motion. The appearance of this surface-adapted state, which can serve to define the historical classification of “irreversibly attached” cells, correlates with family tree architectures that facilitate exponential increases in surface cell populations necessary for biofilm formation. |
---|---|
AbstractList | Using multigenerational, single-cell tracking we explore the earliest events of biofilm formation by
During initial stages of surface engagement (≤20 h), the surface cell population of this microbe comprises overwhelmingly cells that attach poorly (∼95% stay <30 s, well below the ∼1-h division time) with little increase in surface population. If we harvest cells previously exposed to a surface and direct them to a virgin surface, we find that these surface-exposed cells and their descendants attach strongly and then rapidly increase the surface cell population. This "adaptive," time-delayed adhesion requires determinants we showed previously are critical for surface sensing: type IV pili (TFP) and cAMP signaling via the Pil-Chp-TFP system. We show that these surface-adapted cells exhibit damped, coupled out-of-phase oscillations of intracellular cAMP levels and associated TFP activity that persist for multiple generations, whereas surface-naïve cells show uncorrelated cAMP and TFP activity. These correlated cAMP-TFP oscillations, which effectively impart intergenerational memory to cells in a lineage, can be understood in terms of a Turing stochastic model based on the Pil-Chp-TFP framework. Importantly, these cAMP-TFP oscillations create a state characterized by a suppression of TFP motility coordinated across entire lineages and lead to a drastic increase in the number of surface-associated cells with near-zero translational motion. The appearance of this surface-adapted state, which can serve to define the historical classification of "irreversibly attached" cells, correlates with family tree architectures that facilitate exponential increases in surface cell populations necessary for biofilm formation. Bacteria use multigenerational memory based on coupled oscillations of cAMP levels and type IV pili (TFP) activity to adaptively adhere to surfaces. These oscillations create cells with a “surface-sentient” state intermediate between planktonic and sessile, characterized by coordinated surface motility suppression. This intermediate state drastically increases the number of surface nonmotile cells and correlates with a transition in family tree architectures toward exponential surface population growth. Our data support the idea that reversible attachment is vital for irreversible attachment. That is, repeated sensing, division, and detachment cycles create a planktonic population with robust cAMP–TFP-based memory of the surface, allowing cells to return to the surface progressively better adapted for sensing and attachment, ultimately dominating the surface ecology via exponential surface population increase. Using multigenerational, single-cell tracking we explore the earliest events of biofilm formation by Pseudomonas aeruginosa . During initial stages of surface engagement (≤20 h), the surface cell population of this microbe comprises overwhelmingly cells that attach poorly (∼95% stay <30 s, well below the ∼1-h division time) with little increase in surface population. If we harvest cells previously exposed to a surface and direct them to a virgin surface, we find that these surface-exposed cells and their descendants attach strongly and then rapidly increase the surface cell population. This “adaptive,” time-delayed adhesion requires determinants we showed previously are critical for surface sensing: type IV pili (TFP) and cAMP signaling via the Pil-Chp-TFP system. We show that these surface-adapted cells exhibit damped, coupled out-of-phase oscillations of intracellular cAMP levels and associated TFP activity that persist for multiple generations, whereas surface-naïve cells show uncorrelated cAMP and TFP activity. These correlated cAMP–TFP oscillations, which effectively impart intergenerational memory to cells in a lineage, can be understood in terms of a Turing stochastic model based on the Pil-Chp-TFP framework. Importantly, these cAMP–TFP oscillations create a state characterized by a suppression of TFP motility coordinated across entire lineages and lead to a drastic increase in the number of surface-associated cells with near-zero translational motion. The appearance of this surface-adapted state, which can serve to define the historical classification of “irreversibly attached” cells, correlates with family tree architectures that facilitate exponential increases in surface cell populations necessary for biofilm formation. Using multigenerational, single-cell tracking we explore the earliest events of biofilm formation by Pseudomonas aeruginosa. During initial stages of surface engagement (≤20 h), the surface cell population of this microbe comprises overwhelmingly cells that attach poorly (∼95% stay <30 s, well below the ∼1-h division time) with little increase in surface population. If we harvest cells previously exposed to a surface and direct them to a virgin surface, we find that these surface-exposed cells and their descendants attach strongly and then rapidly increase the surface cell population. This “adaptive,” time-delayed adhesion requires determinants we showed previously are critical for surface sensing: type IV pili (TFP) and cAMP signaling via the Pil-Chp-TFP system. We show that these surface-adapted cells exhibit damped, coupled out-of-phase oscillations of intracellular cAMP levels and associated TFP activity that persist for multiple generations, whereas surface-naïve cells show uncorrelated cAMP and TFP activity. These correlated cAMP–TFP oscillations, which effectively impart intergenerational memory to cells in a lineage, can be understood in terms of a Turing stochastic model based on the Pil-Chp-TFP framework. Importantly, these cAMP–TFP oscillations create a state characterized by a suppression of TFP motility coordinated across entire lineages and lead to a drastic increase in the number of surface-associated cells with near-zero translational motion. The appearance of this surface-adapted state, which can serve to define the historical classification of “irreversibly attached” cells, correlates with family tree architectures that facilitate exponential increases in surface cell populations necessary for biofilm formation. Using multigenerational, single-cell tracking we explore the earliest events of biofilm formation by Pseudomonas aeruginosa. During initial stages of surface engagement (≤20 h), the surface cell population of this microbe comprises overwhelmingly cells that attach poorly (~95% stay <30 s, well below the ∼1-h division time) with little increase in surface population. If we harvest cells previously exposed to a surface and direct them to a virgin surface, we find that these surface-exposed cells and their descendants attach strongly and then rapidly increase the surface cell population. This “adaptive,” time-delayed adhesion requires determinants we showed previously are critical for surface sensing: type IV pili (TFP) and cAMP signaling via the Pil-Chp-TFP system. We show that these surface-adapted cells exhibit damped, coupled out-of-phase oscillations of intracellular cAMP levels and associated TFP activity that persist for multiple generations, whereas surface-naïve cells show uncorrelated cAMP and TFP activity. These correlated cAMP–TFP oscillations, which effectively impart intergenerational memory to cells in a lineage, can be understood in terms of a Turing stochastic model based on the Pil-Chp-TFP framework. Importantly, these cAMP–TFP oscillations create a state characterized by a suppression of TFP motility coordinated across entire lineages and lead to a drastic increase in the number of surface-associated cells with near-zero translational motion. The appearance of this surface-adapted state, which can serve to define the historical classification of “irreversibly attached” cells, correlates with family tree architectures that facilitate exponential increases in surface cell populations necessary for biofilm formation. |
Author | Luo, Yun Keefe, Joshua A. Helali, Joshua S. de Anda, Jaime O’Toole, George A. Golestanian, Ramin Lee, Ernest Y. Baker, Amy E. Lee, Calvin K. Bennett, Rachel R. Wong, Gerard C. L. Ma, Jie Zhao, Kun |
Author_xml | – sequence: 1 givenname: Calvin K. surname: Lee fullname: Lee, Calvin K. organization: Department of Chemistry and Biochemistry, University of California Los Angeles, CA 90095 – sequence: 2 givenname: Jaime surname: de Anda fullname: de Anda, Jaime organization: Department of Chemistry and Biochemistry, University of California Los Angeles, CA 90095 – sequence: 3 givenname: Amy E. surname: Baker fullname: Baker, Amy E. organization: Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755 – sequence: 4 givenname: Rachel R. surname: Bennett fullname: Bennett, Rachel R. organization: Rudolf Peierls Centre for Theoretical Physics, University of Oxford, OX1 3NP Oxford, United Kingdom – sequence: 5 givenname: Yun surname: Luo fullname: Luo, Yun organization: DuPont Industrial Bioscience, Palo Alto, CA 94304 – sequence: 6 givenname: Ernest Y. surname: Lee fullname: Lee, Ernest Y. organization: Department of Chemistry and Biochemistry, University of California Los Angeles, CA 90095 – sequence: 7 givenname: Joshua A. surname: Keefe fullname: Keefe, Joshua A. organization: Department of Chemistry and Biochemistry, University of California Los Angeles, CA 90095 – sequence: 8 givenname: Joshua S. surname: Helali fullname: Helali, Joshua S. organization: Department of Chemistry and Biochemistry, University of California Los Angeles, CA 90095 – sequence: 9 givenname: Jie surname: Ma fullname: Ma, Jie organization: Department of Chemistry and Biochemistry, University of California Los Angeles, CA 90095 – sequence: 10 givenname: Kun surname: Zhao fullname: Zhao, Kun organization: SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, People’s Republic of China – sequence: 11 givenname: Ramin surname: Golestanian fullname: Golestanian, Ramin organization: Rudolf Peierls Centre for Theoretical Physics, University of Oxford, OX1 3NP Oxford, United Kingdom – sequence: 12 givenname: George A. surname: O’Toole fullname: O’Toole, George A. organization: Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755 – sequence: 13 givenname: Gerard C. L. surname: Wong fullname: Wong, Gerard C. L. organization: Department of Chemistry and Biochemistry, University of California Los Angeles, CA 90095 |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29559526$$D View this record in MEDLINE/PubMed |
BookMark | eNpdkc1r3DAQxUVJSTZpzj21GHLpxYm-ZV0KJaRpISWX5ixkeZxosaWtJAf2v6-WzVcLghG837yR5h2jgxADIPSR4HOCFbvYBJvPiaIYK0KIeIdWBGvSSq7xAVphTFXbccqP0HHOa4yxFh0-REdUC6EFlSt092uZir-HAMkWH4OdmhnmmLaNDUNjB7sp_hHq5QFylRsfGrBp2ja9dQWSr3zv4-inuXFxnpfgi4f8Ab0f7ZTh9KmeoLvvV78vf7Q3t9c_L7_dtE5gXdqRaCs4DH2vB1aPGmVnmesJpuNIOket41LrgTsnuOiBMaIY54OiQqrOKnaCvu59N0s_w-AglGQns0l-tmlrovXmXyX4B3MfH43QtK5IV4MvTwYp_lkgFzP77GCabIC4ZEMxkYIxrnhFz_5D13FJdWE7SmutpCSsUhd7yqWYc4Lx5TEEm11kZheZeY2sdnx--4cX_jmjCnzaA-tcYnrVpcDdbuZf2aCfgw |
CitedBy_id | crossref_primary_10_1016_j_isci_2019_100792 crossref_primary_10_1016_j_biosystems_2023_105107 crossref_primary_10_1016_j_heliyon_2023_e19287 crossref_primary_10_1099_mic_0_000772 crossref_primary_10_1007_s11274_022_03376_4 crossref_primary_10_1371_journal_ppat_1008149 crossref_primary_10_1038_s41522_019_0082_9 crossref_primary_10_1073_pnas_2012443117 crossref_primary_10_1128_JB_00118_19 crossref_primary_10_1088_1478_3975_abdc0e crossref_primary_10_1073_pnas_2010199117 crossref_primary_10_1128_spectrum_01606_22 crossref_primary_10_1002_pro_3835 crossref_primary_10_1128_jb_00084_22 crossref_primary_10_3389_fmicb_2021_757327 crossref_primary_10_1016_j_jbc_2021_100279 crossref_primary_10_1016_j_chom_2018_12_011 crossref_primary_10_1073_pnas_2112226119 crossref_primary_10_1021_acs_bioconjchem_1c00116 crossref_primary_10_1016_j_cocis_2021_101426 crossref_primary_10_3390_surfaces6010002 crossref_primary_10_1371_journal_pcbi_1011696 crossref_primary_10_3389_fphar_2023_1207141 crossref_primary_10_1038_s41467_020_15331_8 crossref_primary_10_1128_jb_00442_23 crossref_primary_10_1128_mBio_00670_19 crossref_primary_10_1021_acs_langmuir_9b01378 crossref_primary_10_1073_pnas_1804084115 crossref_primary_10_1111_1462_2920_15036 crossref_primary_10_1073_pnas_2116830119 crossref_primary_10_1038_s41564_019_0455_0 crossref_primary_10_1371_journal_pcbi_1012063 crossref_primary_10_1016_j_ijfoodmicro_2020_108804 crossref_primary_10_1016_j_isci_2021_102443 crossref_primary_10_1038_s42003_021_02372_y crossref_primary_10_1038_s41579_018_0057_5 crossref_primary_10_1038_s41529_022_00234_4 crossref_primary_10_1073_pnas_2105566118 crossref_primary_10_1016_j_watres_2021_116925 crossref_primary_10_1038_s41579_019_0195_4 crossref_primary_10_1128_MMBR_00151_20 crossref_primary_10_1039_C9SM00541B crossref_primary_10_53447_communc_1317798 crossref_primary_10_7554_eLife_45084 crossref_primary_10_1016_j_ijantimicag_2023_106925 crossref_primary_10_1128_jb_00179_23 crossref_primary_10_1016_j_chom_2018_11_008 crossref_primary_10_1038_s41522_023_00436_x crossref_primary_10_1080_21541264_2024_2334110 crossref_primary_10_1103_PRXLife_2_023003 crossref_primary_10_1016_j_jmb_2019_09_004 crossref_primary_10_1038_s41598_021_94827_9 crossref_primary_10_1007_s11274_021_03073_8 crossref_primary_10_3389_fmicb_2021_707086 crossref_primary_10_1016_j_envint_2019_105326 crossref_primary_10_1016_j_mib_2021_02_004 crossref_primary_10_1016_j_bbrc_2023_09_091 crossref_primary_10_3389_fphys_2019_00340 crossref_primary_10_1088_1478_3975_aca6c9 crossref_primary_10_1128_msystems_00342_22 crossref_primary_10_1038_s41522_023_00442_z crossref_primary_10_1094_MPMI_04_19_0111_R crossref_primary_10_1016_j_watres_2020_116147 crossref_primary_10_1016_j_isci_2022_105532 crossref_primary_10_1073_pnas_2309082120 crossref_primary_10_1371_journal_pbio_3001846 crossref_primary_10_1128_jb_00528_21 crossref_primary_10_1128_mSphere_00369_21 crossref_primary_10_1039_D2SM01039A crossref_primary_10_1371_journal_pbio_3001960 crossref_primary_10_1146_annurev_biophys_062920_063646 crossref_primary_10_1016_j_envint_2020_105722 crossref_primary_10_3390_pathogens13020144 crossref_primary_10_1021_acsami_0c04329 crossref_primary_10_1016_j_micres_2021_126911 crossref_primary_10_1016_j_watres_2024_121283 crossref_primary_10_3390_microorganisms10020303 crossref_primary_10_1128_mbio_03754_21 crossref_primary_10_1016_j_chemosphere_2021_132603 crossref_primary_10_1111_1758_2229_12978 crossref_primary_10_1093_femsre_fuz029 crossref_primary_10_1097_CM9_0000000000000523 crossref_primary_10_1146_annurev_micro_012120_063427 crossref_primary_10_1073_pnas_2307718120 crossref_primary_10_1016_j_mib_2020_01_013 crossref_primary_10_1038_s41396_019_0412_1 crossref_primary_10_1039_D4NR01415D crossref_primary_10_1038_s41467_019_10469_6 crossref_primary_10_1371_journal_pgen_1008703 crossref_primary_10_1039_D2SC02980D crossref_primary_10_1128_mBio_02644_19 crossref_primary_10_1242_jcs_227694 crossref_primary_10_1016_j_isci_2023_107433 crossref_primary_10_1021_acsami_2c05936 crossref_primary_10_1016_j_memsci_2023_121867 crossref_primary_10_7554_eLife_43959 crossref_primary_10_1128_JB_00265_21 crossref_primary_10_1128_jb_00186_22 crossref_primary_10_3390_nano11113000 crossref_primary_10_1038_s41396_019_0404_1 crossref_primary_10_3390_ijms23031183 crossref_primary_10_1073_pnas_2014926118 crossref_primary_10_1038_s41522_019_0104_7 crossref_primary_10_1038_s41579_019_0314_2 |
Cites_doi | 10.1016/S0092-8674(02)00829-2 10.1128/JB.186.14.4476-4485.2004 10.1146/annurev.bi.63.070194.002223 10.1021/acsnano.6b05123 10.1214/aos/1013699998 10.1146/annurev-micro-092611-150055 10.1111/1462-2920.12849 10.1038/nature12155 10.1126/science.aan5353 10.1099/mic.0.2007/011320-0 10.1128/JB.01642-09 10.1128/jb.104.1.313-322.1970 10.1073/pnas.1105073108 10.1016/j.mib.2016.02.004 10.1038/ncomms5913 10.1073/pnas.1502025112 10.1016/j.bpj.2011.02.020 10.1126/science.aah4204 10.1016/j.cell.2016.12.014 10.1126/science.1194238 10.1126/science.280.5361.295 10.1098/rstb.1952.0012 10.1126/science.aan5706 10.1021/acsnano.7b04738 10.1038/nature14660 |
ContentType | Journal Article |
Copyright | Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles Copyright National Academy of Sciences Apr 24, 2018 2018 |
Copyright_xml | – notice: Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles – notice: Copyright National Academy of Sciences Apr 24, 2018 – notice: 2018 |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
DOI | 10.1073/pnas.1720071115 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE CrossRef MEDLINE - Academic Virology and AIDS Abstracts |
Database_xml | – sequence: 1 dbid: ECM name: MEDLINE url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1091-6490 |
EndPage | 4476 |
ExternalDocumentID | 10_1073_pnas_1720071115 29559526 26508661 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIAMS NIH HHS grantid: T32 AR071307 – fundername: NIGMS NIH HHS grantid: T32 GM008185 – fundername: NIAID NIH HHS grantid: R37 AI083256 – fundername: NIAID NIH HHS grantid: R01 AI143730 – fundername: NIAID NIH HHS grantid: R01 AI102584 – fundername: NCI NIH HHS grantid: U54 CA193417 – fundername: HHS | National Institutes of Health (NIH) grantid: R37 AI83256 – fundername: HHS | NIH | National Cancer Institute (NCI) grantid: U54 CA193417 – fundername: HHS | National Institutes of Health (NIH) grantid: R01AI102584 – fundername: National Science Foundation (NSF) grantid: NSF-DMR-1506625 – fundername: Human Frontier Science Program (HFSP) grantid: RGP0061/2013 |
GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 79B 85S AACGO AAFWJ AANCE ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACIWK ACNCT ACPRK ADULT ADZLD AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM ASUFR BKOMP CS3 D0L DCCCD DIK DNJUQ DOOOF DU5 DWIUU E3Z EBS EJD F5P FRP GX1 HH5 HYE JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JSODD JST KQ8 L7B LU7 N9A N~3 O9- OK1 PNE PQQKQ R.V RHF RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR VQA W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZA5 ZCA ~02 ~KM ADACV CGR CUY CVF ECM EIF H13 IPSME NPM AAYXX CITATION 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c509t-f19a54edbb9d39d37f68a3cb102ff18c2ac4699d4cc545be3317344d725678a73 |
IEDL.DBID | RPM |
ISSN | 0027-8424 |
IngestDate | Tue Sep 17 21:21:28 EDT 2024 Sat Aug 17 05:47:04 EDT 2024 Tue Nov 12 22:03:25 EST 2024 Thu Nov 21 22:19:05 EST 2024 Sat Nov 02 11:57:39 EDT 2024 Fri Feb 02 07:49:14 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 17 |
Keywords | Pseudomonas aeruginosa bacteria biofilms cyclic AMP surface sensing type IV pili |
Language | English |
License | Published under the PNAS license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c509t-f19a54edbb9d39d37f68a3cb102ff18c2ac4699d4cc545be3317344d725678a73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 1C.K.L. and J.d.A. contributed equally to this work. Edited by Caroline S. Harwood, University of Washington, Seattle, WA, and approved February 27, 2018 (received for review November 30, 2017) Author contributions: C.K.L., J.d.A., K.Z., R.G., G.A.O., and G.C.L.W. designed research; C.K.L., J.d.A., A.E.B., J.A.K., J.S.H., and K.Z. performed research; C.K.L., J.d.A., A.E.B., R.R.B., Y.L., E.Y.L., K.Z., R.G., G.A.O., and G.C.L.W. contributed new reagents/analytic tools; C.K.L., J.d.A., A.E.B., R.R.B., J.A.K., J.S.H., J.M., K.Z., and R.G. analyzed data; and C.K.L., J.d.A., A.E.B., R.G., G.A.O., and G.C.L.W. wrote the paper. |
ORCID | 0000-0003-2129-0775 0000-0002-2861-4392 0000-0001-5144-2552 0000-0001-6789-0317 |
OpenAccessLink | https://www.pnas.org/content/pnas/115/17/4471.full.pdf |
PMID | 29559526 |
PQID | 2099976613 |
PQPubID | 42026 |
PageCount | 6 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5924909 proquest_miscellaneous_2016533474 proquest_journals_2099976613 crossref_primary_10_1073_pnas_1720071115 pubmed_primary_29559526 jstor_primary_26508661 |
PublicationCentury | 2000 |
PublicationDate | 2018-04-24 |
PublicationDateYYYYMMDD | 2018-04-24 |
PublicationDate_xml | – month: 04 year: 2018 text: 2018-04-24 day: 24 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationSeriesTitle | From the Cover |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2018 |
Publisher | National Academy of Sciences |
Publisher_xml | – name: National Academy of Sciences |
References | 29632199 - Proc Natl Acad Sci U S A. 2018 Apr 24;115(17):4317-4319 Turing AM (e_1_3_4_22_2) 1952; 237 Gibiansky ML (e_1_3_4_23_2) 2010; 330 Jin F (e_1_3_4_21_2) 2011; 108 Hug I (e_1_3_4_11_2) 2017; 358 Chiang P (e_1_3_4_15_2) 2008; 154 O’Toole GA (e_1_3_4_7_2) 2016; 30 Utada AS (e_1_3_4_19_2) 2014; 5 Nealson KH (e_1_3_4_6_2) 1970; 104 Kuchma SL (e_1_3_4_14_2) 2010; 192 Davies DG (e_1_3_4_5_2) 1998; 280 de Anda J (e_1_3_4_26_2) 2017; 11 Benjamini Y (e_1_3_4_17_2) 2001; 29 Luo Y (e_1_3_4_8_2) 2015; 6 Conrad JC (e_1_3_4_18_2) 2011; 100 Liu J (e_1_3_4_3_2) 2017; 356 Burrows LL (e_1_3_4_12_2) 2012; 66 Miller MB (e_1_3_4_4_2) 2002; 110 Leighton TL (e_1_3_4_13_2) 2015; 17 Liu J (e_1_3_4_1_2) 2015; 523 Zhao K (e_1_3_4_20_2) 2013; 497 Persat A (e_1_3_4_9_2) 2015; 112 Ellison CK (e_1_3_4_10_2) 2017; 358 Humphries J (e_1_3_4_2_2) 2017; 168 Lee CK (e_1_3_4_25_2) 2016; 10 Caiazza NC (e_1_3_4_16_2) 2004; 186 Brun YV (e_1_3_4_27_2) 1994; 63 Tolker-Nielsen T (e_1_3_4_24_2) 2005 |
References_xml | – volume: 110 start-page: 303 year: 2002 ident: e_1_3_4_4_2 article-title: Parallel quorum sensing systems converge to regulate virulence in Vibrio cholerae publication-title: Cell doi: 10.1016/S0092-8674(02)00829-2 contributor: fullname: Miller MB – volume: 186 start-page: 4476 year: 2004 ident: e_1_3_4_16_2 article-title: SadB is required for the transition from reversible to irreversible attachment during biofilm formation by Pseudomonas aeruginosa PA14 publication-title: J Bacteriol doi: 10.1128/JB.186.14.4476-4485.2004 contributor: fullname: Caiazza NC – volume: 63 start-page: 419 year: 1994 ident: e_1_3_4_27_2 article-title: The expression of asymmetry during Caulobacter cell differentiation publication-title: Annu Rev Biochem doi: 10.1146/annurev.bi.63.070194.002223 contributor: fullname: Brun YV – volume: 10 start-page: 9183 year: 2016 ident: e_1_3_4_25_2 article-title: Evolution of cell size homeostasis and growth rate diversity during initial surface colonization of Shewanella oneidensis publication-title: ACS Nano doi: 10.1021/acsnano.6b05123 contributor: fullname: Lee CK – volume: 29 start-page: 1165 year: 2001 ident: e_1_3_4_17_2 article-title: The control of the false discovery rate in multiple testing under dependency publication-title: Ann Stat doi: 10.1214/aos/1013699998 contributor: fullname: Benjamini Y – volume: 66 start-page: 493 year: 2012 ident: e_1_3_4_12_2 article-title: Pseudomonas aeruginosa twitching motility: Type IV pili in action publication-title: Annu Rev Microbiol doi: 10.1146/annurev-micro-092611-150055 contributor: fullname: Burrows LL – volume: 17 start-page: 4148 year: 2015 ident: e_1_3_4_13_2 article-title: Biogenesis of Pseudomonas aeruginosa type IV pili and regulation of their function publication-title: Environ Microbiol doi: 10.1111/1462-2920.12849 contributor: fullname: Leighton TL – volume: 497 start-page: 388 year: 2013 ident: e_1_3_4_20_2 article-title: Psl trails guide exploration and microcolony formation in Pseudomonas aeruginosa biofilms publication-title: Nature doi: 10.1038/nature12155 contributor: fullname: Zhao K – volume: 358 start-page: 531 year: 2017 ident: e_1_3_4_11_2 article-title: Second messenger-mediated tactile response by a bacterial rotary motor publication-title: Science doi: 10.1126/science.aan5353 contributor: fullname: Hug I – volume: 154 start-page: 114 year: 2008 ident: e_1_3_4_15_2 article-title: Functional role of conserved residues in the characteristic secretion NTPase motifs of the Pseudomonas aeruginosa type IV pilus motor proteins PilB, PilT and PilU publication-title: Microbiology doi: 10.1099/mic.0.2007/011320-0 contributor: fullname: Chiang P – volume: 192 start-page: 2950 year: 2010 ident: e_1_3_4_14_2 article-title: Cyclic-di-GMP-mediated repression of swarming motility by Pseudomonas aeruginosa: The pilY1 gene and its impact on surface-associated behaviors publication-title: J Bacteriol doi: 10.1128/JB.01642-09 contributor: fullname: Kuchma SL – volume: 104 start-page: 313 year: 1970 ident: e_1_3_4_6_2 article-title: Cellular control of the synthesis and activity of the bacterial luminescent system publication-title: J Bacteriol doi: 10.1128/jb.104.1.313-322.1970 contributor: fullname: Nealson KH – volume: 6 start-page: 1 year: 2015 ident: e_1_3_4_8_2 article-title: A hierarchical cascade of second messengers regulates Pseudomonas aeruginosa surface behaviors publication-title: MBio contributor: fullname: Luo Y – volume: 108 start-page: 12617 year: 2011 ident: e_1_3_4_21_2 article-title: Bacteria use type-IV pili to slingshot on surfaces publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1105073108 contributor: fullname: Jin F – volume: 30 start-page: 139 year: 2016 ident: e_1_3_4_7_2 article-title: Sensational biofilms: Surface sensing in bacteria publication-title: Curr Opin Microbiol doi: 10.1016/j.mib.2016.02.004 contributor: fullname: O’Toole GA – volume: 5 start-page: 4913 year: 2014 ident: e_1_3_4_19_2 article-title: Vibrio cholerae use pili and flagella synergistically to effect motility switching and conditional surface attachment publication-title: Nat Commun doi: 10.1038/ncomms5913 contributor: fullname: Utada AS – volume: 112 start-page: 7563 year: 2015 ident: e_1_3_4_9_2 article-title: Type IV pili mechanochemically regulate virulence factors in Pseudomonas aeruginosa publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1502025112 contributor: fullname: Persat A – volume: 100 start-page: 1608 year: 2011 ident: e_1_3_4_18_2 article-title: Flagella and pili-mediated near-surface single-cell motility mechanisms in P. aeruginosa publication-title: Biophys J doi: 10.1016/j.bpj.2011.02.020 contributor: fullname: Conrad JC – volume: 356 start-page: 638 year: 2017 ident: e_1_3_4_3_2 article-title: Coupling between distant biofilms and emergence of nutrient time-sharing publication-title: Science doi: 10.1126/science.aah4204 contributor: fullname: Liu J – volume: 168 start-page: 200 year: 2017 ident: e_1_3_4_2_2 article-title: Species-independent attraction to biofilms through electrical signaling publication-title: Cell doi: 10.1016/j.cell.2016.12.014 contributor: fullname: Humphries J – volume: 330 start-page: 197 year: 2010 ident: e_1_3_4_23_2 article-title: Bacteria use type IV pili to walk upright and detach from surfaces publication-title: Science doi: 10.1126/science.1194238 contributor: fullname: Gibiansky ML – volume: 280 start-page: 295 year: 1998 ident: e_1_3_4_5_2 article-title: The involvement of cell-to-cell signals in the development of a bacterial biofilm publication-title: Science doi: 10.1126/science.280.5361.295 contributor: fullname: Davies DG – volume: 237 start-page: 37 year: 1952 ident: e_1_3_4_22_2 article-title: The chemical basis of morphogenesis publication-title: Philos Trans R Soc Lond B Biol Sci doi: 10.1098/rstb.1952.0012 contributor: fullname: Turing AM – volume: 358 start-page: 535 year: 2017 ident: e_1_3_4_10_2 article-title: Obstruction of pilus retraction stimulates bacterial surface sensing publication-title: Science doi: 10.1126/science.aan5706 contributor: fullname: Ellison CK – volume: 11 start-page: 9340 year: 2017 ident: e_1_3_4_26_2 article-title: High-speed “4D” computational microscopy of bacterial surface motility publication-title: ACS Nano doi: 10.1021/acsnano.7b04738 contributor: fullname: de Anda J – volume-title: Current Protocols in Microbiology year: 2005 ident: e_1_3_4_24_2 contributor: fullname: Tolker-Nielsen T – volume: 523 start-page: 550 year: 2015 ident: e_1_3_4_1_2 article-title: Metabolic co-dependence gives rise to collective oscillations within biofilms publication-title: Nature doi: 10.1038/nature14660 contributor: fullname: Liu J |
SSID | ssj0009580 |
Score | 2.6177065 |
Snippet | Using multigenerational, single-cell tracking we explore the earliest events of biofilm formation by Pseudomonas aeruginosa. During initial stages of surface... Using multigenerational, single-cell tracking we explore the earliest events of biofilm formation by During initial stages of surface engagement (≤20 h), the... Bacteria use multigenerational memory based on coupled oscillations of cAMP levels and type IV pili (TFP) activity to adaptively adhere to surfaces. These... Using multigenerational, single-cell tracking we explore the earliest events of biofilm formation by Pseudomonas aeruginosa During initial stages of surface... |
SourceID | pubmedcentral proquest crossref pubmed jstor |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 4471 |
SubjectTerms | Adhesion Bacteria Bacterial Adhesion - physiology Biofilms Biofilms - growth & development Biological Sciences Cell adhesion & migration Cyclic AMP Cyclic AMP - metabolism Division Family trees Fimbriae, Bacterial - physiology Memory Oscillations Pseudomonas aeruginosa Pseudomonas aeruginosa - physiology Second Messenger Systems - physiology Stochastic models Stochasticity Translational motion |
SummonAdditionalLinks | – databaseName: JSTOR Life Sciences Collection dbid: JLS link: http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEB7Ukxffj_oigoIeqm2TNulRfODJiwreSl7VBa2L6x7898407bqKgtBDSoY2ZJLMl2TmG4CD0uaJcc7ERIcWC5nYuOSokDR3WFYu0TUFCl_fypsHdXFJNDmHfSwMuVW2foHtLT4CJPPsTzOCEQVtcmZVooLf3hSzrgpxJhkutyITPX-P5KfDRo9O0EKTHU0p8e2U6Qneh7_hyp_ukVP25mrxny1dgoUOULKzMAKWYcY3K7DcTdkRO-p4pY9X4b4Ntn1s38MJIHshP9sPphvHtNNDWvqw8OTpCI0NGuaJ_piZwOiM8mZAGb5fmA1hJUTGugb3V5d359dxl1UhRrWU73GdljoX3hlTOo6PrAuluTWINOo6VTbTFrfMpRPWIroyniPC4EI4ieBIKi35Osw1r43fBFakhntK1VHzWvCkND5JNOVjx01dbgsXwVHf4dUwkGdU7aW35BXppvrSTQTrbWdO5PqejGCn11DVTa9RRfG-iKMQikSwP6nGiUG3Hbrxr2OSSQuKM5Yigo2g0K-PE-9enhURyG-qnggQ6fb3mmbw1JJv57RhTcqtv9q7DfP4Z0UXTpnYgbn3t7HfhdmRG--14_YT-_nqnQ priority: 102 providerName: JSTOR |
Title | Multigenerational memory and adaptive adhesion in early bacterial biofilm communities |
URI | https://www.jstor.org/stable/26508661 https://www.ncbi.nlm.nih.gov/pubmed/29559526 https://www.proquest.com/docview/2099976613 https://search.proquest.com/docview/2016533474 https://pubmed.ncbi.nlm.nih.gov/PMC5924909 |
Volume | 115 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JT-swEB5RTlwQ-wtLZSQOvEPaJHbq5IhYxAWEBEjvFnnLoxJ1K0oP_HtmnKQs4oSUgyNPImvGy2d75huAk9LkibZWx0SHFguZmLjkaJA0t1gubKJqChS-vpe3_4qLS6LJybtYmOC0b_R44J8nAz9-Cr6Vs4kZdn5iw7ub85w2DUk57EEPsWG3RV8y7RZN3EmG06_IRMfnI_lw5tV8gCs2rauIhIgImAjYcmJW-LQqNY6JP0HO756Tn5aiqw1YbzEkO2vaugkrzm_BZjtK5-y0pZL-uw2PIb72f3hvDv3YhFxr35jylimrZjTbYeHJ0akZG3vmiPGY6YbEGeX1mJJ6T5hpIkmIf3UHHq8uH86v4zaRQoyWKF_jOi1VLpzVurQcH1mPCsWNRnBR12lhMmVwl1xaYQwCKu04ggouhJWIh2ShJN-FVT_17g-wUaq5o-wcNa8FT0rtkkRRCnY0SW5GNoLTTpHVrOHLqMI9t-QVqb_6UH8Eu0HRS7mM0CLihQgOO81X7YiaVxTii9AJ0UcEx8tqHAt0waG8my5IJh1RaLEUEew1hvr4eWvpCOQXEy4FiGf7aw12v8C33Xa3_V9_eQBr2LSCLqEycQirry8LdwS9uV30gw9qPyS66Id-_A4CyfUe |
link.rule.ids | 230,315,729,782,786,808,811,887,27934,27935,53802,53804,58027,58039,58260,58272 |
linkProvider | National Library of Medicine |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4VeoALhfJKu21dCSQ4BJLYiZMjane1CMqlIHGL_AqsBGHFsgf-fWfiZHdBIFXKwZFHkeWx4288M98A7BUmjbS1OiQ6tFDIyIQFR4XEqcV2biNVUaLw8K-8uM5_94kmZ7_LhaGwyiYusPHiI0DSd-44IRiRkZHzMc3RjvKFARa4dXOfaZLgD1ckomPwkfx4XKvJEZ7RdJLGVPp24fDx8YdvIcvXAZILJ87g03-OdR3WWkjJTvwa2IAPrv4MG-2mnbCDlln6cBOumnTbm-bd3wGye4q0fWaqtkxZNaafHzZuHV2isVHNHBEgM-05nVFej6jG9z0zPrGE6Fi34GrQv_w1DNu6CiEqpngKq7hQqXBW68JyfGSV5YobjVijquLcJMqg0VxYYQziK-04YgwuhJUIj2SuJN-G5fqhdrvAslhzR8U6Kl4JHhXaRZGiiuxo1qUmswEcdBNejj19Rtm4vSUvSTflXDcBbDeTOZPrZjKAXqehst1gk5IyfhFJIRgJ4OesG7cG-TtU7R6mJBNnlGksRQA7XqHzjxPzXppkAcgXqp4JEO32y556dNvQb6dkskbFl_fG-wNWhpd_zsvz04uzr7CKo8jJ_ZSIHiw_PU7dN1ia2On3Zg3_A2Qu7eU |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS-RAEC5cBdmLj10f8bUt7EEPcZJ0J50cRR2UXURQwVvoV3RA4-A4B_-9VelkHEUPQg4dughNV3fq666qrwD-FiaNtLU6JDq0UMjIhAVHhcSpxXZuI1VRovDppTy_yY9PiCZnv8uFobDKJi6w8eIjQNL3rje0VS8hKJHRQWcuzROZ-Oi9KX7d3GebJPjTFYnoWHwk7w1rNTpAO03WNKbyt1MGyMcgfoYuPwZJTlmd_uI3xrsECy20ZId-LSzDjKt_wXK7eUdsr2WY3v8N103a7W3z7u8C2QNF3L4wVVumrBrSTxAbd44u09igZo6IkJn23M4orwdU6_uBGZ9gQrSsK3DdP7k6Og3b-gohKqh4Dqu4UKlwVuvCcnxkleWKG42Yo6ri3CTK4OG5sMIYxFnaccQaXAgrESbJXEm-CrP1Y-3WgWWx5o6KdlS8EjwqtIsiRZXZ8XiXmswGsNdNejn0NBpl4_6WvCT9lG_6CWC1mdCJXDeTAWx1WirbjTYqKfMXERWCkgB2J924RcjvoWr3OCaZOKOMYykCWPNKffs4MfClSRaAfKfuiQDRb7_vqQd3DQ13SkfXqNj4arx_YP7iuF_-Pzv_twk_cRA5eaESsQWzz09jtw0_Rna80yzjVyPM8G8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multigenerational+memory+and+adaptive+adhesion+in+early+bacterial+biofilm+communities&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Lee%2C+Calvin+K.&rft.au=de+Anda%2C+Jaime&rft.au=Baker%2C+Amy+E.&rft.au=Bennett%2C+Rachel+R.&rft.date=2018-04-24&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=115&rft.issue=17&rft.spage=4471&rft.epage=4476&rft_id=info:doi/10.1073%2Fpnas.1720071115&rft.externalDocID=26508661 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon |