Genome of wild olive and the evolution of oil biosynthesis
Here we present the genome sequence and annotation of the wild olive tree (Olea europaea var. sylvestris), called oleaster, which is considered an ancestor of cultivated olive trees. More than 50,000 protein-coding genes were predicted, a majority of which could be anchored to 23 pseudochromosomes o...
Saved in:
Published in: | Proceedings of the National Academy of Sciences - PNAS Vol. 114; no. 44; pp. E9413 - E9422 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
National Academy of Sciences
31-10-2017
|
Series: | PNAS Plus |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Here we present the genome sequence and annotation of the wild olive tree (Olea europaea var. sylvestris), called oleaster, which is considered an ancestor of cultivated olive trees. More than 50,000 protein-coding genes were predicted, a majority of which could be anchored to 23 pseudochromosomes obtained through a newly constructed genetic map. The oleaster genome contains signatures of two Oleaceae lineage-specific paleopolyploidy events, dated at ∼28 and ∼59 Mya. These events contributed to the expansion and neofunctionalization of genes and gene families that play important roles in oil biosynthesis. The functional divergence of oil biosynthesis pathway genes, such as FAD2, SACPD, EAR, and ACPTE, following duplication, has been responsible for the differential accumulation of oleic and linoleic acids produced in olive compared with sesame, a closely related oil crop. Duplicated oleaster FAD2 genes are regulated by an siRNA derived from a transposable element-rich region, leading to suppressed levels of FAD2 gene expression. Additionally, neofunctionalization of members of the SACPD gene family has led to increased expression of SACPD2, 3, 5, and 7, consequently resulting in an increased desaturation of steric acid. Taken together, decreased FAD2 expression and increased SACPD expression likely explain the accumulation of exceptionally high levels of oleic acid in olive. The oleaster genome thus provides important insights into the evolution of oil biosynthesis and will be a valuable resource for oil crop genomics. |
---|---|
AbstractList | Here we present the genome sequence and annotation of the wild olive tree (Olea europaea var. sylvestris), called oleaster, which is considered an ancestor of cultivated olive trees. More than 50,000 protein-coding genes were predicted, a majority of which could be anchored to 23 pseudochromosomes obtained through a newly constructed genetic map. The oleaster genome contains signatures of two Oleaceae lineage-specific paleopolyploidy events, dated at ∼28 and ∼59 Mya. These events contributed to the expansion and neofunctionalization of genes and gene families that play important roles in oil biosynthesis. The functional divergence of oil biosynthesis pathway genes, such as FAD2, SACPD, EAR, and ACPTE, following duplication, has been responsible for the differential accumulation of oleic and linoleic acids produced in olive compared with sesame, a closely related oil crop. Duplicated oleaster FAD2 genes are regulated by an siRNA derived from a transposable element-rich region, leading to suppressed levels of FAD2 gene expression. Additionally, neofunctionalization of members of the SACPD gene family has led to increased expression of SACPD2, 3, 5, and 7, consequently resulting in an increased desaturation of steric acid. Taken together, decreased FAD2 expression and increased SACPD expression likely explain the accumulation of exceptionally high levels of oleic acid in olive. The oleaster genome thus provides important insights into the evolution of oil biosynthesis and will be a valuable resource for oil crop genomics.Here we present the genome sequence and annotation of the wild olive tree (Olea europaea var. sylvestris), called oleaster, which is considered an ancestor of cultivated olive trees. More than 50,000 protein-coding genes were predicted, a majority of which could be anchored to 23 pseudochromosomes obtained through a newly constructed genetic map. The oleaster genome contains signatures of two Oleaceae lineage-specific paleopolyploidy events, dated at ∼28 and ∼59 Mya. These events contributed to the expansion and neofunctionalization of genes and gene families that play important roles in oil biosynthesis. The functional divergence of oil biosynthesis pathway genes, such as FAD2, SACPD, EAR, and ACPTE, following duplication, has been responsible for the differential accumulation of oleic and linoleic acids produced in olive compared with sesame, a closely related oil crop. Duplicated oleaster FAD2 genes are regulated by an siRNA derived from a transposable element-rich region, leading to suppressed levels of FAD2 gene expression. Additionally, neofunctionalization of members of the SACPD gene family has led to increased expression of SACPD2, 3, 5, and 7, consequently resulting in an increased desaturation of steric acid. Taken together, decreased FAD2 expression and increased SACPD expression likely explain the accumulation of exceptionally high levels of oleic acid in olive. The oleaster genome thus provides important insights into the evolution of oil biosynthesis and will be a valuable resource for oil crop genomics. We sequenced the genome and transcriptomes of the wild olive (oleaster). More than 50,000 genes were predicted, and evidence was found for two relatively recent whole-genome duplication events, dated at approximately 28 and 59 Mya. Whole-genome sequencing, as well as gene expression studies, provide further insights into the evolution of oil biosynthesis, and will aid future studies aimed at further increasing the production of olive oil, which is a key ingredient of the healthy Mediterranean diet and has been granted a qualified health claim by the US Food and Drug Administration. Here we present the genome sequence and annotation of the wild olive tree ( Olea europaea var. sylvestris ), called oleaster, which is considered an ancestor of cultivated olive trees. More than 50,000 protein-coding genes were predicted, a majority of which could be anchored to 23 pseudochromosomes obtained through a newly constructed genetic map. The oleaster genome contains signatures of two Oleaceae lineage-specific paleopolyploidy events, dated at ∼28 and ∼59 Mya. These events contributed to the expansion and neofunctionalization of genes and gene families that play important roles in oil biosynthesis. The functional divergence of oil biosynthesis pathway genes, such as FAD2 , SACPD, EAR , and ACPTE , following duplication, has been responsible for the differential accumulation of oleic and linoleic acids produced in olive compared with sesame, a closely related oil crop. Duplicated oleaster FAD2 genes are regulated by an siRNA derived from a transposable element-rich region, leading to suppressed levels of FAD2 gene expression. Additionally, neofunctionalization of members of the SACPD gene family has led to increased expression of SACPD2 , 3 , 5 , and 7 , consequently resulting in an increased desaturation of steric acid. Taken together, decreased FAD2 expression and increased SACPD expression likely explain the accumulation of exceptionally high levels of oleic acid in olive. The oleaster genome thus provides important insights into the evolution of oil biosynthesis and will be a valuable resource for oil crop genomics. Here we present the genome sequence and annotation of the wild olive tree (Olea europaea var. sylvestris), called oleaster, which is considered an ancestor of cultivated olive trees. More than 50,000 protein-coding genes were predicted, a majority of which could be anchored to 23 pseudochromosomes obtained through a newly constructed genetic map. The oleaster genome contains signatures of two Oleaceae lineage-specific paleopolyploidy events, dated at 28 and 59 Mya. These events contributed to the expansion and neofunctionalization of genes and gene families that play important roles in oil biosynthesis. The functional divergence of oil biosynthesis pathway genes, such as FAD2, SACPD, EAR, and ACPTE, following duplication, has been responsible for the differential accumulation aof oleic and linoleic acids produced in olive compared with sesame, a closely related oil crop. Duplicated oleaster FAD2 genes are regulated by an siRNA derived from a transposable element-rich region, leading to suppressed levels of FAD2 gene expression. Additionally, neofunctionalization of members of the SACPD gene family has led to increased expression of SACPD2, 3, 5, and 7, consequently resulting in an increased desaturation of steric acid. Taken together, decreased FAD2 expression and increased SACPD expression likely explain the accumulation of exceptionally high levels of oleic acid in olive. The oleaster genome thus provides important insights into the evolution of oil biosynthesis and will be a valuable resource for oil crop genomics. Here we present the genome sequence and annotation of the wild olive tree (Olea europaea var. sylvestris), called oleaster, which is considered an ancestor of cultivated olive trees. More than 50,000 protein-coding genes were predicted, a majority of which could be anchored to 23 pseudochromosomes obtained through a newly constructed genetic map. The oleaster genome contains signatures of two Oleaceae lineage-specific paleopolyploidy events, dated at ∼28 and ∼59 Mya. These events contributed to the expansion and neofunctionalization of genes and gene families that play important roles in oil biosynthesis. The functional divergence of oil biosynthesis pathway genes, such as FAD2, SACPD, EAR, and ACPTE, following duplication, has been responsible for the differential accumulation of oleic and linoleic acids produced in olive compared with sesame, a closely related oil crop. Duplicated oleaster FAD2 genes are regulated by an siRNA derived from a transposable element-rich region, leading to suppressed levels of FAD2 gene expression. Additionally, neofunctionalization of members of the SACPD gene family has led to increased expression of SACPD2, 3, 5, and 7, consequently resulting in an increased desaturation of steric acid. Taken together, decreased FAD2 expression and increased SACPD expression likely explain the accumulation of exceptionally high levels of oleic acid in olive. The oleaster genome thus provides important insights into the evolution of oil biosynthesis and will be a valuable resource for oil crop genomics. Here we present the genome sequence and annotation of the wild olive tree ( var. ), called oleaster, which is considered an ancestor of cultivated olive trees. More than 50,000 protein-coding genes were predicted, a majority of which could be anchored to 23 pseudochromosomes obtained through a newly constructed genetic map. The oleaster genome contains signatures of two Oleaceae lineage-specific paleopolyploidy events, dated at ∼28 and ∼59 Mya. These events contributed to the expansion and neofunctionalization of genes and gene families that play important roles in oil biosynthesis. The functional divergence of oil biosynthesis pathway genes, such as , , and , following duplication, has been responsible for the differential accumulation of oleic and linoleic acids produced in olive compared with sesame, a closely related oil crop. Duplicated oleaster genes are regulated by an siRNA derived from a transposable element-rich region, leading to suppressed levels of gene expression. Additionally, neofunctionalization of members of the gene family has led to increased expression of , , , and , consequently resulting in an increased desaturation of steric acid. Taken together, decreased expression and increased expression likely explain the accumulation of exceptionally high levels of oleic acid in olive. The oleaster genome thus provides important insights into the evolution of oil biosynthesis and will be a valuable resource for oil crop genomics. |
Author | Li, Zhen Wu, Zhangyan Turktas, Mine Kasarla, Pavan Van de Peer, Yves Van Montagu, Marc Parmaksiz, Iskender Llorens, Carlos Sterck, Lieven Ilhan, Emre Deng, Tianquan Dundar, Ekrem Zhang, Baohong Gao, Qiang Yang, Ming Ghazal, Hassan Yang, Huanming Uranbey, Serkan Colantonio, Vincent Dorado, Gabriel Lightfoot, David A. Ipek, Arif Badad, Oussama Unver, Turgay Escalante, Francisco Javier Cetin, Oznur He, Lijuan Tombuloglu, Huseyin Xie, Fuliang Lohaus, Rolf Roig, Francisco J. Erayman, Mustafa Mete, Nurengin Hernandez, Pilar |
Author_xml | – sequence: 1 givenname: Turgay surname: Unver fullname: Unver, Turgay organization: İzmir International Biomedicine and Genome Institute, Dokuz Eylül University, 35340 İzmir, Turkey – sequence: 2 givenname: Zhangyan surname: Wu fullname: Wu, Zhangyan organization: BGI Shenzhen, 518038 Shenzhen, China – sequence: 3 givenname: Lieven surname: Sterck fullname: Sterck, Lieven organization: Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium – sequence: 4 givenname: Mine surname: Turktas fullname: Turktas, Mine organization: Department of Biology, Faculty of Science, Cankiri Karatekin University, 18100 Cankiri, Turkey – sequence: 5 givenname: Rolf surname: Lohaus fullname: Lohaus, Rolf organization: Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium – sequence: 6 givenname: Zhen surname: Li fullname: Li, Zhen organization: Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium – sequence: 7 givenname: Ming surname: Yang fullname: Yang, Ming organization: BGI Shenzhen, 518038 Shenzhen, China – sequence: 8 givenname: Lijuan surname: He fullname: He, Lijuan organization: BGI Shenzhen, 518038 Shenzhen, China – sequence: 9 givenname: Tianquan surname: Deng fullname: Deng, Tianquan organization: BGI Shenzhen, 518038 Shenzhen, China – sequence: 10 givenname: Francisco Javier surname: Escalante fullname: Escalante, Francisco Javier organization: Plataforma de Genómica y Bioinformática de Andalucía, 41013 Sevilla, Spain – sequence: 11 givenname: Carlos surname: Llorens fullname: Llorens, Carlos organization: Biotechvana, 46980 Paterna (Valencia), Spain – sequence: 12 givenname: Francisco J. surname: Roig fullname: Roig, Francisco J. organization: Biotechvana, 46980 Paterna (Valencia), Spain – sequence: 13 givenname: Iskender surname: Parmaksiz fullname: Parmaksiz, Iskender organization: Department of Molecular Biology and Genetics, Faculty of Science, Gaziosmanpasa University, 60250 Tokat, Turkey – sequence: 14 givenname: Ekrem surname: Dundar fullname: Dundar, Ekrem organization: Department of Molecular Biology and Genetics, Faculty of Science, Balikesir University, 10145 Balikesir, Turkey – sequence: 15 givenname: Fuliang surname: Xie fullname: Xie, Fuliang organization: Department of Biology, East Carolina University, Greenville, NC 27858 – sequence: 16 givenname: Baohong surname: Zhang fullname: Zhang, Baohong organization: Department of Biology, East Carolina University, Greenville, NC 27858 – sequence: 17 givenname: Arif surname: Ipek fullname: Ipek, Arif organization: Department of Biology, Faculty of Science, Cankiri Karatekin University, 18100 Cankiri, Turkey – sequence: 18 givenname: Serkan surname: Uranbey fullname: Uranbey, Serkan organization: Department of Field Crops, Faculty of Agriculture, Ankara University, 06120 Ankara, Turkey – sequence: 19 givenname: Mustafa surname: Erayman fullname: Erayman, Mustafa organization: Department of Biology, Faculty of Arts and Science, Mustafa Kemal University, 31060 Hatay, Turkey – sequence: 20 givenname: Emre surname: Ilhan fullname: Ilhan, Emre organization: Department of Biology, Faculty of Arts and Science, Mustafa Kemal University, 31060 Hatay, Turkey – sequence: 21 givenname: Oussama surname: Badad fullname: Badad, Oussama organization: Laboratory of Plant Physiology, University Mohamed V, 10102 Rabat, Morocco – sequence: 22 givenname: Hassan surname: Ghazal fullname: Ghazal, Hassan organization: Polydisciplinary Faculty of Nador, University Mohamed Premier, 62700 Nador, Morocco – sequence: 23 givenname: David A. surname: Lightfoot fullname: Lightfoot, David A. organization: Department of Plant, Soil and Agricultural Systems, Southern Illinois University, Carbondale, IL 62901 – sequence: 24 givenname: Pavan surname: Kasarla fullname: Kasarla, Pavan organization: Department of Plant, Soil and Agricultural Systems, Southern Illinois University, Carbondale, IL 62901 – sequence: 25 givenname: Vincent surname: Colantonio fullname: Colantonio, Vincent organization: Department of Plant, Soil and Agricultural Systems, Southern Illinois University, Carbondale, IL 62901 – sequence: 26 givenname: Huseyin surname: Tombuloglu fullname: Tombuloglu, Huseyin organization: Institute for Research and Medical Consultation, University of Dammam, 34212 Dammam, Saudi Arabia – sequence: 27 givenname: Pilar surname: Hernandez fullname: Hernandez, Pilar organization: Instituto de Agricultura Sostenible, Consejo Superior de Investigaciones Científicas, 14004 Córdoba, Spain – sequence: 28 givenname: Nurengin surname: Mete fullname: Mete, Nurengin organization: Olive Research Institute of Bornova, 35100 Izmir, Turkey – sequence: 29 givenname: Oznur surname: Cetin fullname: Cetin, Oznur organization: Olive Research Institute of Bornova, 35100 Izmir, Turkey – sequence: 30 givenname: Marc surname: Van Montagu fullname: Van Montagu, Marc organization: Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium – sequence: 31 givenname: Huanming surname: Yang fullname: Yang, Huanming organization: BGI Shenzhen, 518038 Shenzhen, China – sequence: 32 givenname: Qiang surname: Gao fullname: Gao, Qiang organization: BGI Shenzhen, 518038 Shenzhen, China – sequence: 33 givenname: Gabriel surname: Dorado fullname: Dorado, Gabriel organization: Departamento Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario, Universidad de Córdoba, 14071 Córdoba, Spain – sequence: 34 givenname: Yves surname: Van de Peer fullname: Van de Peer, Yves organization: Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29078332$$D View this record in MEDLINE/PubMed |
BookMark | eNpdkT1vFDEQhi0URC6Bmgq0UhqaTcbrbwqkKIKAFIkmqS2vPUt82rOP9e6h_Ht8upAA1RTPM69m9J6Qo5QTEvKWwjkFxS62yZVzqkDLjlLKX5AVBUNbyQ0ckRVAp1rNO35MTkpZA4ARGl6R486A0ox1K_LxGlPeYJOH5lccQ5PHuMPGpdDM99jgLo_LHHPa8xzHpo-5PKSKSiyvycvBjQXfPM5Tcvfl8-3V1_bm-_W3q8ub1gswc4tG0J4bHHgvAwgTpJcAMgy9Q6HAqyD5gAK0Z14agUPVmArBhUEoLxw7JZ8Oudul32DwmObJjXY7xY2bHmx20f5LUry3P_LOCqmkAV0DPjwGTPnngmW2m1g8jqNLmJdiqRGKa6k1r-rZf-o6L1Oq71VLS8aMYapaFwfLT7mUCYenYyjYfS9234t97qVuvP_7hyf_TxFVeHcQ1mXO0zOXXGttJPsNhR-VvQ |
CitedBy_id | crossref_primary_10_1111_tpj_15272 crossref_primary_10_1186_s12915_018_0482_y crossref_primary_10_1007_s00299_019_02415_z crossref_primary_10_1038_s41538_022_00173_z crossref_primary_10_3390_plants11141803 crossref_primary_10_1094_MPMI_08_19_0224_R crossref_primary_10_1038_s42003_022_03646_9 crossref_primary_10_1021_acs_jafc_3c00059 crossref_primary_10_1038_s41467_020_16180_1 crossref_primary_10_3389_fpls_2018_01660 crossref_primary_10_3390_plants12010155 crossref_primary_10_3389_fpls_2023_1080946 crossref_primary_10_2174_1389202923666220428102632 crossref_primary_10_3389_fpls_2018_01932 crossref_primary_10_1093_gbe_evab094 crossref_primary_10_1186_s12864_020_6692_z crossref_primary_10_1002_tpg2_20143 crossref_primary_10_3390_ijms21144819 crossref_primary_10_3390_ijms23010154 crossref_primary_10_1186_s12864_023_09673_y crossref_primary_10_1038_s41597_024_03459_x crossref_primary_10_1186_s12864_018_4874_8 crossref_primary_10_1093_dnares_dsad015 crossref_primary_10_3389_fpls_2022_879822 crossref_primary_10_1093_plphys_kiac572 crossref_primary_10_3389_fpls_2019_01760 crossref_primary_10_1016_j_tifs_2024_104615 crossref_primary_10_1186_s12864_023_09906_0 crossref_primary_10_3389_fpls_2023_1131557 crossref_primary_10_1093_dnares_dsac041 crossref_primary_10_1016_j_ocsci_2021_07_002 crossref_primary_10_3390_plants11101367 crossref_primary_10_1007_s11103_021_01220_1 crossref_primary_10_3390_plants10071405 crossref_primary_10_1002_tpg2_20010 crossref_primary_10_1016_j_molp_2018_06_001 crossref_primary_10_3389_fpls_2019_00427 crossref_primary_10_3389_fpls_2021_751959 crossref_primary_10_3390_agriculture14040579 crossref_primary_10_3390_genes11080916 crossref_primary_10_3390_genes12101474 crossref_primary_10_3390_plants10112374 crossref_primary_10_1186_s12870_019_1969_6 crossref_primary_10_3389_fgene_2023_1298565 crossref_primary_10_1007_s11033_020_05554_9 crossref_primary_10_3390_agronomy13061608 crossref_primary_10_3390_foods9040467 crossref_primary_10_1111_1755_0998_13104 crossref_primary_10_3390_ijms241914448 crossref_primary_10_1007_s13580_021_00366_7 crossref_primary_10_3389_fpls_2018_01320 crossref_primary_10_3389_fpls_2022_1078677 crossref_primary_10_1039_D1AN01476E crossref_primary_10_1016_j_hpj_2023_03_006 crossref_primary_10_1016_j_scienta_2017_12_034 crossref_primary_10_1038_s41598_019_53169_3 crossref_primary_10_25308_aduziraat_427871 crossref_primary_10_3390_plants10091938 crossref_primary_10_3390_genes11050510 crossref_primary_10_1093_jxb_erac464 crossref_primary_10_1371_journal_pone_0223716 crossref_primary_10_7717_peerj_15724 crossref_primary_10_1038_s41598_019_55338_w crossref_primary_10_1111_nph_16588 crossref_primary_10_3390_genes10080559 crossref_primary_10_1270_jsbbs_22082 crossref_primary_10_3390_genes12040545 crossref_primary_10_1016_j_celrep_2024_113909 crossref_primary_10_1016_j_jplph_2018_06_002 crossref_primary_10_1093_gigascience_giy068 crossref_primary_10_1093_treephys_tpae002 crossref_primary_10_3390_genes10120950 crossref_primary_10_1093_aob_mcx145 crossref_primary_10_3389_fpls_2019_00725 crossref_primary_10_1093_hr_uhac087 crossref_primary_10_3389_fmolb_2021_679292 crossref_primary_10_3390_genes11121508 crossref_primary_10_3390_plants11111415 crossref_primary_10_1021_acs_jafc_8b03399 crossref_primary_10_1080_23802359_2020_1860712 crossref_primary_10_1093_molbev_msaa160 crossref_primary_10_1002_tpg2_20430 crossref_primary_10_1016_j_plantsci_2021_111083 crossref_primary_10_1016_j_indcrop_2024_118413 crossref_primary_10_1016_j_xplc_2020_100079 crossref_primary_10_1093_pcp_pcaa063 crossref_primary_10_1038_s41438_020_00458_y crossref_primary_10_1038_s41598_020_72895_7 crossref_primary_10_1073_pnas_2101767118 crossref_primary_10_1016_j_scienta_2023_112008 crossref_primary_10_7717_peerj_13813 crossref_primary_10_1111_tpj_15995 crossref_primary_10_1007_s10142_021_00824_6 crossref_primary_10_1016_j_cub_2024_03_047 crossref_primary_10_1016_j_csbj_2021_07_006 crossref_primary_10_3390_ijms19123932 crossref_primary_10_3390_agronomy12102447 crossref_primary_10_3390_plants10112514 crossref_primary_10_1038_s42003_023_05748_4 crossref_primary_10_3390_plants12142591 crossref_primary_10_3389_fgene_2022_868540 crossref_primary_10_3389_fpls_2023_1155442 crossref_primary_10_24072_pcjournal_23 crossref_primary_10_1111_nph_16975 crossref_primary_10_1016_j_stress_2024_100518 crossref_primary_10_1016_j_csbj_2024_02_028 crossref_primary_10_1016_j_fochx_2020_100099 crossref_primary_10_1002_jsfa_10116 crossref_primary_10_3389_fpls_2023_1170723 crossref_primary_10_21303_2504_5695_2023_003033 crossref_primary_10_1038_s41598_018_30718_w crossref_primary_10_3389_fgene_2019_00755 crossref_primary_10_1111_jse_13116 crossref_primary_10_3390_plants12061274 crossref_primary_10_1186_s12915_022_01297_0 crossref_primary_10_3390_plants11040480 crossref_primary_10_1111_tpj_14435 crossref_primary_10_1002_pld3_568 crossref_primary_10_3390_su141710684 crossref_primary_10_1007_s11295_020_1415_9 crossref_primary_10_3390_genes11080879 crossref_primary_10_3390_genes11050544 crossref_primary_10_3390_ijms19010118 crossref_primary_10_1051_ocl_2021024 crossref_primary_10_1016_j_psep_2022_10_035 crossref_primary_10_1038_s41438_020_00352_7 crossref_primary_10_1021_acs_jproteome_9b00167 crossref_primary_10_1016_j_plaphy_2021_12_028 crossref_primary_10_1016_j_scienta_2022_111415 crossref_primary_10_1186_s12915_020_00881_6 crossref_primary_10_3390_ijms22105291 crossref_primary_10_1016_j_indcrop_2018_10_067 crossref_primary_10_1111_tpj_15858 crossref_primary_10_1073_pnas_2307289120 crossref_primary_10_1111_1755_0998_13545 crossref_primary_10_1186_s13068_021_01909_x crossref_primary_10_3389_fgene_2020_00447 crossref_primary_10_1016_j_cub_2024_03_029 crossref_primary_10_3389_fpls_2020_00066 crossref_primary_10_3390_ijms22115806 crossref_primary_10_1093_dnares_dsac008 crossref_primary_10_1111_nph_17769 crossref_primary_10_3390_plants13111444 crossref_primary_10_1016_j_gpb_2022_12_005 crossref_primary_10_1080_15476286_2019_1593744 crossref_primary_10_1016_j_jare_2020_10_004 crossref_primary_10_3390_molecules26051304 crossref_primary_10_1038_s41438_021_00498_y crossref_primary_10_3390_pr12061181 crossref_primary_10_1016_j_scienta_2020_109653 crossref_primary_10_7717_peerj_8932 crossref_primary_10_1038_s41438_020_00406_w crossref_primary_10_1186_s13059_021_02599_2 crossref_primary_10_1016_j_flora_2018_11_014 crossref_primary_10_1002_ejlt_202200079 crossref_primary_10_1016_j_xplc_2023_100729 crossref_primary_10_1093_pcp_pcz208 crossref_primary_10_17660_ActaHortic_2020_1290_10 crossref_primary_10_1111_jse_12802 crossref_primary_10_1021_acs_jafc_3c05322 crossref_primary_10_3390_genes15010001 crossref_primary_10_2139_ssrn_4064620 crossref_primary_10_1111_1755_0998_12742 crossref_primary_10_1038_s41467_023_42253_y crossref_primary_10_1093_nar_gkab1014 crossref_primary_10_3390_genes12030386 crossref_primary_10_3390_agronomy12112718 crossref_primary_10_1111_pbi_13022 crossref_primary_10_1111_pce_14340 crossref_primary_10_3390_ijms24020961 crossref_primary_10_1016_j_plaphy_2018_05_004 crossref_primary_10_1016_j_xplc_2022_100300 crossref_primary_10_1111_tpj_16270 crossref_primary_10_3389_fpls_2022_869048 |
Cites_doi | 10.1111/nph.13264 10.1186/s13742-016-0134-5 10.1038/35099680 10.1038/nature20786 10.1007/s00122-003-1533-4 10.1101/gr.168997.113 10.1093/nar/gkl200 10.1038/nrg.2017.26 10.1079/NRR200495 10.1007/s00438-008-0391-9 10.1038/nature12132 10.1186/s13059-014-0573-1 10.1093/bioinformatics/btp698 10.1016/j.febslet.2013.05.018 10.1186/gb-2007-8-1-r13 10.1104/pp.16.01929 10.1093/nar/gkr123 10.1080/10635150490445913 10.1093/aob/mcp105 10.1101/gr.097261.109 10.1093/bioinformatics/bth315 10.1038/nature08696 10.1371/journal.pone.0101673 10.1155/2014/843908 10.1093/molbev/mss214 10.1101/gr.078196.108 10.1007/s001220051566 10.1371/journal.pone.0126690 10.1371/journal.pone.0019379 10.1056/NEJMoa1200303 10.1006/jmbi.2000.5197 10.1016/j.pbi.2013.02.015 10.1101/gr.082081.108 10.3732/ajb.0900346 10.1007/s11295-011-0375-5 10.1111/nph.13181 10.1093/nar/27.2.573 10.1111/1468-0092.00149 10.1186/gb-2014-15-2-r39 10.1016/j.jplph.2008.04.018 10.1093/gbe/evu058 10.1101/gr.1865504 10.1111/jipb.12049 10.1371/journal.pone.0035872 10.1101/gr.092759.109 10.1101/gr.1224503 10.1093/jhered/93.1.77 10.1002/0471250953.bi0410s25 |
ContentType | Journal Article |
Copyright | Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles Copyright National Academy of Sciences Oct 31, 2017 |
Copyright_xml | – notice: Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles – notice: Copyright National Academy of Sciences Oct 31, 2017 |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
DOI | 10.1073/pnas.1708621114 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef Virology and AIDS Abstracts MEDLINE |
Database_xml | – sequence: 1 dbid: ECM name: MEDLINE url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
DocumentTitleAlternate | Wild olive genome and oil biosynthesis |
EISSN | 1091-6490 |
EndPage | E9422 |
ExternalDocumentID | 10_1073_pnas_1708621114 29078332 26488896 |
Genre | Research Support, Non-U.S. Gov't Journal Article Feature |
GrantInformation_xml | – fundername: NHGRI NIH HHS grantid: U24 HG006941 – fundername: NIEHS NIH HHS grantid: 27307C2007 – fundername: Universidad de Córdoba (University of Cordoba) grantid: Ayuda a Grupos – fundername: T.C. Gida Tarim ve Hayvancilik Bakanligi (Republic of Turkey Ministry of Food, Agriculture and Livestock) grantid: TAGEM/BBAD/12/A08/P06/3 – fundername: Ghent University, Multidisplinary Research Partnership grantid: 01MR0310W – fundername: European Union Seventh Framework Program grantid: FP7/2007-2013 – fundername: State Planning Organization of Turkey grantid: DPT2010K120720 – fundername: Ankara Universitesi (Ankara University) grantid: 14B0447004 – fundername: Cankiri Karatekin University grantid: FF12035L19 – fundername: Consejería de Agricultura y Pesca grantid: 041/C/2007; 75/C/2009; 56/C/2010 – fundername: Gaziosmanpasa Üniversitesi (Gaziosmanpasa University) grantid: 2013/27 – fundername: Consejería de Economía, Innovación, Ciencia y Empleo, Junta de Andalucía (Ministry of Economy, Innovation, Science and Employment, Government of Andalucia) grantid: CVI-1728 |
GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 79B 85S AACGO AAFWJ AANCE ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACIWK ACNCT ACPRK ADULT ADZLD AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM ASUFR BKOMP CS3 D0L DCCCD DIK DNJUQ DOOOF DU5 DWIUU E3Z EBS EJD F5P FRP GX1 HH5 HYE JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JSODD JST KQ8 L7B LU7 N9A N~3 O9- OK1 PNE PQQKQ R.V RHF RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR VQA W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZA5 ZCA ~02 ~KM ADACV CGR CUY CVF ECM EIF H13 IPSME NPM AAYXX CITATION 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c509t-e951b49ef4b6d059d6c6006dfbae570c7d64fe508c3c695efb6d37ddadf57c5a3 |
IEDL.DBID | RPM |
ISSN | 0027-8424 1091-6490 |
IngestDate | Tue Sep 17 21:10:03 EDT 2024 Sat Oct 26 04:55:46 EDT 2024 Thu Oct 10 19:05:29 EDT 2024 Thu Nov 21 22:19:01 EST 2024 Sat Nov 02 12:20:30 EDT 2024 Fri Feb 02 08:04:23 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 44 |
Keywords | fatty-acid biosynthesis oil crop polyunsaturated fatty-acid pathway whole-genome duplication siRNA regulation |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c509t-e951b49ef4b6d059d6c6006dfbae570c7d64fe508c3c695efb6d37ddadf57c5a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Reviewers: R.M., University of Illinois at Urbana–Champaign; and K.S., MPI for Plant Breeding Research. 1T.U. and Z.W. contributed equally to this work. Contributed by Marc Van Montagu, September 11, 2017 (sent for review May 26, 2017; reviewed by Ray Ming and Korbinian Schneeberger) 2Present address: Egitim Mah, Ekrem Guer Sok, No:26/3, 35340 Balcova, Izmir, Turkey. Author contributions: T.U., M.V.M., G.D., and Y.V.d.P. designed research; T.U., Z.W., L.S., M.T., R.L., Z.L., M.Y., F.J.E., C.L., F.J.R., E.D., F.X., B.Z., O.B., H.G., D.A.L., P.K., V.C., H.T., P.H., N.M., O.C., G.D., and Y.V.d.P. performed research; T.U., Z.W., L.S., M.T., R.L., Z.L., M.Y., F.J.E., C.L., F.J.R., E.D., F.X., B.Z., O.B., H.G., D.A.L., P.K., V.C., H.T., P.H., N.M., O.C., G.D., and Y.V.d.P. analyzed data; T.U., L.S., R.L., G.D., and Y.V.d.P. wrote the paper; Z.W., M.T., M.Y., L.H., T.D., I.P., A.I., S.U., M.E., E.I., N.M., H.Y., and Q.G. contributed data production; and T.U., G.D., and Y.V.d.P. contributed to the project leadership. |
OpenAccessLink | https://www.pnas.org/content/pnas/114/44/E9413.full.pdf |
PMID | 29078332 |
PQID | 1986339937 |
PQPubID | 42026 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5676908 proquest_miscellaneous_1957486884 proquest_journals_1986339937 crossref_primary_10_1073_pnas_1708621114 pubmed_primary_29078332 jstor_primary_26488896 |
PublicationCentury | 2000 |
PublicationDate | 2017-10-31 |
PublicationDateYYYYMMDD | 2017-10-31 |
PublicationDate_xml | – month: 10 year: 2017 text: 2017-10-31 day: 31 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationSeriesTitle | PNAS Plus |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2017 |
Publisher | National Academy of Sciences |
Publisher_xml | – name: National Academy of Sciences |
References | Risterucci A (e_1_3_4_37_2) 2000; 101 Estruch R (e_1_3_4_7_2) 2013; 368 Li R (e_1_3_4_11_2) 2010; 463 Bremer K (e_1_3_4_23_2) 2004; 53 Lumaret R (e_1_3_4_2_2) 2001; 413 She R (e_1_3_4_45_2) 2009; 19 Van de Peer Y (e_1_3_4_17_2) 2017; 18 Vanneste K (e_1_3_4_16_2) 2014; 24 Birney E (e_1_3_4_46_2) 2004; 14 Stanke M (e_1_3_4_48_2) 2006; 34 Pugh T (e_1_3_4_38_2) 2004; 108 Benson G (e_1_3_4_43_2) 1999; 27 Bates PD (e_1_3_4_9_2) 2013; 16 Yi D-K (e_1_3_4_22_2) 2012; 7 Majoros WH (e_1_3_4_47_2) 2004; 20 Ibarra-Laclette E (e_1_3_4_18_2) 2013; 498 Fouet O (e_1_3_4_39_2) 2011; 7 Rueda A (e_1_3_4_10_2) 2014; 2014 de Candolle A (e_1_3_4_4_2) 1883 Remm M (e_1_3_4_25_2) 2001; 314 Sollars ES (e_1_3_4_14_2) 2017; 541 Wikström N (e_1_3_4_24_2) 2015; 10 Lacombe S (e_1_3_4_30_2) 2009; 281 Barghini E (e_1_3_4_13_2) 2014; 6 Wei WL (e_1_3_4_29_2) 2013; 55 Besnard G (e_1_3_4_28_2) 2009; 104 Harwood JL (e_1_3_4_26_2) 2013; 587 Vanneste K (e_1_3_4_15_2) 2013; 30 Rallo L (e_1_3_4_6_2) 2008; 43 Wang L (e_1_3_4_19_2) 2014; 15 Elsik CG (e_1_3_4_44_2) 2007; 8 Tarailo‐Graovac M (e_1_3_4_42_2) 2009; 25 Cruz F (e_1_3_4_12_2) 2016; 5 Magallón S (e_1_3_4_21_2) 2015; 207 Bell CD (e_1_3_4_20_2) 2010; 97 Krzywinski M (e_1_3_4_51_2) 2009; 19 Conde C (e_1_3_4_8_2) 2008; 165 Li L (e_1_3_4_49_2) 2003; 13 Sahu SK (e_1_3_4_32_2) 2012; 2012 Raman H (e_1_3_4_34_2) 2014; 9 Tang H (e_1_3_4_41_2) 2015; 16 Tripoli E (e_1_3_4_1_2) 2005; 18 Diez CM (e_1_3_4_5_2) 2015; 206 Elshire RJ (e_1_3_4_35_2) 2011; 6 Lakhssassi N (e_1_3_4_31_2) 2017; 174 Li H (e_1_3_4_40_2) 2010; 26 Kuang H (e_1_3_4_27_2) 2009; 19 Riley FR (e_1_3_4_3_2) 2002; 21 Li R (e_1_3_4_33_2) 2010; 20 Voorrips RE (e_1_3_4_36_2) 2002; 93 Soderlund C (e_1_3_4_50_2) 2011; 39 |
References_xml | – volume: 207 start-page: 437 year: 2015 ident: e_1_3_4_21_2 article-title: A metacalibrated time-tree documents the early rise of flowering plant phylogenetic diversity publication-title: New Phytol doi: 10.1111/nph.13264 contributor: fullname: Magallón S – volume: 5 start-page: 29 year: 2016 ident: e_1_3_4_12_2 article-title: Genome sequence of the olive tree, Olea europaea publication-title: Gigascience doi: 10.1186/s13742-016-0134-5 contributor: fullname: Cruz F – volume: 413 start-page: 700 year: 2001 ident: e_1_3_4_2_2 article-title: Plant genetics. Ancient wild olives in Mediterranean forests publication-title: Nature doi: 10.1038/35099680 contributor: fullname: Lumaret R – volume: 541 start-page: 212 year: 2017 ident: e_1_3_4_14_2 article-title: Genome sequence and genetic diversity of European ash trees publication-title: Nature doi: 10.1038/nature20786 contributor: fullname: Sollars ES – volume: 108 start-page: 1151 year: 2004 ident: e_1_3_4_38_2 article-title: A new cacao linkage map based on codominant markers: Development and integration of 201 new microsatellite markers publication-title: Theor Appl Genet doi: 10.1007/s00122-003-1533-4 contributor: fullname: Pugh T – volume: 24 start-page: 1334 year: 2014 ident: e_1_3_4_16_2 article-title: Analysis of 41 plant genomes supports a wave of successful genome duplications in association with the Cretaceous-Paleogene boundary publication-title: Genome Res doi: 10.1101/gr.168997.113 contributor: fullname: Vanneste K – volume: 34 start-page: W435 year: 2006 ident: e_1_3_4_48_2 article-title: AUGUSTUS: Ab initio prediction of alternative transcripts publication-title: Nucleic Acids Res doi: 10.1093/nar/gkl200 contributor: fullname: Stanke M – volume-title: Origine des Plantes Cultivées year: 1883 ident: e_1_3_4_4_2 contributor: fullname: de Candolle A – volume: 18 start-page: 411 year: 2017 ident: e_1_3_4_17_2 article-title: The evolutionary significance of polyploidy publication-title: Nat Rev Genet doi: 10.1038/nrg.2017.26 contributor: fullname: Van de Peer Y – volume: 18 start-page: 98 year: 2005 ident: e_1_3_4_1_2 article-title: The phenolic compounds of olive oil: Structure, biological activity and beneficial effects on human health publication-title: Nutr Res Rev doi: 10.1079/NRR200495 contributor: fullname: Tripoli E – volume: 281 start-page: 43 year: 2009 ident: e_1_3_4_30_2 article-title: An insertion of oleate desaturase homologous sequence silences via siRNA the functional gene leading to high oleic acid content in sunflower seed oil publication-title: Mol Genet Genomics doi: 10.1007/s00438-008-0391-9 contributor: fullname: Lacombe S – volume: 498 start-page: 94 year: 2013 ident: e_1_3_4_18_2 article-title: Architecture and evolution of a minute plant genome publication-title: Nature doi: 10.1038/nature12132 contributor: fullname: Ibarra-Laclette E – volume: 16 start-page: 3 year: 2015 ident: e_1_3_4_41_2 article-title: ALLMAPS: Robust scaffold ordering based on multiple maps publication-title: Genome Biol doi: 10.1186/s13059-014-0573-1 contributor: fullname: Tang H – volume: 26 start-page: 589 year: 2010 ident: e_1_3_4_40_2 article-title: Fast and accurate long-read alignment with Burrows-Wheeler transform publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp698 contributor: fullname: Li H – volume: 587 start-page: 2079 year: 2013 ident: e_1_3_4_26_2 article-title: Regulation of lipid synthesis in oil crops publication-title: FEBS Lett doi: 10.1016/j.febslet.2013.05.018 contributor: fullname: Harwood JL – volume: 8 start-page: R13 year: 2007 ident: e_1_3_4_44_2 article-title: Creating a honey bee consensus gene set publication-title: Genome Biol doi: 10.1186/gb-2007-8-1-r13 contributor: fullname: Elsik CG – volume: 174 start-page: 1531 year: 2017 ident: e_1_3_4_31_2 article-title: Stearoyl-acyl carrier protein desaturase mutations uncover an impact of stearic acid in leaf and nodule structure publication-title: Plant Physiol doi: 10.1104/pp.16.01929 contributor: fullname: Lakhssassi N – volume: 39 start-page: e68 year: 2011 ident: e_1_3_4_50_2 article-title: SyMAP v3.4: A turnkey synteny system with application to plant genomes publication-title: Nucleic Acids Res doi: 10.1093/nar/gkr123 contributor: fullname: Soderlund C – volume: 53 start-page: 496 year: 2004 ident: e_1_3_4_23_2 article-title: Molecular phylogenetic dating of asterid flowering plants shows early Cretaceous diversification publication-title: Syst Biol doi: 10.1080/10635150490445913 contributor: fullname: Bremer K – volume: 104 start-page: 143 year: 2009 ident: e_1_3_4_28_2 article-title: Phylogenetics of Olea (Oleaceae) based on plastid and nuclear ribosomal DNA sequences: tertiary climatic shifts and lineage differentiation times publication-title: Ann Bot (Lond) doi: 10.1093/aob/mcp105 contributor: fullname: Besnard G – volume: 20 start-page: 265 year: 2010 ident: e_1_3_4_33_2 article-title: De novo assembly of human genomes with massively parallel short read sequencing publication-title: Genome Res doi: 10.1101/gr.097261.109 contributor: fullname: Li R – volume: 20 start-page: 2878 year: 2004 ident: e_1_3_4_47_2 article-title: TigrScan and GlimmerHMM: Two open source ab initio eukaryotic gene-finders publication-title: Bioinformatics doi: 10.1093/bioinformatics/bth315 contributor: fullname: Majoros WH – volume: 463 start-page: 311 year: 2010 ident: e_1_3_4_11_2 article-title: The sequence and de novo assembly of the giant panda genome publication-title: Nature doi: 10.1038/nature08696 contributor: fullname: Li R – volume: 9 start-page: e101673 year: 2014 ident: e_1_3_4_34_2 article-title: Genome-wide delineation of natural variation for pod shatter resistance in Brassica napus publication-title: PLoS One doi: 10.1371/journal.pone.0101673 contributor: fullname: Raman H – volume: 2014 start-page: 843908 year: 2014 ident: e_1_3_4_10_2 article-title: Characterization of fatty acid profile of argan oil and other edible vegetable oils by gas chromatography and discriminant analysis publication-title: J Chem doi: 10.1155/2014/843908 contributor: fullname: Rueda A – volume: 30 start-page: 177 year: 2013 ident: e_1_3_4_15_2 article-title: Inference of genome duplications from age distributions revisited publication-title: Mol Biol Evol doi: 10.1093/molbev/mss214 contributor: fullname: Vanneste K – volume: 19 start-page: 42 year: 2009 ident: e_1_3_4_27_2 article-title: Identification of miniature inverted-repeat transposable elements (MITEs) and biogenesis of their siRNAs in the Solanaceae: New functional implications for MITEs publication-title: Genome Res doi: 10.1101/gr.078196.108 contributor: fullname: Kuang H – volume: 101 start-page: 948 year: 2000 ident: e_1_3_4_37_2 article-title: A high-density linkage map of Theobroma cacao L publication-title: Theor Appl Genet doi: 10.1007/s001220051566 contributor: fullname: Risterucci A – volume: 10 start-page: e0126690, and e year: 2015 ident: e_1_3_4_24_2 article-title: A revised time tree of the asterids: Establishing a temporal framework for evolutionary studies of the coffee family (Rubiaceae) publication-title: PLoS One doi: 10.1371/journal.pone.0126690 contributor: fullname: Wikström N – volume: 6 start-page: e19379 year: 2011 ident: e_1_3_4_35_2 article-title: A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species publication-title: PLoS One doi: 10.1371/journal.pone.0019379 contributor: fullname: Elshire RJ – volume: 368 start-page: 1279 year: 2013 ident: e_1_3_4_7_2 article-title: Primary prevention of cardiovascular disease with a Mediterranean diet publication-title: N Engl J Med doi: 10.1056/NEJMoa1200303 contributor: fullname: Estruch R – volume: 314 start-page: 1041 year: 2001 ident: e_1_3_4_25_2 article-title: Automatic clustering of orthologs and in-paralogs from pairwise species comparisons publication-title: J Mol Biol doi: 10.1006/jmbi.2000.5197 contributor: fullname: Remm M – volume: 16 start-page: 358 year: 2013 ident: e_1_3_4_9_2 article-title: Biochemical pathways in seed oil synthesis publication-title: Curr Opin Plant Biol doi: 10.1016/j.pbi.2013.02.015 contributor: fullname: Bates PD – volume: 43 start-page: 529 year: 2008 ident: e_1_3_4_6_2 article-title: ‘Chiquitita’olive publication-title: HortScience contributor: fullname: Rallo L – volume: 19 start-page: 143 year: 2009 ident: e_1_3_4_45_2 article-title: GenBlastA: Enabling BLAST to identify homologous gene sequences publication-title: Genome Res doi: 10.1101/gr.082081.108 contributor: fullname: She R – volume: 97 start-page: 1296 year: 2010 ident: e_1_3_4_20_2 article-title: The age and diversification of the angiosperms re-revisited publication-title: Am J Bot doi: 10.3732/ajb.0900346 contributor: fullname: Bell CD – volume: 7 start-page: 799 year: 2011 ident: e_1_3_4_39_2 article-title: Structural characterization and mapping of functional EST-SSR markers in Theobroma cacao publication-title: Tree Genet Genomes doi: 10.1007/s11295-011-0375-5 contributor: fullname: Fouet O – volume: 206 start-page: 436 year: 2015 ident: e_1_3_4_5_2 article-title: Olive domestication and diversification in the Mediterranean Basin publication-title: New Phytol doi: 10.1111/nph.13181 contributor: fullname: Diez CM – volume: 27 start-page: 573 year: 1999 ident: e_1_3_4_43_2 article-title: Tandem repeats finder: A program to analyze DNA sequences publication-title: Nucleic Acids Res doi: 10.1093/nar/27.2.573 contributor: fullname: Benson G – volume: 21 start-page: 63 year: 2002 ident: e_1_3_4_3_2 article-title: Olive oil production on bronze age Crete: nutritional properties, processing methods and storage life of Minoan olive oil publication-title: Oxf J Archaeol doi: 10.1111/1468-0092.00149 contributor: fullname: Riley FR – volume: 15 start-page: R39 year: 2014 ident: e_1_3_4_19_2 article-title: Genome sequencing of the high oil crop sesame provides insight into oil biosynthesis publication-title: Genome Biol doi: 10.1186/gb-2014-15-2-r39 contributor: fullname: Wang L – volume: 165 start-page: 1545 year: 2008 ident: e_1_3_4_8_2 article-title: Physiological, biochemical and molecular changes occurring during olive development and ripening publication-title: J Plant Physiol doi: 10.1016/j.jplph.2008.04.018 contributor: fullname: Conde C – volume: 6 start-page: 776 year: 2014 ident: e_1_3_4_13_2 article-title: The peculiar landscape of repetitive sequences in the olive (Olea europaea L.) genome publication-title: Genome Biol Evol doi: 10.1093/gbe/evu058 contributor: fullname: Barghini E – volume: 14 start-page: 988 year: 2004 ident: e_1_3_4_46_2 article-title: GeneWise and Genomewise publication-title: Genome Res doi: 10.1101/gr.1865504 contributor: fullname: Birney E – volume: 55 start-page: 745 year: 2013 ident: e_1_3_4_29_2 article-title: Association analysis for quality traits in a diverse panel of Chinese sesame (Sesamum indicum L.) germplasm publication-title: J Integr Plant Biol doi: 10.1111/jipb.12049 contributor: fullname: Wei WL – volume: 2012 start-page: 205049 year: 2012 ident: e_1_3_4_32_2 article-title: DNA extraction protocol for plants with high levels of secondary metabolites and polysaccharides without using liquid nitrogen and phenol publication-title: ISRN Mol Biol contributor: fullname: Sahu SK – volume: 7 start-page: e35872 year: 2012 ident: e_1_3_4_22_2 article-title: Complete chloroplast genome sequences of important oilseed crop Sesamum indicum L publication-title: PLoS ONE doi: 10.1371/journal.pone.0035872 contributor: fullname: Yi D-K – volume: 19 start-page: 1639 year: 2009 ident: e_1_3_4_51_2 article-title: Circos: An information aesthetic for comparative genomics publication-title: Genome Res doi: 10.1101/gr.092759.109 contributor: fullname: Krzywinski M – volume: 13 start-page: 2178 year: 2003 ident: e_1_3_4_49_2 article-title: OrthoMCL: Identification of ortholog groups for eukaryotic genomes publication-title: Genome Res doi: 10.1101/gr.1224503 contributor: fullname: Li L – volume: 93 start-page: 77 year: 2002 ident: e_1_3_4_36_2 article-title: MapChart: Software for the graphical presentation of linkage maps and QTLs publication-title: J Hered doi: 10.1093/jhered/93.1.77 contributor: fullname: Voorrips RE – volume: 25 start-page: 4.10.1 year: 2009 ident: e_1_3_4_42_2 article-title: Using RepeatMasker to identify repetitive elements in genomic sequences publication-title: Curr Protoc Bioinformatics doi: 10.1002/0471250953.bi0410s25 contributor: fullname: Tarailo‐Graovac M |
SSID | ssj0009580 |
Score | 2.6565864 |
Snippet | Here we present the genome sequence and annotation of the wild olive tree (Olea europaea var. sylvestris), called oleaster, which is considered an ancestor of... Here we present the genome sequence and annotation of the wild olive tree ( var. ), called oleaster, which is considered an ancestor of cultivated olive trees.... We sequenced the genome and transcriptomes of the wild olive (oleaster). More than 50,000 genes were predicted, and evidence was found for two relatively... |
SourceID | pubmedcentral proquest crossref pubmed jstor |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | E9413 |
SubjectTerms | Accumulation Annotations Biological Evolution Biological Sciences Biosynthesis Biosynthetic Pathways - genetics Crops Desaturation Divergence Evolution FAD2 gene Fatty Acid Desaturases - genetics Fatty acids Fruit trees Gene duplication Gene expression Gene Expression - genetics Gene families Genes Genome, Plant - genetics Genomics Linoleic Acids - genetics Nucleotide sequence Oils - metabolism Olea - genetics Olea - metabolism Olea europaea sylvestris Oleic acid Oleic Acid - genetics Olive oil Olives PNAS Plus Reproduction (copying) RNA, Small Interfering - genetics siRNA Transposons Trees |
SummonAdditionalLinks | – databaseName: AUTh Library subscriptions: JSTOR Health & General Sciences dbid: JSG link: http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB6xnLi0UKBNS5GRqEQPKdvY8aO3iqc49AKVeosce6yutE1QwyLx7xk7ycJWrdRbpBlblmfG8yUz_gJwiCpgrWyRI7225cKWJjdOT3MR_UUqZ7yP3zsur9W3H_r0LNLkfBjvwsS2ytQXmKr4BJDqOR7HLiytjZzARKfou7q-eMasq_t7JgUdt6IQI3-P4se3je0-fVYRtVNIi5XU03cf_g1X_tke-SzfnL_8z5VuwosBULKvvQdswRo2r2BrCNmOHQ280h-34Qs9tr-QtYERQPasndNJx2zjGYFAhveDE0Z5O5uzetZ2Dw2Julm3A9_Pz25OLvPh1wm5IwRwlyMBp1oYDKKWnhCUl46QjfShtliqqVNeioAEzhx30pQYSI0r760PpXKl5buw3rQNvgEmtHQmoHQxdM20tlyR2dEox2XQrs7gaNzV6rZnyKhSZVvxKhqgejJABrtpx5Z643ZlsDeaoRpiiMYZLXnCTxkcLMXk_bGkYRtsF1GnVLRArWnu173VniY3sUTJiwzUij2XCpFZe1XSzH4mhu0yNv5O9dt_rfcdbBQxvacctgfrd78X-B4mnV_sJ-d8BIPF4lE priority: 102 providerName: JSTOR |
Title | Genome of wild olive and the evolution of oil biosynthesis |
URI | https://www.jstor.org/stable/26488896 https://www.ncbi.nlm.nih.gov/pubmed/29078332 https://www.proquest.com/docview/1986339937 https://www.proquest.com/docview/1957486884 https://pubmed.ncbi.nlm.nih.gov/PMC5676908 |
Volume | 114 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB66OfVSmqRpnSaLAj0kB-9uLVuP3sImYUNpKaSB3IysBzXsykudLfTfdyTbm27pKTfDjISYGWk-WZ9GAB8sd7biKkstbtvSXBUylVrM0jzEC-NaGhP-dyzu-NcHcXUdyuQUw12YSNrXVT3xy9XE1z8it3K90tOBJzb99mVeBF7mTExHMEJsOGzRt5V2RXfvJMPlN8_yoZ4Pp9O1V-3kIw8oHqd4eJInk-EYi2Y7WakjJv4Pcv7LnPwrFd28hlc9hiSX3Vj34YX1B7Dfz9KWnPelpC8O4RN-NitLGkcQExvSLHFxI8obgriP2F993AV5Uy9JVTftb4-itm7fwP3N9ff5Iu1fS0g1Jv3H1CJWqnJpXV4xg6DJMI1ghhlXKVvwmeaG5c4iHtNUM1lYh2qUG6OMK7guFD2CPd94-w5ILpiWzjIdZqucVYpy9LSVXFPmhK4SOB-sVa67ohhlPMzmtAw2Lp9snMBRtOZWLzDqhJAsgZPBvGU_bbCdFIxGyJTA2VaMAR9OMZS3zSboFBwHKAT2_bbzxlPnvTsT4Dt-2iqEYtq7EoyxWFS7j6njZ7d8Dy-zkPJjXjuBvcefG3sKo9ZsxgjVbz-PI910HN-0GMeQ_QPov-2l |
link.rule.ids | 230,315,729,782,786,808,811,887,27933,27934,53800,53802,58025,58037,58258,58270 |
linkProvider | National Library of Medicine |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT9VAEJ8AHvAiIIIVlDWRBA-F2t3uhzejkGdELmDirdnuzoaXPFtieSb-98z248EzmnhrMrObzc7Mzq-d2V8B3qAKWCmbp0ivbamwhUmN01kqor9I5Yz38XvH5FJdfNefTiNNzuF4Fya2VXZ9gV0VnwBSNcOT2IWltZGr8KjQGVd9594Dbl3d3zTJ6cAVuRgZfBQ_ualte_xORdxOQS2Wkk_ff_g3ZPlng-SDjHO28Z9r3YQnA6RkH3of2IIVrJ_C1hC0LTsamKXfbsN7emx-IGsCI4jsWTOjs47Z2jOCgQx_DW4Y5c10xqpp0_6uSdRO22fw7ez06uMkHX6ekDrCALcpEnSqhMEgKukJQ3npCNtIHyqLhcqc8lIEJHjmuJOmwEBqXHlvfSiUKyzfgbW6qfE5MKGlMwGli8FrsspyRYZHoxyXQbsqgaNxV8ubniOj7GrbipfRAOW9ARLY6XZsoTduVwL7oxnKIYponNGSdwgqgdcLMfl_LGrYGpt51CkULVBrmnu3t9r95CYWKXmegFqy50IhcmsvS-rpdcexXcTW30y_-Nd6D2B9cvX1vDz_fPFlDx7nMdl3GW0f1m5_zvElrLZ-_qpz1DusauW0 |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dTxQxEJ8IJsYXBBVZAa2JD_Cw3rnt9oM3AlwwGmKiJr5tuu00XnLuXliOhP-e6X4cnJEH3jaZ2abpzHR-uzP9FeAjqoClslmK9NmWCpub1Dg9TkX0F6mc8T7-7zj_oS5-69OzSJNzOJyFiW2VbV9gW8UngFTOcDT3YRQ7sbQ2cg2e5vRVo7vLAe7x6-rutElGm67IxMDio_hoXtnm02cVsTsFtlhJQF0P4v_Q5b9NkveyzuTFI-a7CRs9tGTHnS9swROsXsJWH7wNO-gZpg9fwRE91n-R1YERVPasntGex2zlGcFBhte9O0Z5PZ2xclo3NxWJmmnzGn5Nzn6enKf9JQqpIyxwlSJBqFIYDKKUnrCUl44wjvShtJirsVNeioAE0xx30uQYSI0r760PuXK55duwXtUV7gATWjoTULoYxGZcWq7IAdAox2XQrkzgYFjZYt5xZRRtjVvxIhqhuDNCAtvtqi31huVKYG8wRdFHE71ntOQtkkrgw1JMcRCLG7bCehF1ckUT1JrGftNZ7m5wE4uVPEtArdh0qRA5tlcl1fRPy7WdxxbgsX770Hzfw7Pvp5Pi25eLr7vwPIs5v01se7B-dbnAfVhr_OJd66u3FjfoLQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Genome+of+wild+olive+and+the+evolution+of+oil+biosynthesis&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Unver%2C+Turgay&rft.au=Wu%2C+Zhangyan&rft.au=Sterck%2C+Lieven&rft.au=Turktas%2C+Mine&rft.date=2017-10-31&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=114&rft.issue=44&rft.spage=E9413&rft.epage=E9422&rft_id=info:doi/10.1073%2Fpnas.1708621114&rft.externalDocID=26488896 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon |