Genome of wild olive and the evolution of oil biosynthesis

Here we present the genome sequence and annotation of the wild olive tree (Olea europaea var. sylvestris), called oleaster, which is considered an ancestor of cultivated olive trees. More than 50,000 protein-coding genes were predicted, a majority of which could be anchored to 23 pseudochromosomes o...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS Vol. 114; no. 44; pp. E9413 - E9422
Main Authors: Unver, Turgay, Wu, Zhangyan, Sterck, Lieven, Turktas, Mine, Lohaus, Rolf, Li, Zhen, Yang, Ming, He, Lijuan, Deng, Tianquan, Escalante, Francisco Javier, Llorens, Carlos, Roig, Francisco J., Parmaksiz, Iskender, Dundar, Ekrem, Xie, Fuliang, Zhang, Baohong, Ipek, Arif, Uranbey, Serkan, Erayman, Mustafa, Ilhan, Emre, Badad, Oussama, Ghazal, Hassan, Lightfoot, David A., Kasarla, Pavan, Colantonio, Vincent, Tombuloglu, Huseyin, Hernandez, Pilar, Mete, Nurengin, Cetin, Oznur, Van Montagu, Marc, Yang, Huanming, Gao, Qiang, Dorado, Gabriel, Van de Peer, Yves
Format: Journal Article
Language:English
Published: United States National Academy of Sciences 31-10-2017
Series:PNAS Plus
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Here we present the genome sequence and annotation of the wild olive tree (Olea europaea var. sylvestris), called oleaster, which is considered an ancestor of cultivated olive trees. More than 50,000 protein-coding genes were predicted, a majority of which could be anchored to 23 pseudochromosomes obtained through a newly constructed genetic map. The oleaster genome contains signatures of two Oleaceae lineage-specific paleopolyploidy events, dated at ∼28 and ∼59 Mya. These events contributed to the expansion and neofunctionalization of genes and gene families that play important roles in oil biosynthesis. The functional divergence of oil biosynthesis pathway genes, such as FAD2, SACPD, EAR, and ACPTE, following duplication, has been responsible for the differential accumulation of oleic and linoleic acids produced in olive compared with sesame, a closely related oil crop. Duplicated oleaster FAD2 genes are regulated by an siRNA derived from a transposable element-rich region, leading to suppressed levels of FAD2 gene expression. Additionally, neofunctionalization of members of the SACPD gene family has led to increased expression of SACPD2, 3, 5, and 7, consequently resulting in an increased desaturation of steric acid. Taken together, decreased FAD2 expression and increased SACPD expression likely explain the accumulation of exceptionally high levels of oleic acid in olive. The oleaster genome thus provides important insights into the evolution of oil biosynthesis and will be a valuable resource for oil crop genomics.
AbstractList Here we present the genome sequence and annotation of the wild olive tree (Olea europaea var. sylvestris), called oleaster, which is considered an ancestor of cultivated olive trees. More than 50,000 protein-coding genes were predicted, a majority of which could be anchored to 23 pseudochromosomes obtained through a newly constructed genetic map. The oleaster genome contains signatures of two Oleaceae lineage-specific paleopolyploidy events, dated at ∼28 and ∼59 Mya. These events contributed to the expansion and neofunctionalization of genes and gene families that play important roles in oil biosynthesis. The functional divergence of oil biosynthesis pathway genes, such as FAD2, SACPD, EAR, and ACPTE, following duplication, has been responsible for the differential accumulation of oleic and linoleic acids produced in olive compared with sesame, a closely related oil crop. Duplicated oleaster FAD2 genes are regulated by an siRNA derived from a transposable element-rich region, leading to suppressed levels of FAD2 gene expression. Additionally, neofunctionalization of members of the SACPD gene family has led to increased expression of SACPD2, 3, 5, and 7, consequently resulting in an increased desaturation of steric acid. Taken together, decreased FAD2 expression and increased SACPD expression likely explain the accumulation of exceptionally high levels of oleic acid in olive. The oleaster genome thus provides important insights into the evolution of oil biosynthesis and will be a valuable resource for oil crop genomics.Here we present the genome sequence and annotation of the wild olive tree (Olea europaea var. sylvestris), called oleaster, which is considered an ancestor of cultivated olive trees. More than 50,000 protein-coding genes were predicted, a majority of which could be anchored to 23 pseudochromosomes obtained through a newly constructed genetic map. The oleaster genome contains signatures of two Oleaceae lineage-specific paleopolyploidy events, dated at ∼28 and ∼59 Mya. These events contributed to the expansion and neofunctionalization of genes and gene families that play important roles in oil biosynthesis. The functional divergence of oil biosynthesis pathway genes, such as FAD2, SACPD, EAR, and ACPTE, following duplication, has been responsible for the differential accumulation of oleic and linoleic acids produced in olive compared with sesame, a closely related oil crop. Duplicated oleaster FAD2 genes are regulated by an siRNA derived from a transposable element-rich region, leading to suppressed levels of FAD2 gene expression. Additionally, neofunctionalization of members of the SACPD gene family has led to increased expression of SACPD2, 3, 5, and 7, consequently resulting in an increased desaturation of steric acid. Taken together, decreased FAD2 expression and increased SACPD expression likely explain the accumulation of exceptionally high levels of oleic acid in olive. The oleaster genome thus provides important insights into the evolution of oil biosynthesis and will be a valuable resource for oil crop genomics.
We sequenced the genome and transcriptomes of the wild olive (oleaster). More than 50,000 genes were predicted, and evidence was found for two relatively recent whole-genome duplication events, dated at approximately 28 and 59 Mya. Whole-genome sequencing, as well as gene expression studies, provide further insights into the evolution of oil biosynthesis, and will aid future studies aimed at further increasing the production of olive oil, which is a key ingredient of the healthy Mediterranean diet and has been granted a qualified health claim by the US Food and Drug Administration. Here we present the genome sequence and annotation of the wild olive tree ( Olea europaea var. sylvestris ), called oleaster, which is considered an ancestor of cultivated olive trees. More than 50,000 protein-coding genes were predicted, a majority of which could be anchored to 23 pseudochromosomes obtained through a newly constructed genetic map. The oleaster genome contains signatures of two Oleaceae lineage-specific paleopolyploidy events, dated at ∼28 and ∼59 Mya. These events contributed to the expansion and neofunctionalization of genes and gene families that play important roles in oil biosynthesis. The functional divergence of oil biosynthesis pathway genes, such as FAD2 , SACPD, EAR , and ACPTE , following duplication, has been responsible for the differential accumulation of oleic and linoleic acids produced in olive compared with sesame, a closely related oil crop. Duplicated oleaster FAD2 genes are regulated by an siRNA derived from a transposable element-rich region, leading to suppressed levels of FAD2 gene expression. Additionally, neofunctionalization of members of the SACPD gene family has led to increased expression of SACPD2 , 3 , 5 , and 7 , consequently resulting in an increased desaturation of steric acid. Taken together, decreased FAD2 expression and increased SACPD expression likely explain the accumulation of exceptionally high levels of oleic acid in olive. The oleaster genome thus provides important insights into the evolution of oil biosynthesis and will be a valuable resource for oil crop genomics.
Here we present the genome sequence and annotation of the wild olive tree (Olea europaea var. sylvestris), called oleaster, which is considered an ancestor of cultivated olive trees. More than 50,000 protein-coding genes were predicted, a majority of which could be anchored to 23 pseudochromosomes obtained through a newly constructed genetic map. The oleaster genome contains signatures of two Oleaceae lineage-specific paleopolyploidy events, dated at 28 and 59 Mya. These events contributed to the expansion and neofunctionalization of genes and gene families that play important roles in oil biosynthesis. The functional divergence of oil biosynthesis pathway genes, such as FAD2, SACPD, EAR, and ACPTE, following duplication, has been responsible for the differential accumulation aof oleic and linoleic acids produced in olive compared with sesame, a closely related oil crop. Duplicated oleaster FAD2 genes are regulated by an siRNA derived from a transposable element-rich region, leading to suppressed levels of FAD2 gene expression. Additionally, neofunctionalization of members of the SACPD gene family has led to increased expression of SACPD2, 3, 5, and 7, consequently resulting in an increased desaturation of steric acid. Taken together, decreased FAD2 expression and increased SACPD expression likely explain the accumulation of exceptionally high levels of oleic acid in olive. The oleaster genome thus provides important insights into the evolution of oil biosynthesis and will be a valuable resource for oil crop genomics.
Here we present the genome sequence and annotation of the wild olive tree (Olea europaea var. sylvestris), called oleaster, which is considered an ancestor of cultivated olive trees. More than 50,000 protein-coding genes were predicted, a majority of which could be anchored to 23 pseudochromosomes obtained through a newly constructed genetic map. The oleaster genome contains signatures of two Oleaceae lineage-specific paleopolyploidy events, dated at ∼28 and ∼59 Mya. These events contributed to the expansion and neofunctionalization of genes and gene families that play important roles in oil biosynthesis. The functional divergence of oil biosynthesis pathway genes, such as FAD2, SACPD, EAR, and ACPTE, following duplication, has been responsible for the differential accumulation of oleic and linoleic acids produced in olive compared with sesame, a closely related oil crop. Duplicated oleaster FAD2 genes are regulated by an siRNA derived from a transposable element-rich region, leading to suppressed levels of FAD2 gene expression. Additionally, neofunctionalization of members of the SACPD gene family has led to increased expression of SACPD2, 3, 5, and 7, consequently resulting in an increased desaturation of steric acid. Taken together, decreased FAD2 expression and increased SACPD expression likely explain the accumulation of exceptionally high levels of oleic acid in olive. The oleaster genome thus provides important insights into the evolution of oil biosynthesis and will be a valuable resource for oil crop genomics.
Here we present the genome sequence and annotation of the wild olive tree ( var. ), called oleaster, which is considered an ancestor of cultivated olive trees. More than 50,000 protein-coding genes were predicted, a majority of which could be anchored to 23 pseudochromosomes obtained through a newly constructed genetic map. The oleaster genome contains signatures of two Oleaceae lineage-specific paleopolyploidy events, dated at ∼28 and ∼59 Mya. These events contributed to the expansion and neofunctionalization of genes and gene families that play important roles in oil biosynthesis. The functional divergence of oil biosynthesis pathway genes, such as , , and , following duplication, has been responsible for the differential accumulation of oleic and linoleic acids produced in olive compared with sesame, a closely related oil crop. Duplicated oleaster genes are regulated by an siRNA derived from a transposable element-rich region, leading to suppressed levels of gene expression. Additionally, neofunctionalization of members of the gene family has led to increased expression of , , , and , consequently resulting in an increased desaturation of steric acid. Taken together, decreased expression and increased expression likely explain the accumulation of exceptionally high levels of oleic acid in olive. The oleaster genome thus provides important insights into the evolution of oil biosynthesis and will be a valuable resource for oil crop genomics.
Author Li, Zhen
Wu, Zhangyan
Turktas, Mine
Kasarla, Pavan
Van de Peer, Yves
Van Montagu, Marc
Parmaksiz, Iskender
Llorens, Carlos
Sterck, Lieven
Ilhan, Emre
Deng, Tianquan
Dundar, Ekrem
Zhang, Baohong
Gao, Qiang
Yang, Ming
Ghazal, Hassan
Yang, Huanming
Uranbey, Serkan
Colantonio, Vincent
Dorado, Gabriel
Lightfoot, David A.
Ipek, Arif
Badad, Oussama
Unver, Turgay
Escalante, Francisco Javier
Cetin, Oznur
He, Lijuan
Tombuloglu, Huseyin
Xie, Fuliang
Lohaus, Rolf
Roig, Francisco J.
Erayman, Mustafa
Mete, Nurengin
Hernandez, Pilar
Author_xml – sequence: 1
  givenname: Turgay
  surname: Unver
  fullname: Unver, Turgay
  organization: İzmir International Biomedicine and Genome Institute, Dokuz Eylül University, 35340 İzmir, Turkey
– sequence: 2
  givenname: Zhangyan
  surname: Wu
  fullname: Wu, Zhangyan
  organization: BGI Shenzhen, 518038 Shenzhen, China
– sequence: 3
  givenname: Lieven
  surname: Sterck
  fullname: Sterck, Lieven
  organization: Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
– sequence: 4
  givenname: Mine
  surname: Turktas
  fullname: Turktas, Mine
  organization: Department of Biology, Faculty of Science, Cankiri Karatekin University, 18100 Cankiri, Turkey
– sequence: 5
  givenname: Rolf
  surname: Lohaus
  fullname: Lohaus, Rolf
  organization: Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
– sequence: 6
  givenname: Zhen
  surname: Li
  fullname: Li, Zhen
  organization: Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
– sequence: 7
  givenname: Ming
  surname: Yang
  fullname: Yang, Ming
  organization: BGI Shenzhen, 518038 Shenzhen, China
– sequence: 8
  givenname: Lijuan
  surname: He
  fullname: He, Lijuan
  organization: BGI Shenzhen, 518038 Shenzhen, China
– sequence: 9
  givenname: Tianquan
  surname: Deng
  fullname: Deng, Tianquan
  organization: BGI Shenzhen, 518038 Shenzhen, China
– sequence: 10
  givenname: Francisco Javier
  surname: Escalante
  fullname: Escalante, Francisco Javier
  organization: Plataforma de Genómica y Bioinformática de Andalucía, 41013 Sevilla, Spain
– sequence: 11
  givenname: Carlos
  surname: Llorens
  fullname: Llorens, Carlos
  organization: Biotechvana, 46980 Paterna (Valencia), Spain
– sequence: 12
  givenname: Francisco J.
  surname: Roig
  fullname: Roig, Francisco J.
  organization: Biotechvana, 46980 Paterna (Valencia), Spain
– sequence: 13
  givenname: Iskender
  surname: Parmaksiz
  fullname: Parmaksiz, Iskender
  organization: Department of Molecular Biology and Genetics, Faculty of Science, Gaziosmanpasa University, 60250 Tokat, Turkey
– sequence: 14
  givenname: Ekrem
  surname: Dundar
  fullname: Dundar, Ekrem
  organization: Department of Molecular Biology and Genetics, Faculty of Science, Balikesir University, 10145 Balikesir, Turkey
– sequence: 15
  givenname: Fuliang
  surname: Xie
  fullname: Xie, Fuliang
  organization: Department of Biology, East Carolina University, Greenville, NC 27858
– sequence: 16
  givenname: Baohong
  surname: Zhang
  fullname: Zhang, Baohong
  organization: Department of Biology, East Carolina University, Greenville, NC 27858
– sequence: 17
  givenname: Arif
  surname: Ipek
  fullname: Ipek, Arif
  organization: Department of Biology, Faculty of Science, Cankiri Karatekin University, 18100 Cankiri, Turkey
– sequence: 18
  givenname: Serkan
  surname: Uranbey
  fullname: Uranbey, Serkan
  organization: Department of Field Crops, Faculty of Agriculture, Ankara University, 06120 Ankara, Turkey
– sequence: 19
  givenname: Mustafa
  surname: Erayman
  fullname: Erayman, Mustafa
  organization: Department of Biology, Faculty of Arts and Science, Mustafa Kemal University, 31060 Hatay, Turkey
– sequence: 20
  givenname: Emre
  surname: Ilhan
  fullname: Ilhan, Emre
  organization: Department of Biology, Faculty of Arts and Science, Mustafa Kemal University, 31060 Hatay, Turkey
– sequence: 21
  givenname: Oussama
  surname: Badad
  fullname: Badad, Oussama
  organization: Laboratory of Plant Physiology, University Mohamed V, 10102 Rabat, Morocco
– sequence: 22
  givenname: Hassan
  surname: Ghazal
  fullname: Ghazal, Hassan
  organization: Polydisciplinary Faculty of Nador, University Mohamed Premier, 62700 Nador, Morocco
– sequence: 23
  givenname: David A.
  surname: Lightfoot
  fullname: Lightfoot, David A.
  organization: Department of Plant, Soil and Agricultural Systems, Southern Illinois University, Carbondale, IL 62901
– sequence: 24
  givenname: Pavan
  surname: Kasarla
  fullname: Kasarla, Pavan
  organization: Department of Plant, Soil and Agricultural Systems, Southern Illinois University, Carbondale, IL 62901
– sequence: 25
  givenname: Vincent
  surname: Colantonio
  fullname: Colantonio, Vincent
  organization: Department of Plant, Soil and Agricultural Systems, Southern Illinois University, Carbondale, IL 62901
– sequence: 26
  givenname: Huseyin
  surname: Tombuloglu
  fullname: Tombuloglu, Huseyin
  organization: Institute for Research and Medical Consultation, University of Dammam, 34212 Dammam, Saudi Arabia
– sequence: 27
  givenname: Pilar
  surname: Hernandez
  fullname: Hernandez, Pilar
  organization: Instituto de Agricultura Sostenible, Consejo Superior de Investigaciones Científicas, 14004 Córdoba, Spain
– sequence: 28
  givenname: Nurengin
  surname: Mete
  fullname: Mete, Nurengin
  organization: Olive Research Institute of Bornova, 35100 Izmir, Turkey
– sequence: 29
  givenname: Oznur
  surname: Cetin
  fullname: Cetin, Oznur
  organization: Olive Research Institute of Bornova, 35100 Izmir, Turkey
– sequence: 30
  givenname: Marc
  surname: Van Montagu
  fullname: Van Montagu, Marc
  organization: Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
– sequence: 31
  givenname: Huanming
  surname: Yang
  fullname: Yang, Huanming
  organization: BGI Shenzhen, 518038 Shenzhen, China
– sequence: 32
  givenname: Qiang
  surname: Gao
  fullname: Gao, Qiang
  organization: BGI Shenzhen, 518038 Shenzhen, China
– sequence: 33
  givenname: Gabriel
  surname: Dorado
  fullname: Dorado, Gabriel
  organization: Departamento Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario, Universidad de Córdoba, 14071 Córdoba, Spain
– sequence: 34
  givenname: Yves
  surname: Van de Peer
  fullname: Van de Peer, Yves
  organization: Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29078332$$D View this record in MEDLINE/PubMed
BookMark eNpdkT1vFDEQhi0URC6Bmgq0UhqaTcbrbwqkKIKAFIkmqS2vPUt82rOP9e6h_Ht8upAA1RTPM69m9J6Qo5QTEvKWwjkFxS62yZVzqkDLjlLKX5AVBUNbyQ0ckRVAp1rNO35MTkpZA4ARGl6R486A0ox1K_LxGlPeYJOH5lccQ5PHuMPGpdDM99jgLo_LHHPa8xzHpo-5PKSKSiyvycvBjQXfPM5Tcvfl8-3V1_bm-_W3q8ub1gswc4tG0J4bHHgvAwgTpJcAMgy9Q6HAqyD5gAK0Z14agUPVmArBhUEoLxw7JZ8Oudul32DwmObJjXY7xY2bHmx20f5LUry3P_LOCqmkAV0DPjwGTPnngmW2m1g8jqNLmJdiqRGKa6k1r-rZf-o6L1Oq71VLS8aMYapaFwfLT7mUCYenYyjYfS9234t97qVuvP_7hyf_TxFVeHcQ1mXO0zOXXGttJPsNhR-VvQ
CitedBy_id crossref_primary_10_1111_tpj_15272
crossref_primary_10_1186_s12915_018_0482_y
crossref_primary_10_1007_s00299_019_02415_z
crossref_primary_10_1038_s41538_022_00173_z
crossref_primary_10_3390_plants11141803
crossref_primary_10_1094_MPMI_08_19_0224_R
crossref_primary_10_1038_s42003_022_03646_9
crossref_primary_10_1021_acs_jafc_3c00059
crossref_primary_10_1038_s41467_020_16180_1
crossref_primary_10_3389_fpls_2018_01660
crossref_primary_10_3390_plants12010155
crossref_primary_10_3389_fpls_2023_1080946
crossref_primary_10_2174_1389202923666220428102632
crossref_primary_10_3389_fpls_2018_01932
crossref_primary_10_1093_gbe_evab094
crossref_primary_10_1186_s12864_020_6692_z
crossref_primary_10_1002_tpg2_20143
crossref_primary_10_3390_ijms21144819
crossref_primary_10_3390_ijms23010154
crossref_primary_10_1186_s12864_023_09673_y
crossref_primary_10_1038_s41597_024_03459_x
crossref_primary_10_1186_s12864_018_4874_8
crossref_primary_10_1093_dnares_dsad015
crossref_primary_10_3389_fpls_2022_879822
crossref_primary_10_1093_plphys_kiac572
crossref_primary_10_3389_fpls_2019_01760
crossref_primary_10_1016_j_tifs_2024_104615
crossref_primary_10_1186_s12864_023_09906_0
crossref_primary_10_3389_fpls_2023_1131557
crossref_primary_10_1093_dnares_dsac041
crossref_primary_10_1016_j_ocsci_2021_07_002
crossref_primary_10_3390_plants11101367
crossref_primary_10_1007_s11103_021_01220_1
crossref_primary_10_3390_plants10071405
crossref_primary_10_1002_tpg2_20010
crossref_primary_10_1016_j_molp_2018_06_001
crossref_primary_10_3389_fpls_2019_00427
crossref_primary_10_3389_fpls_2021_751959
crossref_primary_10_3390_agriculture14040579
crossref_primary_10_3390_genes11080916
crossref_primary_10_3390_genes12101474
crossref_primary_10_3390_plants10112374
crossref_primary_10_1186_s12870_019_1969_6
crossref_primary_10_3389_fgene_2023_1298565
crossref_primary_10_1007_s11033_020_05554_9
crossref_primary_10_3390_agronomy13061608
crossref_primary_10_3390_foods9040467
crossref_primary_10_1111_1755_0998_13104
crossref_primary_10_3390_ijms241914448
crossref_primary_10_1007_s13580_021_00366_7
crossref_primary_10_3389_fpls_2018_01320
crossref_primary_10_3389_fpls_2022_1078677
crossref_primary_10_1039_D1AN01476E
crossref_primary_10_1016_j_hpj_2023_03_006
crossref_primary_10_1016_j_scienta_2017_12_034
crossref_primary_10_1038_s41598_019_53169_3
crossref_primary_10_25308_aduziraat_427871
crossref_primary_10_3390_plants10091938
crossref_primary_10_3390_genes11050510
crossref_primary_10_1093_jxb_erac464
crossref_primary_10_1371_journal_pone_0223716
crossref_primary_10_7717_peerj_15724
crossref_primary_10_1038_s41598_019_55338_w
crossref_primary_10_1111_nph_16588
crossref_primary_10_3390_genes10080559
crossref_primary_10_1270_jsbbs_22082
crossref_primary_10_3390_genes12040545
crossref_primary_10_1016_j_celrep_2024_113909
crossref_primary_10_1016_j_jplph_2018_06_002
crossref_primary_10_1093_gigascience_giy068
crossref_primary_10_1093_treephys_tpae002
crossref_primary_10_3390_genes10120950
crossref_primary_10_1093_aob_mcx145
crossref_primary_10_3389_fpls_2019_00725
crossref_primary_10_1093_hr_uhac087
crossref_primary_10_3389_fmolb_2021_679292
crossref_primary_10_3390_genes11121508
crossref_primary_10_3390_plants11111415
crossref_primary_10_1021_acs_jafc_8b03399
crossref_primary_10_1080_23802359_2020_1860712
crossref_primary_10_1093_molbev_msaa160
crossref_primary_10_1002_tpg2_20430
crossref_primary_10_1016_j_plantsci_2021_111083
crossref_primary_10_1016_j_indcrop_2024_118413
crossref_primary_10_1016_j_xplc_2020_100079
crossref_primary_10_1093_pcp_pcaa063
crossref_primary_10_1038_s41438_020_00458_y
crossref_primary_10_1038_s41598_020_72895_7
crossref_primary_10_1073_pnas_2101767118
crossref_primary_10_1016_j_scienta_2023_112008
crossref_primary_10_7717_peerj_13813
crossref_primary_10_1111_tpj_15995
crossref_primary_10_1007_s10142_021_00824_6
crossref_primary_10_1016_j_cub_2024_03_047
crossref_primary_10_1016_j_csbj_2021_07_006
crossref_primary_10_3390_ijms19123932
crossref_primary_10_3390_agronomy12102447
crossref_primary_10_3390_plants10112514
crossref_primary_10_1038_s42003_023_05748_4
crossref_primary_10_3390_plants12142591
crossref_primary_10_3389_fgene_2022_868540
crossref_primary_10_3389_fpls_2023_1155442
crossref_primary_10_24072_pcjournal_23
crossref_primary_10_1111_nph_16975
crossref_primary_10_1016_j_stress_2024_100518
crossref_primary_10_1016_j_csbj_2024_02_028
crossref_primary_10_1016_j_fochx_2020_100099
crossref_primary_10_1002_jsfa_10116
crossref_primary_10_3389_fpls_2023_1170723
crossref_primary_10_21303_2504_5695_2023_003033
crossref_primary_10_1038_s41598_018_30718_w
crossref_primary_10_3389_fgene_2019_00755
crossref_primary_10_1111_jse_13116
crossref_primary_10_3390_plants12061274
crossref_primary_10_1186_s12915_022_01297_0
crossref_primary_10_3390_plants11040480
crossref_primary_10_1111_tpj_14435
crossref_primary_10_1002_pld3_568
crossref_primary_10_3390_su141710684
crossref_primary_10_1007_s11295_020_1415_9
crossref_primary_10_3390_genes11080879
crossref_primary_10_3390_genes11050544
crossref_primary_10_3390_ijms19010118
crossref_primary_10_1051_ocl_2021024
crossref_primary_10_1016_j_psep_2022_10_035
crossref_primary_10_1038_s41438_020_00352_7
crossref_primary_10_1021_acs_jproteome_9b00167
crossref_primary_10_1016_j_plaphy_2021_12_028
crossref_primary_10_1016_j_scienta_2022_111415
crossref_primary_10_1186_s12915_020_00881_6
crossref_primary_10_3390_ijms22105291
crossref_primary_10_1016_j_indcrop_2018_10_067
crossref_primary_10_1111_tpj_15858
crossref_primary_10_1073_pnas_2307289120
crossref_primary_10_1111_1755_0998_13545
crossref_primary_10_1186_s13068_021_01909_x
crossref_primary_10_3389_fgene_2020_00447
crossref_primary_10_1016_j_cub_2024_03_029
crossref_primary_10_3389_fpls_2020_00066
crossref_primary_10_3390_ijms22115806
crossref_primary_10_1093_dnares_dsac008
crossref_primary_10_1111_nph_17769
crossref_primary_10_3390_plants13111444
crossref_primary_10_1016_j_gpb_2022_12_005
crossref_primary_10_1080_15476286_2019_1593744
crossref_primary_10_1016_j_jare_2020_10_004
crossref_primary_10_3390_molecules26051304
crossref_primary_10_1038_s41438_021_00498_y
crossref_primary_10_3390_pr12061181
crossref_primary_10_1016_j_scienta_2020_109653
crossref_primary_10_7717_peerj_8932
crossref_primary_10_1038_s41438_020_00406_w
crossref_primary_10_1186_s13059_021_02599_2
crossref_primary_10_1016_j_flora_2018_11_014
crossref_primary_10_1002_ejlt_202200079
crossref_primary_10_1016_j_xplc_2023_100729
crossref_primary_10_1093_pcp_pcz208
crossref_primary_10_17660_ActaHortic_2020_1290_10
crossref_primary_10_1111_jse_12802
crossref_primary_10_1021_acs_jafc_3c05322
crossref_primary_10_3390_genes15010001
crossref_primary_10_2139_ssrn_4064620
crossref_primary_10_1111_1755_0998_12742
crossref_primary_10_1038_s41467_023_42253_y
crossref_primary_10_1093_nar_gkab1014
crossref_primary_10_3390_genes12030386
crossref_primary_10_3390_agronomy12112718
crossref_primary_10_1111_pbi_13022
crossref_primary_10_1111_pce_14340
crossref_primary_10_3390_ijms24020961
crossref_primary_10_1016_j_plaphy_2018_05_004
crossref_primary_10_1016_j_xplc_2022_100300
crossref_primary_10_1111_tpj_16270
crossref_primary_10_3389_fpls_2022_869048
Cites_doi 10.1111/nph.13264
10.1186/s13742-016-0134-5
10.1038/35099680
10.1038/nature20786
10.1007/s00122-003-1533-4
10.1101/gr.168997.113
10.1093/nar/gkl200
10.1038/nrg.2017.26
10.1079/NRR200495
10.1007/s00438-008-0391-9
10.1038/nature12132
10.1186/s13059-014-0573-1
10.1093/bioinformatics/btp698
10.1016/j.febslet.2013.05.018
10.1186/gb-2007-8-1-r13
10.1104/pp.16.01929
10.1093/nar/gkr123
10.1080/10635150490445913
10.1093/aob/mcp105
10.1101/gr.097261.109
10.1093/bioinformatics/bth315
10.1038/nature08696
10.1371/journal.pone.0101673
10.1155/2014/843908
10.1093/molbev/mss214
10.1101/gr.078196.108
10.1007/s001220051566
10.1371/journal.pone.0126690
10.1371/journal.pone.0019379
10.1056/NEJMoa1200303
10.1006/jmbi.2000.5197
10.1016/j.pbi.2013.02.015
10.1101/gr.082081.108
10.3732/ajb.0900346
10.1007/s11295-011-0375-5
10.1111/nph.13181
10.1093/nar/27.2.573
10.1111/1468-0092.00149
10.1186/gb-2014-15-2-r39
10.1016/j.jplph.2008.04.018
10.1093/gbe/evu058
10.1101/gr.1865504
10.1111/jipb.12049
10.1371/journal.pone.0035872
10.1101/gr.092759.109
10.1101/gr.1224503
10.1093/jhered/93.1.77
10.1002/0471250953.bi0410s25
ContentType Journal Article
Copyright Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles
Copyright National Academy of Sciences Oct 31, 2017
Copyright_xml – notice: Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles
– notice: Copyright National Academy of Sciences Oct 31, 2017
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
DOI 10.1073/pnas.1708621114
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef
Virology and AIDS Abstracts


MEDLINE
Database_xml – sequence: 1
  dbid: ECM
  name: MEDLINE
  url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate Wild olive genome and oil biosynthesis
EISSN 1091-6490
EndPage E9422
ExternalDocumentID 10_1073_pnas_1708621114
29078332
26488896
Genre Research Support, Non-U.S. Gov't
Journal Article
Feature
GrantInformation_xml – fundername: NHGRI NIH HHS
  grantid: U24 HG006941
– fundername: NIEHS NIH HHS
  grantid: 27307C2007
– fundername: Universidad de Córdoba (University of Cordoba)
  grantid: Ayuda a Grupos
– fundername: T.C. Gida Tarim ve Hayvancilik Bakanligi (Republic of Turkey Ministry of Food, Agriculture and Livestock)
  grantid: TAGEM/BBAD/12/A08/P06/3
– fundername: Ghent University, Multidisplinary Research Partnership
  grantid: 01MR0310W
– fundername: European Union Seventh Framework Program
  grantid: FP7/2007-2013
– fundername: State Planning Organization of Turkey
  grantid: DPT2010K120720
– fundername: Ankara Universitesi (Ankara University)
  grantid: 14B0447004
– fundername: Cankiri Karatekin University
  grantid: FF12035L19
– fundername: Consejería de Agricultura y Pesca
  grantid: 041/C/2007; 75/C/2009; 56/C/2010
– fundername: Gaziosmanpasa Üniversitesi (Gaziosmanpasa University)
  grantid: 2013/27
– fundername: Consejería de Economía, Innovación, Ciencia y Empleo, Junta de Andalucía (Ministry of Economy, Innovation, Science and Employment, Government of Andalucia)
  grantid: CVI-1728
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
79B
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACIWK
ACNCT
ACPRK
ADULT
ADZLD
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
ASUFR
BKOMP
CS3
D0L
DCCCD
DIK
DNJUQ
DOOOF
DU5
DWIUU
E3Z
EBS
EJD
F5P
FRP
GX1
HH5
HYE
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JSODD
JST
KQ8
L7B
LU7
N9A
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHF
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
VQA
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZA5
ZCA
~02
~KM
ADACV
CGR
CUY
CVF
ECM
EIF
H13
IPSME
NPM
AAYXX
CITATION
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c509t-e951b49ef4b6d059d6c6006dfbae570c7d64fe508c3c695efb6d37ddadf57c5a3
IEDL.DBID RPM
ISSN 0027-8424
1091-6490
IngestDate Tue Sep 17 21:10:03 EDT 2024
Sat Oct 26 04:55:46 EDT 2024
Thu Oct 10 19:05:29 EDT 2024
Thu Nov 21 22:19:01 EST 2024
Sat Nov 02 12:20:30 EDT 2024
Fri Feb 02 08:04:23 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 44
Keywords fatty-acid biosynthesis
oil crop
polyunsaturated fatty-acid pathway
whole-genome duplication
siRNA regulation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c509t-e951b49ef4b6d059d6c6006dfbae570c7d64fe508c3c695efb6d37ddadf57c5a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Reviewers: R.M., University of Illinois at Urbana–Champaign; and K.S., MPI for Plant Breeding Research.
1T.U. and Z.W. contributed equally to this work.
Contributed by Marc Van Montagu, September 11, 2017 (sent for review May 26, 2017; reviewed by Ray Ming and Korbinian Schneeberger)
2Present address: Egitim Mah, Ekrem Guer Sok, No:26/3, 35340 Balcova, Izmir, Turkey.
Author contributions: T.U., M.V.M., G.D., and Y.V.d.P. designed research; T.U., Z.W., L.S., M.T., R.L., Z.L., M.Y., F.J.E., C.L., F.J.R., E.D., F.X., B.Z., O.B., H.G., D.A.L., P.K., V.C., H.T., P.H., N.M., O.C., G.D., and Y.V.d.P. performed research; T.U., Z.W., L.S., M.T., R.L., Z.L., M.Y., F.J.E., C.L., F.J.R., E.D., F.X., B.Z., O.B., H.G., D.A.L., P.K., V.C., H.T., P.H., N.M., O.C., G.D., and Y.V.d.P. analyzed data; T.U., L.S., R.L., G.D., and Y.V.d.P. wrote the paper; Z.W., M.T., M.Y., L.H., T.D., I.P., A.I., S.U., M.E., E.I., N.M., H.Y., and Q.G. contributed data production; and T.U., G.D., and Y.V.d.P. contributed to the project leadership.
OpenAccessLink https://www.pnas.org/content/pnas/114/44/E9413.full.pdf
PMID 29078332
PQID 1986339937
PQPubID 42026
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5676908
proquest_miscellaneous_1957486884
proquest_journals_1986339937
crossref_primary_10_1073_pnas_1708621114
pubmed_primary_29078332
jstor_primary_26488896
PublicationCentury 2000
PublicationDate 2017-10-31
PublicationDateYYYYMMDD 2017-10-31
PublicationDate_xml – month: 10
  year: 2017
  text: 2017-10-31
  day: 31
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationSeriesTitle PNAS Plus
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2017
Publisher National Academy of Sciences
Publisher_xml – name: National Academy of Sciences
References Risterucci A (e_1_3_4_37_2) 2000; 101
Estruch R (e_1_3_4_7_2) 2013; 368
Li R (e_1_3_4_11_2) 2010; 463
Bremer K (e_1_3_4_23_2) 2004; 53
Lumaret R (e_1_3_4_2_2) 2001; 413
She R (e_1_3_4_45_2) 2009; 19
Van de Peer Y (e_1_3_4_17_2) 2017; 18
Vanneste K (e_1_3_4_16_2) 2014; 24
Birney E (e_1_3_4_46_2) 2004; 14
Stanke M (e_1_3_4_48_2) 2006; 34
Pugh T (e_1_3_4_38_2) 2004; 108
Benson G (e_1_3_4_43_2) 1999; 27
Bates PD (e_1_3_4_9_2) 2013; 16
Yi D-K (e_1_3_4_22_2) 2012; 7
Majoros WH (e_1_3_4_47_2) 2004; 20
Ibarra-Laclette E (e_1_3_4_18_2) 2013; 498
Fouet O (e_1_3_4_39_2) 2011; 7
Rueda A (e_1_3_4_10_2) 2014; 2014
de Candolle A (e_1_3_4_4_2) 1883
Remm M (e_1_3_4_25_2) 2001; 314
Sollars ES (e_1_3_4_14_2) 2017; 541
Wikström N (e_1_3_4_24_2) 2015; 10
Lacombe S (e_1_3_4_30_2) 2009; 281
Barghini E (e_1_3_4_13_2) 2014; 6
Wei WL (e_1_3_4_29_2) 2013; 55
Besnard G (e_1_3_4_28_2) 2009; 104
Harwood JL (e_1_3_4_26_2) 2013; 587
Vanneste K (e_1_3_4_15_2) 2013; 30
Rallo L (e_1_3_4_6_2) 2008; 43
Wang L (e_1_3_4_19_2) 2014; 15
Elsik CG (e_1_3_4_44_2) 2007; 8
Tarailo‐Graovac M (e_1_3_4_42_2) 2009; 25
Cruz F (e_1_3_4_12_2) 2016; 5
Magallón S (e_1_3_4_21_2) 2015; 207
Bell CD (e_1_3_4_20_2) 2010; 97
Krzywinski M (e_1_3_4_51_2) 2009; 19
Conde C (e_1_3_4_8_2) 2008; 165
Li L (e_1_3_4_49_2) 2003; 13
Sahu SK (e_1_3_4_32_2) 2012; 2012
Raman H (e_1_3_4_34_2) 2014; 9
Tang H (e_1_3_4_41_2) 2015; 16
Tripoli E (e_1_3_4_1_2) 2005; 18
Diez CM (e_1_3_4_5_2) 2015; 206
Elshire RJ (e_1_3_4_35_2) 2011; 6
Lakhssassi N (e_1_3_4_31_2) 2017; 174
Li H (e_1_3_4_40_2) 2010; 26
Kuang H (e_1_3_4_27_2) 2009; 19
Riley FR (e_1_3_4_3_2) 2002; 21
Li R (e_1_3_4_33_2) 2010; 20
Voorrips RE (e_1_3_4_36_2) 2002; 93
Soderlund C (e_1_3_4_50_2) 2011; 39
References_xml – volume: 207
  start-page: 437
  year: 2015
  ident: e_1_3_4_21_2
  article-title: A metacalibrated time-tree documents the early rise of flowering plant phylogenetic diversity
  publication-title: New Phytol
  doi: 10.1111/nph.13264
  contributor:
    fullname: Magallón S
– volume: 5
  start-page: 29
  year: 2016
  ident: e_1_3_4_12_2
  article-title: Genome sequence of the olive tree, Olea europaea
  publication-title: Gigascience
  doi: 10.1186/s13742-016-0134-5
  contributor:
    fullname: Cruz F
– volume: 413
  start-page: 700
  year: 2001
  ident: e_1_3_4_2_2
  article-title: Plant genetics. Ancient wild olives in Mediterranean forests
  publication-title: Nature
  doi: 10.1038/35099680
  contributor:
    fullname: Lumaret R
– volume: 541
  start-page: 212
  year: 2017
  ident: e_1_3_4_14_2
  article-title: Genome sequence and genetic diversity of European ash trees
  publication-title: Nature
  doi: 10.1038/nature20786
  contributor:
    fullname: Sollars ES
– volume: 108
  start-page: 1151
  year: 2004
  ident: e_1_3_4_38_2
  article-title: A new cacao linkage map based on codominant markers: Development and integration of 201 new microsatellite markers
  publication-title: Theor Appl Genet
  doi: 10.1007/s00122-003-1533-4
  contributor:
    fullname: Pugh T
– volume: 24
  start-page: 1334
  year: 2014
  ident: e_1_3_4_16_2
  article-title: Analysis of 41 plant genomes supports a wave of successful genome duplications in association with the Cretaceous-Paleogene boundary
  publication-title: Genome Res
  doi: 10.1101/gr.168997.113
  contributor:
    fullname: Vanneste K
– volume: 34
  start-page: W435
  year: 2006
  ident: e_1_3_4_48_2
  article-title: AUGUSTUS: Ab initio prediction of alternative transcripts
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkl200
  contributor:
    fullname: Stanke M
– volume-title: Origine des Plantes Cultivées
  year: 1883
  ident: e_1_3_4_4_2
  contributor:
    fullname: de Candolle A
– volume: 18
  start-page: 411
  year: 2017
  ident: e_1_3_4_17_2
  article-title: The evolutionary significance of polyploidy
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg.2017.26
  contributor:
    fullname: Van de Peer Y
– volume: 18
  start-page: 98
  year: 2005
  ident: e_1_3_4_1_2
  article-title: The phenolic compounds of olive oil: Structure, biological activity and beneficial effects on human health
  publication-title: Nutr Res Rev
  doi: 10.1079/NRR200495
  contributor:
    fullname: Tripoli E
– volume: 281
  start-page: 43
  year: 2009
  ident: e_1_3_4_30_2
  article-title: An insertion of oleate desaturase homologous sequence silences via siRNA the functional gene leading to high oleic acid content in sunflower seed oil
  publication-title: Mol Genet Genomics
  doi: 10.1007/s00438-008-0391-9
  contributor:
    fullname: Lacombe S
– volume: 498
  start-page: 94
  year: 2013
  ident: e_1_3_4_18_2
  article-title: Architecture and evolution of a minute plant genome
  publication-title: Nature
  doi: 10.1038/nature12132
  contributor:
    fullname: Ibarra-Laclette E
– volume: 16
  start-page: 3
  year: 2015
  ident: e_1_3_4_41_2
  article-title: ALLMAPS: Robust scaffold ordering based on multiple maps
  publication-title: Genome Biol
  doi: 10.1186/s13059-014-0573-1
  contributor:
    fullname: Tang H
– volume: 26
  start-page: 589
  year: 2010
  ident: e_1_3_4_40_2
  article-title: Fast and accurate long-read alignment with Burrows-Wheeler transform
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp698
  contributor:
    fullname: Li H
– volume: 587
  start-page: 2079
  year: 2013
  ident: e_1_3_4_26_2
  article-title: Regulation of lipid synthesis in oil crops
  publication-title: FEBS Lett
  doi: 10.1016/j.febslet.2013.05.018
  contributor:
    fullname: Harwood JL
– volume: 8
  start-page: R13
  year: 2007
  ident: e_1_3_4_44_2
  article-title: Creating a honey bee consensus gene set
  publication-title: Genome Biol
  doi: 10.1186/gb-2007-8-1-r13
  contributor:
    fullname: Elsik CG
– volume: 174
  start-page: 1531
  year: 2017
  ident: e_1_3_4_31_2
  article-title: Stearoyl-acyl carrier protein desaturase mutations uncover an impact of stearic acid in leaf and nodule structure
  publication-title: Plant Physiol
  doi: 10.1104/pp.16.01929
  contributor:
    fullname: Lakhssassi N
– volume: 39
  start-page: e68
  year: 2011
  ident: e_1_3_4_50_2
  article-title: SyMAP v3.4: A turnkey synteny system with application to plant genomes
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkr123
  contributor:
    fullname: Soderlund C
– volume: 53
  start-page: 496
  year: 2004
  ident: e_1_3_4_23_2
  article-title: Molecular phylogenetic dating of asterid flowering plants shows early Cretaceous diversification
  publication-title: Syst Biol
  doi: 10.1080/10635150490445913
  contributor:
    fullname: Bremer K
– volume: 104
  start-page: 143
  year: 2009
  ident: e_1_3_4_28_2
  article-title: Phylogenetics of Olea (Oleaceae) based on plastid and nuclear ribosomal DNA sequences: tertiary climatic shifts and lineage differentiation times
  publication-title: Ann Bot (Lond)
  doi: 10.1093/aob/mcp105
  contributor:
    fullname: Besnard G
– volume: 20
  start-page: 265
  year: 2010
  ident: e_1_3_4_33_2
  article-title: De novo assembly of human genomes with massively parallel short read sequencing
  publication-title: Genome Res
  doi: 10.1101/gr.097261.109
  contributor:
    fullname: Li R
– volume: 20
  start-page: 2878
  year: 2004
  ident: e_1_3_4_47_2
  article-title: TigrScan and GlimmerHMM: Two open source ab initio eukaryotic gene-finders
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bth315
  contributor:
    fullname: Majoros WH
– volume: 463
  start-page: 311
  year: 2010
  ident: e_1_3_4_11_2
  article-title: The sequence and de novo assembly of the giant panda genome
  publication-title: Nature
  doi: 10.1038/nature08696
  contributor:
    fullname: Li R
– volume: 9
  start-page: e101673
  year: 2014
  ident: e_1_3_4_34_2
  article-title: Genome-wide delineation of natural variation for pod shatter resistance in Brassica napus
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0101673
  contributor:
    fullname: Raman H
– volume: 2014
  start-page: 843908
  year: 2014
  ident: e_1_3_4_10_2
  article-title: Characterization of fatty acid profile of argan oil and other edible vegetable oils by gas chromatography and discriminant analysis
  publication-title: J Chem
  doi: 10.1155/2014/843908
  contributor:
    fullname: Rueda A
– volume: 30
  start-page: 177
  year: 2013
  ident: e_1_3_4_15_2
  article-title: Inference of genome duplications from age distributions revisited
  publication-title: Mol Biol Evol
  doi: 10.1093/molbev/mss214
  contributor:
    fullname: Vanneste K
– volume: 19
  start-page: 42
  year: 2009
  ident: e_1_3_4_27_2
  article-title: Identification of miniature inverted-repeat transposable elements (MITEs) and biogenesis of their siRNAs in the Solanaceae: New functional implications for MITEs
  publication-title: Genome Res
  doi: 10.1101/gr.078196.108
  contributor:
    fullname: Kuang H
– volume: 101
  start-page: 948
  year: 2000
  ident: e_1_3_4_37_2
  article-title: A high-density linkage map of Theobroma cacao L
  publication-title: Theor Appl Genet
  doi: 10.1007/s001220051566
  contributor:
    fullname: Risterucci A
– volume: 10
  start-page: e0126690, and e
  year: 2015
  ident: e_1_3_4_24_2
  article-title: A revised time tree of the asterids: Establishing a temporal framework for evolutionary studies of the coffee family (Rubiaceae)
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0126690
  contributor:
    fullname: Wikström N
– volume: 6
  start-page: e19379
  year: 2011
  ident: e_1_3_4_35_2
  article-title: A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0019379
  contributor:
    fullname: Elshire RJ
– volume: 368
  start-page: 1279
  year: 2013
  ident: e_1_3_4_7_2
  article-title: Primary prevention of cardiovascular disease with a Mediterranean diet
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa1200303
  contributor:
    fullname: Estruch R
– volume: 314
  start-page: 1041
  year: 2001
  ident: e_1_3_4_25_2
  article-title: Automatic clustering of orthologs and in-paralogs from pairwise species comparisons
  publication-title: J Mol Biol
  doi: 10.1006/jmbi.2000.5197
  contributor:
    fullname: Remm M
– volume: 16
  start-page: 358
  year: 2013
  ident: e_1_3_4_9_2
  article-title: Biochemical pathways in seed oil synthesis
  publication-title: Curr Opin Plant Biol
  doi: 10.1016/j.pbi.2013.02.015
  contributor:
    fullname: Bates PD
– volume: 43
  start-page: 529
  year: 2008
  ident: e_1_3_4_6_2
  article-title: ‘Chiquitita’olive
  publication-title: HortScience
  contributor:
    fullname: Rallo L
– volume: 19
  start-page: 143
  year: 2009
  ident: e_1_3_4_45_2
  article-title: GenBlastA: Enabling BLAST to identify homologous gene sequences
  publication-title: Genome Res
  doi: 10.1101/gr.082081.108
  contributor:
    fullname: She R
– volume: 97
  start-page: 1296
  year: 2010
  ident: e_1_3_4_20_2
  article-title: The age and diversification of the angiosperms re-revisited
  publication-title: Am J Bot
  doi: 10.3732/ajb.0900346
  contributor:
    fullname: Bell CD
– volume: 7
  start-page: 799
  year: 2011
  ident: e_1_3_4_39_2
  article-title: Structural characterization and mapping of functional EST-SSR markers in Theobroma cacao
  publication-title: Tree Genet Genomes
  doi: 10.1007/s11295-011-0375-5
  contributor:
    fullname: Fouet O
– volume: 206
  start-page: 436
  year: 2015
  ident: e_1_3_4_5_2
  article-title: Olive domestication and diversification in the Mediterranean Basin
  publication-title: New Phytol
  doi: 10.1111/nph.13181
  contributor:
    fullname: Diez CM
– volume: 27
  start-page: 573
  year: 1999
  ident: e_1_3_4_43_2
  article-title: Tandem repeats finder: A program to analyze DNA sequences
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/27.2.573
  contributor:
    fullname: Benson G
– volume: 21
  start-page: 63
  year: 2002
  ident: e_1_3_4_3_2
  article-title: Olive oil production on bronze age Crete: nutritional properties, processing methods and storage life of Minoan olive oil
  publication-title: Oxf J Archaeol
  doi: 10.1111/1468-0092.00149
  contributor:
    fullname: Riley FR
– volume: 15
  start-page: R39
  year: 2014
  ident: e_1_3_4_19_2
  article-title: Genome sequencing of the high oil crop sesame provides insight into oil biosynthesis
  publication-title: Genome Biol
  doi: 10.1186/gb-2014-15-2-r39
  contributor:
    fullname: Wang L
– volume: 165
  start-page: 1545
  year: 2008
  ident: e_1_3_4_8_2
  article-title: Physiological, biochemical and molecular changes occurring during olive development and ripening
  publication-title: J Plant Physiol
  doi: 10.1016/j.jplph.2008.04.018
  contributor:
    fullname: Conde C
– volume: 6
  start-page: 776
  year: 2014
  ident: e_1_3_4_13_2
  article-title: The peculiar landscape of repetitive sequences in the olive (Olea europaea L.) genome
  publication-title: Genome Biol Evol
  doi: 10.1093/gbe/evu058
  contributor:
    fullname: Barghini E
– volume: 14
  start-page: 988
  year: 2004
  ident: e_1_3_4_46_2
  article-title: GeneWise and Genomewise
  publication-title: Genome Res
  doi: 10.1101/gr.1865504
  contributor:
    fullname: Birney E
– volume: 55
  start-page: 745
  year: 2013
  ident: e_1_3_4_29_2
  article-title: Association analysis for quality traits in a diverse panel of Chinese sesame (Sesamum indicum L.) germplasm
  publication-title: J Integr Plant Biol
  doi: 10.1111/jipb.12049
  contributor:
    fullname: Wei WL
– volume: 2012
  start-page: 205049
  year: 2012
  ident: e_1_3_4_32_2
  article-title: DNA extraction protocol for plants with high levels of secondary metabolites and polysaccharides without using liquid nitrogen and phenol
  publication-title: ISRN Mol Biol
  contributor:
    fullname: Sahu SK
– volume: 7
  start-page: e35872
  year: 2012
  ident: e_1_3_4_22_2
  article-title: Complete chloroplast genome sequences of important oilseed crop Sesamum indicum L
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0035872
  contributor:
    fullname: Yi D-K
– volume: 19
  start-page: 1639
  year: 2009
  ident: e_1_3_4_51_2
  article-title: Circos: An information aesthetic for comparative genomics
  publication-title: Genome Res
  doi: 10.1101/gr.092759.109
  contributor:
    fullname: Krzywinski M
– volume: 13
  start-page: 2178
  year: 2003
  ident: e_1_3_4_49_2
  article-title: OrthoMCL: Identification of ortholog groups for eukaryotic genomes
  publication-title: Genome Res
  doi: 10.1101/gr.1224503
  contributor:
    fullname: Li L
– volume: 93
  start-page: 77
  year: 2002
  ident: e_1_3_4_36_2
  article-title: MapChart: Software for the graphical presentation of linkage maps and QTLs
  publication-title: J Hered
  doi: 10.1093/jhered/93.1.77
  contributor:
    fullname: Voorrips RE
– volume: 25
  start-page: 4.10.1
  year: 2009
  ident: e_1_3_4_42_2
  article-title: Using RepeatMasker to identify repetitive elements in genomic sequences
  publication-title: Curr Protoc Bioinformatics
  doi: 10.1002/0471250953.bi0410s25
  contributor:
    fullname: Tarailo‐Graovac M
SSID ssj0009580
Score 2.6565864
Snippet Here we present the genome sequence and annotation of the wild olive tree (Olea europaea var. sylvestris), called oleaster, which is considered an ancestor of...
Here we present the genome sequence and annotation of the wild olive tree ( var. ), called oleaster, which is considered an ancestor of cultivated olive trees....
We sequenced the genome and transcriptomes of the wild olive (oleaster). More than 50,000 genes were predicted, and evidence was found for two relatively...
SourceID pubmedcentral
proquest
crossref
pubmed
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage E9413
SubjectTerms Accumulation
Annotations
Biological Evolution
Biological Sciences
Biosynthesis
Biosynthetic Pathways - genetics
Crops
Desaturation
Divergence
Evolution
FAD2 gene
Fatty Acid Desaturases - genetics
Fatty acids
Fruit trees
Gene duplication
Gene expression
Gene Expression - genetics
Gene families
Genes
Genome, Plant - genetics
Genomics
Linoleic Acids - genetics
Nucleotide sequence
Oils - metabolism
Olea - genetics
Olea - metabolism
Olea europaea sylvestris
Oleic acid
Oleic Acid - genetics
Olive oil
Olives
PNAS Plus
Reproduction (copying)
RNA, Small Interfering - genetics
siRNA
Transposons
Trees
SummonAdditionalLinks – databaseName: AUTh Library subscriptions: JSTOR Health & General Sciences
  dbid: JSG
  link: http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB6xnLi0UKBNS5GRqEQPKdvY8aO3iqc49AKVeosce6yutE1QwyLx7xk7ycJWrdRbpBlblmfG8yUz_gJwiCpgrWyRI7225cKWJjdOT3MR_UUqZ7yP3zsur9W3H_r0LNLkfBjvwsS2ytQXmKr4BJDqOR7HLiytjZzARKfou7q-eMasq_t7JgUdt6IQI3-P4se3je0-fVYRtVNIi5XU03cf_g1X_tke-SzfnL_8z5VuwosBULKvvQdswRo2r2BrCNmOHQ280h-34Qs9tr-QtYERQPasndNJx2zjGYFAhveDE0Z5O5uzetZ2Dw2Julm3A9_Pz25OLvPh1wm5IwRwlyMBp1oYDKKWnhCUl46QjfShtliqqVNeioAEzhx30pQYSI0r760PpXKl5buw3rQNvgEmtHQmoHQxdM20tlyR2dEox2XQrs7gaNzV6rZnyKhSZVvxKhqgejJABrtpx5Z643ZlsDeaoRpiiMYZLXnCTxkcLMXk_bGkYRtsF1GnVLRArWnu173VniY3sUTJiwzUij2XCpFZe1XSzH4mhu0yNv5O9dt_rfcdbBQxvacctgfrd78X-B4mnV_sJ-d8BIPF4lE
  priority: 102
  providerName: JSTOR
Title Genome of wild olive and the evolution of oil biosynthesis
URI https://www.jstor.org/stable/26488896
https://www.ncbi.nlm.nih.gov/pubmed/29078332
https://www.proquest.com/docview/1986339937
https://www.proquest.com/docview/1957486884
https://pubmed.ncbi.nlm.nih.gov/PMC5676908
Volume 114
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB66OfVSmqRpnSaLAj0kB-9uLVuP3sImYUNpKaSB3IysBzXsykudLfTfdyTbm27pKTfDjISYGWk-WZ9GAB8sd7biKkstbtvSXBUylVrM0jzEC-NaGhP-dyzu-NcHcXUdyuQUw12YSNrXVT3xy9XE1z8it3K90tOBJzb99mVeBF7mTExHMEJsOGzRt5V2RXfvJMPlN8_yoZ4Pp9O1V-3kIw8oHqd4eJInk-EYi2Y7WakjJv4Pcv7LnPwrFd28hlc9hiSX3Vj34YX1B7Dfz9KWnPelpC8O4RN-NitLGkcQExvSLHFxI8obgriP2F993AV5Uy9JVTftb4-itm7fwP3N9ff5Iu1fS0g1Jv3H1CJWqnJpXV4xg6DJMI1ghhlXKVvwmeaG5c4iHtNUM1lYh2qUG6OMK7guFD2CPd94-w5ILpiWzjIdZqucVYpy9LSVXFPmhK4SOB-sVa67ohhlPMzmtAw2Lp9snMBRtOZWLzDqhJAsgZPBvGU_bbCdFIxGyJTA2VaMAR9OMZS3zSboFBwHKAT2_bbzxlPnvTsT4Dt-2iqEYtq7EoyxWFS7j6njZ7d8Dy-zkPJjXjuBvcefG3sKo9ZsxgjVbz-PI910HN-0GMeQ_QPov-2l
link.rule.ids 230,315,729,782,786,808,811,887,27933,27934,53800,53802,58025,58037,58258,58270
linkProvider National Library of Medicine
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT9VAEJ8AHvAiIIIVlDWRBA-F2t3uhzejkGdELmDirdnuzoaXPFtieSb-98z248EzmnhrMrObzc7Mzq-d2V8B3qAKWCmbp0ivbamwhUmN01kqor9I5Yz38XvH5FJdfNefTiNNzuF4Fya2VXZ9gV0VnwBSNcOT2IWltZGr8KjQGVd9594Dbl3d3zTJ6cAVuRgZfBQ_ualte_xORdxOQS2Wkk_ff_g3ZPlng-SDjHO28Z9r3YQnA6RkH3of2IIVrJ_C1hC0LTsamKXfbsN7emx-IGsCI4jsWTOjs47Z2jOCgQx_DW4Y5c10xqpp0_6uSdRO22fw7ez06uMkHX6ekDrCALcpEnSqhMEgKukJQ3npCNtIHyqLhcqc8lIEJHjmuJOmwEBqXHlvfSiUKyzfgbW6qfE5MKGlMwGli8FrsspyRYZHoxyXQbsqgaNxV8ubniOj7GrbipfRAOW9ARLY6XZsoTduVwL7oxnKIYponNGSdwgqgdcLMfl_LGrYGpt51CkULVBrmnu3t9r95CYWKXmegFqy50IhcmsvS-rpdcexXcTW30y_-Nd6D2B9cvX1vDz_fPFlDx7nMdl3GW0f1m5_zvElrLZ-_qpz1DusauW0
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dTxQxEJ8IJsYXBBVZAa2JD_Cw3rnt9oM3AlwwGmKiJr5tuu00XnLuXliOhP-e6X4cnJEH3jaZ2abpzHR-uzP9FeAjqoClslmK9NmWCpub1Dg9TkX0F6mc8T7-7zj_oS5-69OzSJNzOJyFiW2VbV9gW8UngFTOcDT3YRQ7sbQ2cg2e5vRVo7vLAe7x6-rutElGm67IxMDio_hoXtnm02cVsTsFtlhJQF0P4v_Q5b9NkveyzuTFI-a7CRs9tGTHnS9swROsXsJWH7wNO-gZpg9fwRE91n-R1YERVPasntGex2zlGcFBhte9O0Z5PZ2xclo3NxWJmmnzGn5Nzn6enKf9JQqpIyxwlSJBqFIYDKKUnrCUl44wjvShtJirsVNeioAE0xx30uQYSI0r760PuXK55duwXtUV7gATWjoTULoYxGZcWq7IAdAox2XQrkzgYFjZYt5xZRRtjVvxIhqhuDNCAtvtqi31huVKYG8wRdFHE71ntOQtkkrgw1JMcRCLG7bCehF1ckUT1JrGftNZ7m5wE4uVPEtArdh0qRA5tlcl1fRPy7WdxxbgsX770Hzfw7Pvp5Pi25eLr7vwPIs5v01se7B-dbnAfVhr_OJd66u3FjfoLQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Genome+of+wild+olive+and+the+evolution+of+oil+biosynthesis&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Unver%2C+Turgay&rft.au=Wu%2C+Zhangyan&rft.au=Sterck%2C+Lieven&rft.au=Turktas%2C+Mine&rft.date=2017-10-31&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=114&rft.issue=44&rft.spage=E9413&rft.epage=E9422&rft_id=info:doi/10.1073%2Fpnas.1708621114&rft.externalDocID=26488896
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon