IoTTPS: Ensemble RKSVM Model-Based Internet of Things Threat Protection System

An Internet of Things (IoT) network is prone to many ways of threatening individuals. IoT sensors are lightweight, lack complicated security protocols, and face threats to privacy and confidentiality. Hackers can attack the IoT network and access personal information and confidential data for blackm...

Full description

Saved in:
Bibliographic Details
Published in:Sensors (Basel, Switzerland) Vol. 23; no. 14; p. 6379
Main Authors: Akram, Urooj, Sharif, Wareesa, Shahroz, Mobeen, Mushtaq, Muhammad Faheem, Aray, Daniel Gavilanes, Thompson, Ernesto Bautista, Diez, Isabel de la Torre, Djuraev, Sirojiddin, Ashraf, Imran
Format: Journal Article
Language:English
Published: Switzerland MDPI AG 13-07-2023
MDPI
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract An Internet of Things (IoT) network is prone to many ways of threatening individuals. IoT sensors are lightweight, lack complicated security protocols, and face threats to privacy and confidentiality. Hackers can attack the IoT network and access personal information and confidential data for blackmailing, and negatively manipulate data. This study aims to propose an IoT threat protection system (IoTTPS) to protect the IoT network from threats using an ensemble model RKSVM, comprising a random forest (RF), K nearest neighbor (KNN), and support vector machine (SVM) model. The software-defined networks (SDN)-based IoT network datasets such as KDD cup 99, NSL-KDD, and CICIDS are used for threat detection based on machine learning. The experimental phase is conducted by using a decision tree (DT), logistic regression (LR), Naive Bayes (NB), RF, SVM, gradient boosting machine (GBM), KNN, and the proposed ensemble RKSVM model. Furthermore, performance is optimized by adding a grid search hyperparameter optimization technique with K-Fold cross-validation. As well as the NSL-KDD dataset, two other datasets, KDD and CIC-IDS 2017, are used to validate the performance. Classification accuracies of 99.7%, 99.3%, 99.7%, and 97.8% are obtained for DoS, Probe, U2R, and R2L attacks using the proposed ensemble RKSVM model using grid search and cross-fold validation. Experimental results demonstrate the superior performance of the proposed model for IoT threat detection.
AbstractList An Internet of Things (IoT) network is prone to many ways of threatening individuals. IoT sensors are lightweight, lack complicated security protocols, and face threats to privacy and confidentiality. Hackers can attack the IoT network and access personal information and confidential data for blackmailing, and negatively manipulate data. This study aims to propose an IoT threat protection system (IoTTPS) to protect the IoT network from threats using an ensemble model RKSVM, comprising a random forest (RF), K nearest neighbor (KNN), and support vector machine (SVM) model. The software-defined networks (SDN)-based IoT network datasets such as KDD cup 99, NSL-KDD, and CICIDS are used for threat detection based on machine learning. The experimental phase is conducted by using a decision tree (DT), logistic regression (LR), Naive Bayes (NB), RF, SVM, gradient boosting machine (GBM), KNN, and the proposed ensemble RKSVM model. Furthermore, performance is optimized by adding a grid search hyperparameter optimization technique with K-Fold cross-validation. As well as the NSL-KDD dataset, two other datasets, KDD and CIC-IDS 2017, are used to validate the performance. Classification accuracies of 99.7%, 99.3%, 99.7%, and 97.8% are obtained for DoS, Probe, U2R, and R2L attacks using the proposed ensemble RKSVM model using grid search and cross-fold validation. Experimental results demonstrate the superior performance of the proposed model for IoT threat detection.
Audience Academic
Author Akram, Urooj
Djuraev, Sirojiddin
Mushtaq, Muhammad Faheem
Shahroz, Mobeen
Diez, Isabel de la Torre
Aray, Daniel Gavilanes
Thompson, Ernesto Bautista
Ashraf, Imran
Sharif, Wareesa
AuthorAffiliation 1 Department of Artificial Intelligence, The Islamia University of Bahawalpur, Bahawalpur 63100, Punjab, Pakistan; urooj.akram@iub.edu.pk (U.A.); wareesa.sharif@iub.edu.pk (W.S.); mobeen.shahroz@iub.edu.pk (M.S.)
5 Universidad Internacional Iberoamericana, Campeche 24560, Mexico
2 Higher Polytechnic School, Universidad Europea del Atlántico, Isabel Torres 21, 39011 Santander, Spain; daniel.gavilanes@uneatlantico.es (D.G.A.); ernesto.bautista@unini.edu.mx (E.B.T.)
8 Department of Software Engineering, New Uzbekistan University, Tashkent 100007, Uzbekistan; s.djuraev@newuzbekistanuniversity.uz
9 Department of Information and Communication Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
3 Department of Projects, Universidade Internacional do Cuanza, Cuito EN250, Bié, Angola
6 Universidad Internacional Iberoamericana Arecibo, Puerto Rico, PR 00613, USA
7 Department of Signal Theory, Communications and Telematics Engineering, Unviersity of Valladolid, Paseo de Belén, 15, 47011
AuthorAffiliation_xml – name: 2 Higher Polytechnic School, Universidad Europea del Atlántico, Isabel Torres 21, 39011 Santander, Spain; daniel.gavilanes@uneatlantico.es (D.G.A.); ernesto.bautista@unini.edu.mx (E.B.T.)
– name: 9 Department of Information and Communication Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
– name: 7 Department of Signal Theory, Communications and Telematics Engineering, Unviersity of Valladolid, Paseo de Belén, 15, 47011 Valladolid, Spain; isator@tel.uva.es
– name: 1 Department of Artificial Intelligence, The Islamia University of Bahawalpur, Bahawalpur 63100, Punjab, Pakistan; urooj.akram@iub.edu.pk (U.A.); wareesa.sharif@iub.edu.pk (W.S.); mobeen.shahroz@iub.edu.pk (M.S.)
– name: 3 Department of Projects, Universidade Internacional do Cuanza, Cuito EN250, Bié, Angola
– name: 5 Universidad Internacional Iberoamericana, Campeche 24560, Mexico
– name: 6 Universidad Internacional Iberoamericana Arecibo, Puerto Rico, PR 00613, USA
– name: 8 Department of Software Engineering, New Uzbekistan University, Tashkent 100007, Uzbekistan; s.djuraev@newuzbekistanuniversity.uz
– name: 4 Research Group on Foods, Nutritional Biochemistry and Health, Fundación Universitaria Internacional de Colombia, Bogotá 11131, Colombia
Author_xml – sequence: 1
  givenname: Urooj
  surname: Akram
  fullname: Akram, Urooj
  organization: Department of Artificial Intelligence, The Islamia University of Bahawalpur, Bahawalpur 63100, Punjab, Pakistan
– sequence: 2
  givenname: Wareesa
  surname: Sharif
  fullname: Sharif, Wareesa
  organization: Department of Artificial Intelligence, The Islamia University of Bahawalpur, Bahawalpur 63100, Punjab, Pakistan
– sequence: 3
  givenname: Mobeen
  orcidid: 0000-0003-1170-6335
  surname: Shahroz
  fullname: Shahroz, Mobeen
  organization: Department of Artificial Intelligence, The Islamia University of Bahawalpur, Bahawalpur 63100, Punjab, Pakistan
– sequence: 4
  givenname: Muhammad Faheem
  surname: Mushtaq
  fullname: Mushtaq, Muhammad Faheem
  organization: Department of Artificial Intelligence, The Islamia University of Bahawalpur, Bahawalpur 63100, Punjab, Pakistan
– sequence: 5
  givenname: Daniel Gavilanes
  surname: Aray
  fullname: Aray, Daniel Gavilanes
  organization: Research Group on Foods, Nutritional Biochemistry and Health, Fundación Universitaria Internacional de Colombia, Bogotá 11131, Colombia
– sequence: 6
  givenname: Ernesto Bautista
  surname: Thompson
  fullname: Thompson, Ernesto Bautista
  organization: Universidad Internacional Iberoamericana Arecibo, Puerto Rico, PR 00613, USA
– sequence: 7
  givenname: Isabel de la Torre
  orcidid: 0000-0003-3134-7720
  surname: Diez
  fullname: Diez, Isabel de la Torre
  organization: Department of Signal Theory, Communications and Telematics Engineering, Unviersity of Valladolid, Paseo de Belén, 15, 47011 Valladolid, Spain
– sequence: 8
  givenname: Sirojiddin
  surname: Djuraev
  fullname: Djuraev, Sirojiddin
  organization: Department of Software Engineering, New Uzbekistan University, Tashkent 100007, Uzbekistan
– sequence: 9
  givenname: Imran
  orcidid: 0000-0002-8271-6496
  surname: Ashraf
  fullname: Ashraf, Imran
  organization: Department of Information and Communication Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37514673$$D View this record in MEDLINE/PubMed
BookMark eNpdkk1v1DAQhi1URNuFA38AReIChxR_JXa4VKUqsKKFil24Wo493nqV2MXOVuq_r8uWVYt8GGv8zDuej0O0F2IAhF4TfMRYhz9kyghvmeieoQPCKa8lpXjv0X0fHea8xpgyxuQLtM9EUwIEO0Df53G5vFx8rM5ChrEfoPr5bfH7orqIFob6k85gq3mYIAWYquiq5ZUPq1xMAj1VlylOYCYfQ7W4zROML9Fzp4cMrx7sDP36fLY8_Vqf__gyPz05r02Du6lueyaIaTgY6KUEbjFgIJZQ6gTume76UpB0FGvBiWQAHe-s7qRrmeUN1WyG5ltdG_VaXSc_6nSrovbqryOmldJp8mYARXXrNOFaMu44Fo10VgPvGu6IJG1pyQwdb7WuN_0I1kCYkh6eiD59Cf5KreKNIphJ1glRFN49KKT4ZwN5UqPPBoZBB4ibrKjkHEtG2ragb_9D13GTQunVPcUIbbkghTraUitdKvDBxZLYlGNh9KYM3_niPxFNVyYqcFMC3m8DTIo5J3C77xOs7ndE7XaksG8e17sj_y0FuwP6HbVr
CitedBy_id crossref_primary_10_3390_s23218958
Cites_doi 10.1109/ACCESS.2019.2895334
10.1016/j.gltp.2021.08.045
10.1109/MCE.2019.2953740
10.1016/j.cose.2021.102352
10.1016/j.aci.2017.10.003
10.1145/2899015.2899016
10.1109/TII.2021.3089462
10.1109/TNSE.2020.3004312
10.1109/JIOT.2021.3079916
10.1109/WFCS.2017.7991968
10.1109/ICOSEC49089.2020.9215232
10.1109/ICCCN.2018.8487449
10.1155/2022/8481452
10.3390/systems11010043
10.1103/PhysRevLett.71.3363
10.1023/A:1010933404324
10.1016/j.eswa.2005.07.019
10.1016/j.cosrev.2020.100357
10.1016/j.compeleceng.2022.108350
10.1109/ICDSE.2012.6282329
10.1109/ACCESS.2019.2923640
10.1016/j.future.2020.09.006
10.1088/1757-899X/1107/1/012031
10.1155/2018/9463653
10.1007/978-3-030-24305-0_45
10.1109/ACCESS.2019.2937347
10.1016/j.comnet.2021.108040
10.1016/j.eswa.2016.06.005
10.1007/s10489-020-01886-y
10.1016/j.comnet.2019.05.013
10.1007/s11276-020-02535-5
10.1109/ICWISE.2017.8267153
10.1109/SPW.2018.00013
10.1016/j.micpro.2020.103766
10.1186/s13635-018-0081-z
10.1016/j.cosrev.2020.100318
10.9734/ajrcos/2021/v9i230218
10.1109/ACCESS.2020.2994931
10.1007/s10618-013-0304-3
10.3390/electronics11040667
10.1007/s10586-021-03309-0
10.1109/ACCESS.2020.3048198
10.1016/j.jnca.2018.03.030
10.1002/dac.4515
10.1088/1757-899X/648/1/012039
10.1007/s12065-019-00291-w
10.1016/j.scs.2019.101728
10.1002/cpe.5402
10.1145/3290605.3300764
10.1109/TIFS.2020.3017928
10.1016/j.resconrec.2020.105047
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023 by the authors. 2023
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023 by the authors. 2023
DBID NPM
AAYXX
CITATION
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s23146379
DatabaseName PubMed
CrossRef
ProQuest Central (Corporate)
Health & Medical Collection (Proquest)
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
Publicly Available Content Database (Proquest) (PQ_SDU_P3)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals
DatabaseTitle PubMed
CrossRef
Publicly Available Content Database
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Central China
ProQuest Hospital Collection (Alumni)
ProQuest Central
ProQuest Health & Medical Complete
Health Research Premium Collection
ProQuest Medical Library
ProQuest One Academic UKI Edition
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest One Academic
ProQuest Medical Library (Alumni)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
Publicly Available Content Database


CrossRef
PubMed
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: http://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_2a6fa14a834f40758fdae4954f181602
A759233705
10_3390_s23146379
37514673
Genre Journal Article
GeographicLocations Germany
GeographicLocations_xml – name: Germany
GrantInformation_xml – fundername: the European University of Atlantics
  grantid: N/A
– fundername: European University of Atlantic
GroupedDBID ---
123
2WC
3V.
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
ABDBF
ABJCF
ABUWG
ADBBV
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BENPR
BPHCQ
BVXVI
CCPQU
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
ITC
KB.
KQ8
L6V
M1P
M48
M7S
MODMG
M~E
NPM
OK1
P2P
P62
PDBOC
PIMPY
PQQKQ
PROAC
PSQYO
RIG
RNS
RPM
TUS
UKHRP
XSB
~8M
AAYXX
CITATION
7XB
8FK
AZQEC
DWQXO
K9.
PQEST
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c509t-6b371c54eceb88e4d0e0e1d122f70b3a9b3148f20a74183ee949da98f63d452a3
IEDL.DBID RPM
ISSN 1424-8220
IngestDate Tue Oct 22 15:13:31 EDT 2024
Tue Sep 17 21:31:03 EDT 2024
Sat Oct 26 01:12:33 EDT 2024
Thu Oct 10 17:26:44 EDT 2024
Wed Nov 13 00:11:38 EST 2024
Thu Nov 21 21:24:28 EST 2024
Sat Sep 28 08:08:52 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 14
Keywords privacy
threat protection system
Internet of Things
machine learning
confidentiality
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c509t-6b371c54eceb88e4d0e0e1d122f70b3a9b3148f20a74183ee949da98f63d452a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
These authors contributed equally to this work.
ORCID 0000-0003-1170-6335
0000-0003-3134-7720
0000-0002-8271-6496
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10383977/
PMID 37514673
PQID 2843126471
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_2a6fa14a834f40758fdae4954f181602
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10383977
proquest_miscellaneous_2844083166
proquest_journals_2843126471
gale_infotracacademiconefile_A759233705
crossref_primary_10_3390_s23146379
pubmed_primary_37514673
PublicationCentury 2000
PublicationDate 20230713
PublicationDateYYYYMMDD 2023-07-13
PublicationDate_xml – month: 7
  year: 2023
  text: 20230713
  day: 13
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2023
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Aldabbas (ref_29) 2021; 24
Salem (ref_31) 2021; 18
(ref_30) 2021; 34
Breiman (ref_56) 2001; 45
Haji (ref_13) 2021; 9
Keerthika (ref_10) 2021; 2
ref_14
ref_58
ref_57
Ma (ref_66) 2020; 8
Ashraf (ref_48) 2022; 24
ref_55
ref_54
Xenofontos (ref_11) 2021; 9
Ande (ref_1) 2020; 54
Alladi (ref_15) 2020; 9
Sreeram (ref_45) 2019; 15
Fahmi (ref_4) 2019; 648
Costa (ref_8) 2019; Volume 1
ref_19
ref_18
ref_16
Yurekten (ref_28) 2021; 115
ref_59
Chkirbene (ref_68) 2020; 8
Tama (ref_22) 2021; 39
Fuat (ref_73) 2023; 12
Nayak (ref_39) 2022; 36
Priyadarshini (ref_46) 2019; 34
Anyanwu (ref_51) 2009; 3
Burhanuddin (ref_23) 2017; 12
Caminero (ref_71) 2019; 159
Zhao (ref_44) 2018; 2018
ref_24
Byers (ref_53) 1993; 71
ref_21
ref_20
Esmaeili (ref_62) 2022; 2022
Troiano (ref_52) 2014; 28
Devarakonda (ref_63) 2022; 2161
Rathi (ref_5) 2022; 103
Gao (ref_70) 2019; 7
Revathi (ref_64) 2013; 2
Xing (ref_2) 2021; 82
Tan (ref_60) 2006; 30
ref_72
Hajjaji (ref_25) 2021; 39
Singh (ref_42) 2018; 112
Ullah (ref_50) 2019; 7
Liu (ref_65) 2021; 9
ref_34
ref_33
Ahmad (ref_26) 2021; 81
Hameed (ref_43) 2018; 2018
ref_74
Ingemarsdotter (ref_6) 2020; 162
Vinayakumar (ref_69) 2019; 7
ref_38
ref_37
Praseed (ref_47) 2020; 16
Jaafar (ref_40) 2019; 2019
Anthi (ref_35) 2021; 108
Ammar (ref_17) 2018; 38
Babun (ref_27) 2021; 192
Kumar (ref_12) 2021; 14
Oladimeji (ref_36) 2021; 1107
Javanmardi (ref_32) 2021; 60
Onan (ref_61) 2016; 62
Mousavi (ref_9) 2021; 27
ref_3
Santos (ref_41) 2020; 32
ref_49
Bedi (ref_67) 2021; 51
ref_7
References_xml – volume: 7
  start-page: 41525
  year: 2019
  ident: ref_69
  article-title: Deep Learning Approach for Intelligent Intrusion Detection System
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2895334
  contributor:
    fullname: Vinayakumar
– volume: 60
  start-page: 102853
  year: 2021
  ident: ref_32
  article-title: FUPE: A security driven task scheduling approach for SDN-based IoT—Fog networks
  publication-title: J. Inf. Secur. Appl.
  contributor:
    fullname: Javanmardi
– volume: 2
  start-page: 362
  year: 2021
  ident: ref_10
  article-title: Wireless Sensor Networks: Active and Passive attacks Vulnerabilities and Countermeasures
  publication-title: Glob. Transit. Proc.
  doi: 10.1016/j.gltp.2021.08.045
  contributor:
    fullname: Keerthika
– volume: 2019
  start-page: 1283472
  year: 2019
  ident: ref_40
  article-title: Review of Recent Detection Methods for HTTP DDoS Attack
  publication-title: J. Comput. Netw. Commun.
  contributor:
    fullname: Jaafar
– ident: ref_74
– volume: 9
  start-page: 17
  year: 2020
  ident: ref_15
  article-title: Consumer IoT: Security vulnerability case studies and solutions
  publication-title: IEEE Consum. Electron. Mag.
  doi: 10.1109/MCE.2019.2953740
  contributor:
    fullname: Alladi
– volume: 108
  start-page: 102352
  year: 2021
  ident: ref_35
  article-title: Hardening machine learning denial of service (DoS) defences against adversarial attacks in IoT smart home networks
  publication-title: Comput. Secur.
  doi: 10.1016/j.cose.2021.102352
  contributor:
    fullname: Anthi
– volume: 15
  start-page: 59
  year: 2019
  ident: ref_45
  article-title: HTTP flood attack detection in application layer using machine learning metrics and bio inspired bat algorithm
  publication-title: Appl. Comput. Inform.
  doi: 10.1016/j.aci.2017.10.003
  contributor:
    fullname: Sreeram
– ident: ref_38
  doi: 10.1145/2899015.2899016
– volume: 24
  start-page: 2677
  year: 2022
  ident: ref_48
  article-title: A survey on cyber security threats in IoT-enabled maritime industry
  publication-title: IEEE Trans. Intell. Transp. Syst.
  contributor:
    fullname: Ashraf
– volume: 3
  start-page: 230
  year: 2009
  ident: ref_51
  article-title: Comparative analysis of serial decision tree classification algorithms
  publication-title: Int. J. Comput. Sci. Secur.
  contributor:
    fullname: Anyanwu
– volume: 18
  start-page: 2053
  year: 2021
  ident: ref_31
  article-title: Man in the Middle Attack Mitigation in Internet of Medical Things
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2021.3089462
  contributor:
    fullname: Salem
– volume: 8
  start-page: 943
  year: 2020
  ident: ref_66
  article-title: Aesmote: Adversarial reinforcement learning with smote for anomaly detection
  publication-title: IEEE Trans. Netw. Sci. Eng.
  doi: 10.1109/TNSE.2020.3004312
  contributor:
    fullname: Ma
– ident: ref_58
– volume: 9
  start-page: 199
  year: 2021
  ident: ref_11
  article-title: Consumer, commercial and industrial iot (in) security: Attack taxonomy and case studies
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2021.3079916
  contributor:
    fullname: Xenofontos
– ident: ref_16
  doi: 10.1109/WFCS.2017.7991968
– ident: ref_72
  doi: 10.1109/ICOSEC49089.2020.9215232
– ident: ref_21
  doi: 10.1109/ICCCN.2018.8487449
– volume: 2022
  start-page: 8481452
  year: 2022
  ident: ref_62
  article-title: ML-DDoSnet: IoT Intrusion Detection Based on Denial-of-Service Attacks Using Machine Learning Methods and NSL-KDD
  publication-title: Wirel. Commun. Mob. Comput.
  doi: 10.1155/2022/8481452
  contributor:
    fullname: Esmaeili
– ident: ref_3
  doi: 10.3390/systems11010043
– volume: 71
  start-page: 3363
  year: 1993
  ident: ref_53
  article-title: Influence of gap extrema on the tunneling conductance near an impurity in an anisotropic superconductor
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.71.3363
  contributor:
    fullname: Byers
– volume: 38
  start-page: 8
  year: 2018
  ident: ref_17
  article-title: Internet of Things: A survey on the security of IoT frameworks
  publication-title: J. Inf. Secur. Appl.
  contributor:
    fullname: Ammar
– volume: 45
  start-page: 5
  year: 2001
  ident: ref_56
  article-title: Random forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
  contributor:
    fullname: Breiman
– volume: 30
  start-page: 290
  year: 2006
  ident: ref_60
  article-title: An effective refinement strategy for KNN text classifier
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2005.07.019
  contributor:
    fullname: Tan
– volume: 39
  start-page: 100357
  year: 2021
  ident: ref_22
  article-title: Ensemble learning for intrusion detection systems: A systematic mapping study and cross-benchmark evaluation
  publication-title: Comput. Sci. Rev.
  doi: 10.1016/j.cosrev.2020.100357
  contributor:
    fullname: Tama
– volume: 81
  start-page: 36931
  year: 2021
  ident: ref_26
  article-title: An approach to adding simple interface as security gateway architecture for IoT device
  publication-title: Multimed. Tools Appl.
  contributor:
    fullname: Ahmad
– volume: 103
  start-page: 108350
  year: 2022
  ident: ref_5
  article-title: A metric focused performance assessment of fog computing environments: A critical review
  publication-title: Comput. Electr. Eng.
  doi: 10.1016/j.compeleceng.2022.108350
  contributor:
    fullname: Rathi
– ident: ref_55
  doi: 10.1109/ICDSE.2012.6282329
– volume: 7
  start-page: 82512
  year: 2019
  ident: ref_70
  article-title: An Adaptive Ensemble Machine Learning Model for Intrusion Detection
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2923640
  contributor:
    fullname: Gao
– ident: ref_20
– volume: 115
  start-page: 126
  year: 2021
  ident: ref_28
  article-title: SDN-based cyber defense: A survey
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2020.09.006
  contributor:
    fullname: Yurekten
– volume: 36
  start-page: 100805
  year: 2022
  ident: ref_39
  article-title: Hybrid Bayesian optimization hypertuned catboost approach for malicious access and anomaly detection in IoT nomalyframework
  publication-title: Sustain. Comput.
  contributor:
    fullname: Nayak
– ident: ref_59
– volume: 1107
  start-page: 12031
  year: 2021
  ident: ref_36
  article-title: Insider Threat Detection using Binary Classification Algorithms
  publication-title: IOP Conf. Ser.
  doi: 10.1088/1757-899X/1107/1/012031
  contributor:
    fullname: Oladimeji
– volume: 2018
  start-page: 9463653
  year: 2018
  ident: ref_44
  article-title: A Classification Detection Algorithm Based on Joint Entropy Vector against Application-Layer DDoS Attack
  publication-title: Secur. Commun. Netw.
  doi: 10.1155/2018/9463653
  contributor:
    fullname: Zhao
– ident: ref_24
– ident: ref_34
– volume: 12
  start-page: 11055
  year: 2017
  ident: ref_23
  article-title: Internet of things architecture: Current challenges and future direction of research
  publication-title: Int. J. Appl. Eng. Res.
  contributor:
    fullname: Burhanuddin
– ident: ref_33
  doi: 10.1007/978-3-030-24305-0_45
– volume: 7
  start-page: 124379
  year: 2019
  ident: ref_50
  article-title: Cyber security threats detection in internet of things using deep learning approach
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2937347
  contributor:
    fullname: Ullah
– ident: ref_14
– ident: ref_18
– volume: 192
  start-page: 108040
  year: 2021
  ident: ref_27
  article-title: A survey on IoT platforms: Communication, security, and privacy perspectives
  publication-title: Comput. Netw.
  doi: 10.1016/j.comnet.2021.108040
  contributor:
    fullname: Babun
– volume: 62
  start-page: 1
  year: 2016
  ident: ref_61
  article-title: A multiobjective weighted voting ensemble classifier based on differential evolution algorithm for text sentiment classification
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2016.06.005
  contributor:
    fullname: Onan
– volume: 51
  start-page: 1133
  year: 2021
  ident: ref_67
  article-title: I-SiamIDS: An improved Siam-IDS for handling class imbalance in network-based intrusion detection systems
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-020-01886-y
  contributor:
    fullname: Bedi
– volume: 159
  start-page: 96
  year: 2019
  ident: ref_71
  article-title: Adversarial environment reinforcement learning algorithm for intrusion detection
  publication-title: Comput. Netw.
  doi: 10.1016/j.comnet.2019.05.013
  contributor:
    fullname: Caminero
– volume: 27
  start-page: 1515
  year: 2021
  ident: ref_9
  article-title: Security of internet of things based on cryptographic algorithms: A survey
  publication-title: Wirel. Netw.
  doi: 10.1007/s11276-020-02535-5
  contributor:
    fullname: Mousavi
– ident: ref_7
  doi: 10.1109/ICWISE.2017.8267153
– ident: ref_37
  doi: 10.1109/SPW.2018.00013
– volume: 12
  start-page: 465
  year: 2023
  ident: ref_73
  article-title: Analysis of Intrusion Detection Systems in UNSW-NB15 and NSL-KDD Datasets with Machine Learning Algorithms
  publication-title: Bitlis Eren Univ. Bilim. Derg.
  contributor:
    fullname: Fuat
– volume: 82
  start-page: 103766
  year: 2021
  ident: ref_2
  article-title: Real time monitoring of medical images and nursing intervention after heart valve replacement
  publication-title: Microprocess. Microsyst.
  doi: 10.1016/j.micpro.2020.103766
  contributor:
    fullname: Xing
– volume: 2018
  start-page: 11
  year: 2018
  ident: ref_43
  article-title: HADEC: Hadoop-based live DDoS detection framework
  publication-title: EURASIP J. Inf. Secur.
  doi: 10.1186/s13635-018-0081-z
  contributor:
    fullname: Hameed
– volume: 39
  start-page: 100318
  year: 2021
  ident: ref_25
  article-title: Big data and IoT-based applications in smart environments: A systematic review
  publication-title: Comput. Sci. Rev.
  doi: 10.1016/j.cosrev.2020.100318
  contributor:
    fullname: Hajjaji
– volume: 9
  start-page: 30
  year: 2021
  ident: ref_13
  article-title: Attack and anomaly detection in iot networks using machine learning techniques: A review
  publication-title: Asian J. Res. Comput. Sci.
  doi: 10.9734/ajrcos/2021/v9i230218
  contributor:
    fullname: Haji
– ident: ref_54
– volume: 8
  start-page: 95864
  year: 2020
  ident: ref_68
  article-title: TIDCS: A Dynamic Intrusion Detection and Classification System Based Feature Selection
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2994931
  contributor:
    fullname: Chkirbene
– volume: 28
  start-page: 773
  year: 2014
  ident: ref_52
  article-title: A time-efficient breadth-first level-wise lattice-traversal algorithm to discover rare itemsets
  publication-title: Data Min. Knowl. Discov.
  doi: 10.1007/s10618-013-0304-3
  contributor:
    fullname: Troiano
– volume: Volume 1
  start-page: 615
  year: 2019
  ident: ref_8
  article-title: Vulnerabilities in IoT Devices for Smart Home Environment
  publication-title: Proceedings of the 5th International Conference on Information Systems Security and Privacy, ICISSP 2019
  contributor:
    fullname: Costa
– volume: 2
  start-page: 1848
  year: 2013
  ident: ref_64
  article-title: A Detailed Analysis on NSL-KDD Dataset using various Machine Learning Techniques for Intrusion Detection
  publication-title: Int. J. Eng. Res. Technol. IJERT
  contributor:
    fullname: Revathi
– ident: ref_49
  doi: 10.3390/electronics11040667
– volume: 24
  start-page: 3011
  year: 2021
  ident: ref_29
  article-title: A novel mechanism to handle address spoofing attacks in SDN based IoT
  publication-title: Clust. Comput.
  doi: 10.1007/s10586-021-03309-0
  contributor:
    fullname: Aldabbas
– volume: 9
  start-page: 7550
  year: 2021
  ident: ref_65
  article-title: Intrusion Detection of Imbalanced Network Traffic Based on Machine Learning and Deep Learning
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3048198
  contributor:
    fullname: Liu
– volume: 112
  start-page: 97
  year: 2018
  ident: ref_42
  article-title: User behavior analytics-based classification of application layer HTTP-GET flood attacks
  publication-title: J. Netw. Comput. Appl.
  doi: 10.1016/j.jnca.2018.03.030
  contributor:
    fullname: Singh
– volume: 34
  start-page: e4515
  year: 2021
  ident: ref_30
  article-title: IoT-based platform for environment data sharing in smart cities
  publication-title: Int. J. Commun. Syst.
  doi: 10.1002/dac.4515
– volume: 648
  start-page: 12039
  year: 2019
  ident: ref_4
  article-title: Design of hardware module for the vehicle condition monitoring system based on the internet of things
  publication-title: IOP Conf. Ser.
  doi: 10.1088/1757-899X/648/1/012039
  contributor:
    fullname: Fahmi
– volume: 34
  start-page: 825
  year: 2019
  ident: ref_46
  article-title: A deep learning based intelligent framework to mitigate DDoS attack in fog environment
  publication-title: J. King Saud Univ.
  contributor:
    fullname: Priyadarshini
– volume: 14
  start-page: 47
  year: 2021
  ident: ref_12
  article-title: UIDS: A unified intrusion detection system for IoT environment
  publication-title: Evol. Intell.
  doi: 10.1007/s12065-019-00291-w
  contributor:
    fullname: Kumar
– volume: 2161
  start-page: 12043
  year: 2022
  ident: ref_63
  article-title: Network intrusion detection: A comparative study of four classifiers using the NSL-KDD and KDD’99 datasets
  publication-title: Ournal Phys.
  contributor:
    fullname: Devarakonda
– volume: 54
  start-page: 101728
  year: 2020
  ident: ref_1
  article-title: Internet of Things: Evolution and technologies from a security perspective
  publication-title: Sustain. Cities Soc.
  doi: 10.1016/j.scs.2019.101728
  contributor:
    fullname: Ande
– volume: 32
  start-page: 1
  year: 2020
  ident: ref_41
  article-title: Machine learning algorithms to detect DDoS attacks in SDN
  publication-title: Concurr. Comput.
  doi: 10.1002/cpe.5402
  contributor:
    fullname: Santos
– ident: ref_57
– ident: ref_19
  doi: 10.1145/3290605.3300764
– volume: 16
  start-page: 617
  year: 2020
  ident: ref_47
  article-title: Modelling Behavioural Dynamics for Asymmetric Application Layer DDoS Detection
  publication-title: IEEE Trans. Inf. Forensics Secur.
  doi: 10.1109/TIFS.2020.3017928
  contributor:
    fullname: Praseed
– volume: 162
  start-page: 105047
  year: 2020
  ident: ref_6
  article-title: Opportunities and challenges in IoT-enabled circular business model implementation—A case study
  publication-title: Resour. Conserv. Recycl.
  doi: 10.1016/j.resconrec.2020.105047
  contributor:
    fullname: Ingemarsdotter
SSID ssj0023338
Score 2.452917
Snippet An Internet of Things (IoT) network is prone to many ways of threatening individuals. IoT sensors are lightweight, lack complicated security protocols, and...
SourceID doaj
pubmedcentral
proquest
gale
crossref
pubmed
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 6379
SubjectTerms Access control
Accuracy
Algorithms
Blockchain
Confidentiality
Data collection
Data security
Internet of Things
Machine learning
Medical equipment
Network security
Patients
Performance evaluation
Privacy
Protection and preservation
Sensors
Software
threat protection system
Threats
Virtual private networks
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELWgJzggvgkUZBASp6hx_Blu_diqCFFV7IK4WU48FkhttmJ3_z8zcTbaFQcunCIljmS_ifPmOc4bxt53IiSItisbHVCg2FiVrm1NKWsHWmrZwfDX-8XcXv5wZzOyyZlKfdGesGwPnIE7qoNJQajgpEooPrRLMQBm9SohN5nRRrIyWzE1Si2Jyiv7CEkU9UcrzGKUkbRfa4d9BpP-v1_FO1y0v09yh3jOH7IHY8bIj3NPH7E70D9m93d8BJ-wy0_LxeJq_pHP-hXctNfAv36ef__CqdDZdXmCRBV5XvqDNV8mnot14oEyRn6VrRowQDz7lz9l385ni9OLciyUUHbI9-vStNKKTivooHUOVKygAhFFXSdbtTI0LQ7fpboK5FUjARrVxNC4ZGRUug7yGTvolz28YBxb6EYEEFUMeEvbdBLxjiKahFrZmoK92wLob7MfhkcdQSj7CeWCnRC0UwOysB5OYGD9GFj_r8AW7AMFxtNEQ_S7MP4vgP0kyyp_bDUmp9JWumCH29j5cQauPNKuFJjtWVGwt9NlnDv0QST0sNwMbRRVWjM4rOc51FOfpdVEIrJgbu8h2BvU_pX-18_Bn5s85ymvfvk_YHjF7lGFe1pOFvKQHax_b-A1u7uKmzfDI_8HDzEEmA
  priority: 102
  providerName: Directory of Open Access Journals
Title IoTTPS: Ensemble RKSVM Model-Based Internet of Things Threat Protection System
URI https://www.ncbi.nlm.nih.gov/pubmed/37514673
https://www.proquest.com/docview/2843126471
https://search.proquest.com/docview/2844083166
https://pubmed.ncbi.nlm.nih.gov/PMC10383977
https://doaj.org/article/2a6fa14a834f40758fdae4954f181602
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6xPcEB8SZQKoOQOKUbx89wa8tWRajVil0Qt8jxAyrtJlV39_8zzmO1ETdOkWJbsWfGnvkc-xuAj5aa4J2yaSEMAhTlslRXlUxZrr1gglnf3nq_WqibX_rLLNLkyOEuTHto31a3p_VqfVrf_mnPVt6t7XQ4JzadX19EUu8YuEwnMMHgcMDoPcxiiLo6DiGGgH66wQiGS6YiPyhTIq4MbOSEWq7-f1fkA5c0Pi554H8un8DjPnAkZ10Hn8IDXz-DRwd0gs_h5muzXM4Xn8ms3vh1tfLk-7fFz2sS852t0nP0V450O4B-S5pAupyd-IiBI5l3jA2oJ9LRmL-AH5ez5cVV2udLSC26_W0qK6aoFdxbX2ntuct85qmjeR5UVjFTVCgJHfLMRMoa5n3BC2cKHSRzXOSGvYSjuqn9ayBYQxTUeJo5g02qwjJnvKNOBoTMSibwYRBgedfRYpQIJ6LAy73AEziPot1XiEzW7Yvm_nfZ67PMjQyGcqMZDwguhQ74IURtPGDsIbM8gU9RMWWcbyh9a_prA9jPyFxVnimBMSpTmUjgeNBd2U_ETYnel1EM-hRN4P2-GKdQ_C9iat_s2jo8JlyTOKxXnar3fR4sJgE9MoLRoMYlaLUtTfdgpW_-v-lbeBjT28e9ZMqO4Wh7v_PvYLJxu5N28-Cktfy_Rw8HJQ
link.rule.ids 230,315,729,782,786,866,887,2106,27933,27934,53800,53802
linkProvider National Library of Medicine
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxELZoOQAH3o-FAgYhcdrGXq8fy60tqVK1iSISEDfL6wdUSnarJvn_jPcRJeLW00prW2t7Zjzzee1vEPpiqQneSZsW3ABAkY6kqixFyjLlOePM-ubW-2gmJ7_V92GkyRH9XZjm0L4tr4-rxfK4uv7bnK28WdpBf05sMB2fRVLvGLgMDtB9MFhCepTeAS0GuKtlEWIA6QcriGFywWRkCGWSx7WB7bmhhq3__zV5xyntH5jc8UDnT-7a96focRdz4pO2_Bm656vn6NEOE-ELNLmo5_Pp7BseViu_LBce_7ic_RrjmCptkZ6Cq3O43Tz0a1wH3Kb7hEeMOfG0JXsAEeOWAf0l-nk-nJ-N0i7VQmohYlinomSSWp5760ulfO6IJ546mmVBkpKZooQpVCEjJrLdMO-LvHCmUEEwl_PMsFfosKor_wZhqMELajwlzkCTsrDMGe-oEwHQthQJ-tzPvL5pGTU0IJEoKb2VVIJOo0y2FSIJdvOivv2ju-nUmRHB0NwolgfApVwF-BAAvjxA2CJIlqCvUaI6miqIzZruxgH0M5Je6RPJIbxlkvAEHfVC150NrzQ4bkYhXpQ0QZ-2xWB98ZeKqXy9aerkMVebgGG9bnVk2-de1RKk9rRnb1D7JaA0DcN3ryRv7970I3owmo-v9NXF5PIdepiBVcQtacqO0OH6duPfo4OV23xoDOcfezEb7w
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-xISH2wPcgMCAgJJ6yxHEcO3vbR6tNY1VFC-LNcvzBJrVJtbb_P-d8VK14g6dIsa3Yvjvf_ZzzzwBfNFHOGq6jgikEKNwkkSjLPKKpsIwyqm1z6v1ywke_xMXA0-Sc9GdhmqR9Xd4dV7P5cXV32-RWLuY67vPE4vHNuSf19oFLvDAu3oOHaLRJ2iP1DmxRxF4tkxBFWB8vMY7Jcso9SyjlzK8PdMcVNYz9f6_LW45pN2lyywsNn_5P_5_Bky72DE_bOs_hga1ewMEWI-FLGF3V0-l4chIOqqWdlzMbfr-e_LwJ_ZVps-gMXZ4J201EuwprF7bXfuLDx57huCV9QFGHLRP6K_gxHEzPL6PuyoVIY-SwivKScqJZZrUthbCZSWxiiSFp6nhSUlWUOI3CpYnyrDfU2iIrjCqEy6nJWKroIexXdWXfQIg1WEGUJYlR2KQsNDXKGmJyh6ib5wF87mdfLlpmDYmIxEtLbqQVwJmXy6aCJ8NuXtT3v2U3pTJVuVMkU4JmDvEpEw4_hMAvcxi-5EkawFcvVelNFkWnVXfyAPvpya_kKWcY5lKesACOesHLzpaXEh04JRg3chLAp00xWqH_taIqW6-bOpm_sy3HYb1u9WTT517dAhA7GrQzqN0SVJyG6btXlLf_3vQjPBpfDOW3q9H1O3icomH4nWlCj2B_db-272FvadYfGtv5A3EfHm8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=IoTTPS%3A+Ensemble+RKSVM+Model-Based+Internet+of+Things+Threat+Protection+System&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Urooj+Akram&rft.au=Sharif%2C+Wareesa&rft.au=Shahroz%2C+Mobeen&rft.au=Muhammad+Faheem+Mushtaq&rft.date=2023-07-13&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=23&rft.issue=14&rft.spage=6379&rft_id=info:doi/10.3390%2Fs23146379&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon