IoTTPS: Ensemble RKSVM Model-Based Internet of Things Threat Protection System
An Internet of Things (IoT) network is prone to many ways of threatening individuals. IoT sensors are lightweight, lack complicated security protocols, and face threats to privacy and confidentiality. Hackers can attack the IoT network and access personal information and confidential data for blackm...
Saved in:
Published in: | Sensors (Basel, Switzerland) Vol. 23; no. 14; p. 6379 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Switzerland
MDPI AG
13-07-2023
MDPI |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | An Internet of Things (IoT) network is prone to many ways of threatening individuals. IoT sensors are lightweight, lack complicated security protocols, and face threats to privacy and confidentiality. Hackers can attack the IoT network and access personal information and confidential data for blackmailing, and negatively manipulate data. This study aims to propose an IoT threat protection system (IoTTPS) to protect the IoT network from threats using an ensemble model RKSVM, comprising a random forest (RF), K nearest neighbor (KNN), and support vector machine (SVM) model. The software-defined networks (SDN)-based IoT network datasets such as KDD cup 99, NSL-KDD, and CICIDS are used for threat detection based on machine learning. The experimental phase is conducted by using a decision tree (DT), logistic regression (LR), Naive Bayes (NB), RF, SVM, gradient boosting machine (GBM), KNN, and the proposed ensemble RKSVM model. Furthermore, performance is optimized by adding a grid search hyperparameter optimization technique with K-Fold cross-validation. As well as the NSL-KDD dataset, two other datasets, KDD and CIC-IDS 2017, are used to validate the performance. Classification accuracies of 99.7%, 99.3%, 99.7%, and 97.8% are obtained for DoS, Probe, U2R, and R2L attacks using the proposed ensemble RKSVM model using grid search and cross-fold validation. Experimental results demonstrate the superior performance of the proposed model for IoT threat detection. |
---|---|
AbstractList | An Internet of Things (IoT) network is prone to many ways of threatening individuals. IoT sensors are lightweight, lack complicated security protocols, and face threats to privacy and confidentiality. Hackers can attack the IoT network and access personal information and confidential data for blackmailing, and negatively manipulate data. This study aims to propose an IoT threat protection system (IoTTPS) to protect the IoT network from threats using an ensemble model RKSVM, comprising a random forest (RF), K nearest neighbor (KNN), and support vector machine (SVM) model. The software-defined networks (SDN)-based IoT network datasets such as KDD cup 99, NSL-KDD, and CICIDS are used for threat detection based on machine learning. The experimental phase is conducted by using a decision tree (DT), logistic regression (LR), Naive Bayes (NB), RF, SVM, gradient boosting machine (GBM), KNN, and the proposed ensemble RKSVM model. Furthermore, performance is optimized by adding a grid search hyperparameter optimization technique with K-Fold cross-validation. As well as the NSL-KDD dataset, two other datasets, KDD and CIC-IDS 2017, are used to validate the performance. Classification accuracies of 99.7%, 99.3%, 99.7%, and 97.8% are obtained for DoS, Probe, U2R, and R2L attacks using the proposed ensemble RKSVM model using grid search and cross-fold validation. Experimental results demonstrate the superior performance of the proposed model for IoT threat detection. |
Audience | Academic |
Author | Akram, Urooj Djuraev, Sirojiddin Mushtaq, Muhammad Faheem Shahroz, Mobeen Diez, Isabel de la Torre Aray, Daniel Gavilanes Thompson, Ernesto Bautista Ashraf, Imran Sharif, Wareesa |
AuthorAffiliation | 1 Department of Artificial Intelligence, The Islamia University of Bahawalpur, Bahawalpur 63100, Punjab, Pakistan; urooj.akram@iub.edu.pk (U.A.); wareesa.sharif@iub.edu.pk (W.S.); mobeen.shahroz@iub.edu.pk (M.S.) 5 Universidad Internacional Iberoamericana, Campeche 24560, Mexico 2 Higher Polytechnic School, Universidad Europea del Atlántico, Isabel Torres 21, 39011 Santander, Spain; daniel.gavilanes@uneatlantico.es (D.G.A.); ernesto.bautista@unini.edu.mx (E.B.T.) 8 Department of Software Engineering, New Uzbekistan University, Tashkent 100007, Uzbekistan; s.djuraev@newuzbekistanuniversity.uz 9 Department of Information and Communication Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea 3 Department of Projects, Universidade Internacional do Cuanza, Cuito EN250, Bié, Angola 6 Universidad Internacional Iberoamericana Arecibo, Puerto Rico, PR 00613, USA 7 Department of Signal Theory, Communications and Telematics Engineering, Unviersity of Valladolid, Paseo de Belén, 15, 47011 |
AuthorAffiliation_xml | – name: 2 Higher Polytechnic School, Universidad Europea del Atlántico, Isabel Torres 21, 39011 Santander, Spain; daniel.gavilanes@uneatlantico.es (D.G.A.); ernesto.bautista@unini.edu.mx (E.B.T.) – name: 9 Department of Information and Communication Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea – name: 7 Department of Signal Theory, Communications and Telematics Engineering, Unviersity of Valladolid, Paseo de Belén, 15, 47011 Valladolid, Spain; isator@tel.uva.es – name: 1 Department of Artificial Intelligence, The Islamia University of Bahawalpur, Bahawalpur 63100, Punjab, Pakistan; urooj.akram@iub.edu.pk (U.A.); wareesa.sharif@iub.edu.pk (W.S.); mobeen.shahroz@iub.edu.pk (M.S.) – name: 3 Department of Projects, Universidade Internacional do Cuanza, Cuito EN250, Bié, Angola – name: 5 Universidad Internacional Iberoamericana, Campeche 24560, Mexico – name: 6 Universidad Internacional Iberoamericana Arecibo, Puerto Rico, PR 00613, USA – name: 8 Department of Software Engineering, New Uzbekistan University, Tashkent 100007, Uzbekistan; s.djuraev@newuzbekistanuniversity.uz – name: 4 Research Group on Foods, Nutritional Biochemistry and Health, Fundación Universitaria Internacional de Colombia, Bogotá 11131, Colombia |
Author_xml | – sequence: 1 givenname: Urooj surname: Akram fullname: Akram, Urooj organization: Department of Artificial Intelligence, The Islamia University of Bahawalpur, Bahawalpur 63100, Punjab, Pakistan – sequence: 2 givenname: Wareesa surname: Sharif fullname: Sharif, Wareesa organization: Department of Artificial Intelligence, The Islamia University of Bahawalpur, Bahawalpur 63100, Punjab, Pakistan – sequence: 3 givenname: Mobeen orcidid: 0000-0003-1170-6335 surname: Shahroz fullname: Shahroz, Mobeen organization: Department of Artificial Intelligence, The Islamia University of Bahawalpur, Bahawalpur 63100, Punjab, Pakistan – sequence: 4 givenname: Muhammad Faheem surname: Mushtaq fullname: Mushtaq, Muhammad Faheem organization: Department of Artificial Intelligence, The Islamia University of Bahawalpur, Bahawalpur 63100, Punjab, Pakistan – sequence: 5 givenname: Daniel Gavilanes surname: Aray fullname: Aray, Daniel Gavilanes organization: Research Group on Foods, Nutritional Biochemistry and Health, Fundación Universitaria Internacional de Colombia, Bogotá 11131, Colombia – sequence: 6 givenname: Ernesto Bautista surname: Thompson fullname: Thompson, Ernesto Bautista organization: Universidad Internacional Iberoamericana Arecibo, Puerto Rico, PR 00613, USA – sequence: 7 givenname: Isabel de la Torre orcidid: 0000-0003-3134-7720 surname: Diez fullname: Diez, Isabel de la Torre organization: Department of Signal Theory, Communications and Telematics Engineering, Unviersity of Valladolid, Paseo de Belén, 15, 47011 Valladolid, Spain – sequence: 8 givenname: Sirojiddin surname: Djuraev fullname: Djuraev, Sirojiddin organization: Department of Software Engineering, New Uzbekistan University, Tashkent 100007, Uzbekistan – sequence: 9 givenname: Imran orcidid: 0000-0002-8271-6496 surname: Ashraf fullname: Ashraf, Imran organization: Department of Information and Communication Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37514673$$D View this record in MEDLINE/PubMed |
BookMark | eNpdkk1v1DAQhi1URNuFA38AReIChxR_JXa4VKUqsKKFil24Wo493nqV2MXOVuq_r8uWVYt8GGv8zDuej0O0F2IAhF4TfMRYhz9kyghvmeieoQPCKa8lpXjv0X0fHea8xpgyxuQLtM9EUwIEO0Df53G5vFx8rM5ChrEfoPr5bfH7orqIFob6k85gq3mYIAWYquiq5ZUPq1xMAj1VlylOYCYfQ7W4zROML9Fzp4cMrx7sDP36fLY8_Vqf__gyPz05r02Du6lueyaIaTgY6KUEbjFgIJZQ6gTume76UpB0FGvBiWQAHe-s7qRrmeUN1WyG5ltdG_VaXSc_6nSrovbqryOmldJp8mYARXXrNOFaMu44Fo10VgPvGu6IJG1pyQwdb7WuN_0I1kCYkh6eiD59Cf5KreKNIphJ1glRFN49KKT4ZwN5UqPPBoZBB4ibrKjkHEtG2ragb_9D13GTQunVPcUIbbkghTraUitdKvDBxZLYlGNh9KYM3_niPxFNVyYqcFMC3m8DTIo5J3C77xOs7ndE7XaksG8e17sj_y0FuwP6HbVr |
CitedBy_id | crossref_primary_10_3390_s23218958 |
Cites_doi | 10.1109/ACCESS.2019.2895334 10.1016/j.gltp.2021.08.045 10.1109/MCE.2019.2953740 10.1016/j.cose.2021.102352 10.1016/j.aci.2017.10.003 10.1145/2899015.2899016 10.1109/TII.2021.3089462 10.1109/TNSE.2020.3004312 10.1109/JIOT.2021.3079916 10.1109/WFCS.2017.7991968 10.1109/ICOSEC49089.2020.9215232 10.1109/ICCCN.2018.8487449 10.1155/2022/8481452 10.3390/systems11010043 10.1103/PhysRevLett.71.3363 10.1023/A:1010933404324 10.1016/j.eswa.2005.07.019 10.1016/j.cosrev.2020.100357 10.1016/j.compeleceng.2022.108350 10.1109/ICDSE.2012.6282329 10.1109/ACCESS.2019.2923640 10.1016/j.future.2020.09.006 10.1088/1757-899X/1107/1/012031 10.1155/2018/9463653 10.1007/978-3-030-24305-0_45 10.1109/ACCESS.2019.2937347 10.1016/j.comnet.2021.108040 10.1016/j.eswa.2016.06.005 10.1007/s10489-020-01886-y 10.1016/j.comnet.2019.05.013 10.1007/s11276-020-02535-5 10.1109/ICWISE.2017.8267153 10.1109/SPW.2018.00013 10.1016/j.micpro.2020.103766 10.1186/s13635-018-0081-z 10.1016/j.cosrev.2020.100318 10.9734/ajrcos/2021/v9i230218 10.1109/ACCESS.2020.2994931 10.1007/s10618-013-0304-3 10.3390/electronics11040667 10.1007/s10586-021-03309-0 10.1109/ACCESS.2020.3048198 10.1016/j.jnca.2018.03.030 10.1002/dac.4515 10.1088/1757-899X/648/1/012039 10.1007/s12065-019-00291-w 10.1016/j.scs.2019.101728 10.1002/cpe.5402 10.1145/3290605.3300764 10.1109/TIFS.2020.3017928 10.1016/j.resconrec.2020.105047 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023 by the authors. 2023 |
Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023 by the authors. 2023 |
DBID | NPM AAYXX CITATION 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PIMPY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.3390/s23146379 |
DatabaseName | PubMed CrossRef ProQuest Central (Corporate) Health & Medical Collection (Proquest) ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) Publicly Available Content Database (Proquest) (PQ_SDU_P3) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) Directory of Open Access Journals |
DatabaseTitle | PubMed CrossRef Publicly Available Content Database ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Central China ProQuest Hospital Collection (Alumni) ProQuest Central ProQuest Health & Medical Complete Health Research Premium Collection ProQuest Medical Library ProQuest One Academic UKI Edition Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest One Academic ProQuest Medical Library (Alumni) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database CrossRef PubMed |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: http://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1424-8220 |
ExternalDocumentID | oai_doaj_org_article_2a6fa14a834f40758fdae4954f181602 A759233705 10_3390_s23146379 37514673 |
Genre | Journal Article |
GeographicLocations | Germany |
GeographicLocations_xml | – name: Germany |
GrantInformation_xml | – fundername: the European University of Atlantics grantid: N/A – fundername: European University of Atlantic |
GroupedDBID | --- 123 2WC 3V. 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH ABDBF ABJCF ABUWG ADBBV AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS ARAPS BENPR BPHCQ BVXVI CCPQU CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE IAO ITC KB. KQ8 L6V M1P M48 M7S MODMG M~E NPM OK1 P2P P62 PDBOC PIMPY PQQKQ PROAC PSQYO RIG RNS RPM TUS UKHRP XSB ~8M AAYXX CITATION 7XB 8FK AZQEC DWQXO K9. PQEST PQUKI PRINS 7X8 5PM |
ID | FETCH-LOGICAL-c509t-6b371c54eceb88e4d0e0e1d122f70b3a9b3148f20a74183ee949da98f63d452a3 |
IEDL.DBID | RPM |
ISSN | 1424-8220 |
IngestDate | Tue Oct 22 15:13:31 EDT 2024 Tue Sep 17 21:31:03 EDT 2024 Sat Oct 26 01:12:33 EDT 2024 Thu Oct 10 17:26:44 EDT 2024 Wed Nov 13 00:11:38 EST 2024 Thu Nov 21 21:24:28 EST 2024 Sat Sep 28 08:08:52 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 14 |
Keywords | privacy threat protection system Internet of Things machine learning confidentiality |
Language | English |
License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c509t-6b371c54eceb88e4d0e0e1d122f70b3a9b3148f20a74183ee949da98f63d452a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 These authors contributed equally to this work. |
ORCID | 0000-0003-1170-6335 0000-0003-3134-7720 0000-0002-8271-6496 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10383977/ |
PMID | 37514673 |
PQID | 2843126471 |
PQPubID | 2032333 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_2a6fa14a834f40758fdae4954f181602 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10383977 proquest_miscellaneous_2844083166 proquest_journals_2843126471 gale_infotracacademiconefile_A759233705 crossref_primary_10_3390_s23146379 pubmed_primary_37514673 |
PublicationCentury | 2000 |
PublicationDate | 20230713 |
PublicationDateYYYYMMDD | 2023-07-13 |
PublicationDate_xml | – month: 7 year: 2023 text: 20230713 day: 13 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationTitleAlternate | Sensors (Basel) |
PublicationYear | 2023 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Aldabbas (ref_29) 2021; 24 Salem (ref_31) 2021; 18 (ref_30) 2021; 34 Breiman (ref_56) 2001; 45 Haji (ref_13) 2021; 9 Keerthika (ref_10) 2021; 2 ref_14 ref_58 ref_57 Ma (ref_66) 2020; 8 Ashraf (ref_48) 2022; 24 ref_55 ref_54 Xenofontos (ref_11) 2021; 9 Ande (ref_1) 2020; 54 Alladi (ref_15) 2020; 9 Sreeram (ref_45) 2019; 15 Fahmi (ref_4) 2019; 648 Costa (ref_8) 2019; Volume 1 ref_19 ref_18 ref_16 Yurekten (ref_28) 2021; 115 ref_59 Chkirbene (ref_68) 2020; 8 Tama (ref_22) 2021; 39 Fuat (ref_73) 2023; 12 Nayak (ref_39) 2022; 36 Priyadarshini (ref_46) 2019; 34 Anyanwu (ref_51) 2009; 3 Burhanuddin (ref_23) 2017; 12 Caminero (ref_71) 2019; 159 Zhao (ref_44) 2018; 2018 ref_24 Byers (ref_53) 1993; 71 ref_21 ref_20 Esmaeili (ref_62) 2022; 2022 Troiano (ref_52) 2014; 28 Devarakonda (ref_63) 2022; 2161 Rathi (ref_5) 2022; 103 Gao (ref_70) 2019; 7 Revathi (ref_64) 2013; 2 Xing (ref_2) 2021; 82 Tan (ref_60) 2006; 30 ref_72 Hajjaji (ref_25) 2021; 39 Singh (ref_42) 2018; 112 Ullah (ref_50) 2019; 7 Liu (ref_65) 2021; 9 ref_34 ref_33 Ahmad (ref_26) 2021; 81 Hameed (ref_43) 2018; 2018 ref_74 Ingemarsdotter (ref_6) 2020; 162 Vinayakumar (ref_69) 2019; 7 ref_38 ref_37 Praseed (ref_47) 2020; 16 Jaafar (ref_40) 2019; 2019 Anthi (ref_35) 2021; 108 Ammar (ref_17) 2018; 38 Babun (ref_27) 2021; 192 Kumar (ref_12) 2021; 14 Oladimeji (ref_36) 2021; 1107 Javanmardi (ref_32) 2021; 60 Onan (ref_61) 2016; 62 Mousavi (ref_9) 2021; 27 ref_3 Santos (ref_41) 2020; 32 ref_49 Bedi (ref_67) 2021; 51 ref_7 |
References_xml | – volume: 7 start-page: 41525 year: 2019 ident: ref_69 article-title: Deep Learning Approach for Intelligent Intrusion Detection System publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2895334 contributor: fullname: Vinayakumar – volume: 60 start-page: 102853 year: 2021 ident: ref_32 article-title: FUPE: A security driven task scheduling approach for SDN-based IoT—Fog networks publication-title: J. Inf. Secur. Appl. contributor: fullname: Javanmardi – volume: 2 start-page: 362 year: 2021 ident: ref_10 article-title: Wireless Sensor Networks: Active and Passive attacks Vulnerabilities and Countermeasures publication-title: Glob. Transit. Proc. doi: 10.1016/j.gltp.2021.08.045 contributor: fullname: Keerthika – volume: 2019 start-page: 1283472 year: 2019 ident: ref_40 article-title: Review of Recent Detection Methods for HTTP DDoS Attack publication-title: J. Comput. Netw. Commun. contributor: fullname: Jaafar – ident: ref_74 – volume: 9 start-page: 17 year: 2020 ident: ref_15 article-title: Consumer IoT: Security vulnerability case studies and solutions publication-title: IEEE Consum. Electron. Mag. doi: 10.1109/MCE.2019.2953740 contributor: fullname: Alladi – volume: 108 start-page: 102352 year: 2021 ident: ref_35 article-title: Hardening machine learning denial of service (DoS) defences against adversarial attacks in IoT smart home networks publication-title: Comput. Secur. doi: 10.1016/j.cose.2021.102352 contributor: fullname: Anthi – volume: 15 start-page: 59 year: 2019 ident: ref_45 article-title: HTTP flood attack detection in application layer using machine learning metrics and bio inspired bat algorithm publication-title: Appl. Comput. Inform. doi: 10.1016/j.aci.2017.10.003 contributor: fullname: Sreeram – ident: ref_38 doi: 10.1145/2899015.2899016 – volume: 24 start-page: 2677 year: 2022 ident: ref_48 article-title: A survey on cyber security threats in IoT-enabled maritime industry publication-title: IEEE Trans. Intell. Transp. Syst. contributor: fullname: Ashraf – volume: 3 start-page: 230 year: 2009 ident: ref_51 article-title: Comparative analysis of serial decision tree classification algorithms publication-title: Int. J. Comput. Sci. Secur. contributor: fullname: Anyanwu – volume: 18 start-page: 2053 year: 2021 ident: ref_31 article-title: Man in the Middle Attack Mitigation in Internet of Medical Things publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2021.3089462 contributor: fullname: Salem – volume: 8 start-page: 943 year: 2020 ident: ref_66 article-title: Aesmote: Adversarial reinforcement learning with smote for anomaly detection publication-title: IEEE Trans. Netw. Sci. Eng. doi: 10.1109/TNSE.2020.3004312 contributor: fullname: Ma – ident: ref_58 – volume: 9 start-page: 199 year: 2021 ident: ref_11 article-title: Consumer, commercial and industrial iot (in) security: Attack taxonomy and case studies publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2021.3079916 contributor: fullname: Xenofontos – ident: ref_16 doi: 10.1109/WFCS.2017.7991968 – ident: ref_72 doi: 10.1109/ICOSEC49089.2020.9215232 – ident: ref_21 doi: 10.1109/ICCCN.2018.8487449 – volume: 2022 start-page: 8481452 year: 2022 ident: ref_62 article-title: ML-DDoSnet: IoT Intrusion Detection Based on Denial-of-Service Attacks Using Machine Learning Methods and NSL-KDD publication-title: Wirel. Commun. Mob. Comput. doi: 10.1155/2022/8481452 contributor: fullname: Esmaeili – ident: ref_3 doi: 10.3390/systems11010043 – volume: 71 start-page: 3363 year: 1993 ident: ref_53 article-title: Influence of gap extrema on the tunneling conductance near an impurity in an anisotropic superconductor publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.71.3363 contributor: fullname: Byers – volume: 38 start-page: 8 year: 2018 ident: ref_17 article-title: Internet of Things: A survey on the security of IoT frameworks publication-title: J. Inf. Secur. Appl. contributor: fullname: Ammar – volume: 45 start-page: 5 year: 2001 ident: ref_56 article-title: Random forests publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 contributor: fullname: Breiman – volume: 30 start-page: 290 year: 2006 ident: ref_60 article-title: An effective refinement strategy for KNN text classifier publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2005.07.019 contributor: fullname: Tan – volume: 39 start-page: 100357 year: 2021 ident: ref_22 article-title: Ensemble learning for intrusion detection systems: A systematic mapping study and cross-benchmark evaluation publication-title: Comput. Sci. Rev. doi: 10.1016/j.cosrev.2020.100357 contributor: fullname: Tama – volume: 81 start-page: 36931 year: 2021 ident: ref_26 article-title: An approach to adding simple interface as security gateway architecture for IoT device publication-title: Multimed. Tools Appl. contributor: fullname: Ahmad – volume: 103 start-page: 108350 year: 2022 ident: ref_5 article-title: A metric focused performance assessment of fog computing environments: A critical review publication-title: Comput. Electr. Eng. doi: 10.1016/j.compeleceng.2022.108350 contributor: fullname: Rathi – ident: ref_55 doi: 10.1109/ICDSE.2012.6282329 – volume: 7 start-page: 82512 year: 2019 ident: ref_70 article-title: An Adaptive Ensemble Machine Learning Model for Intrusion Detection publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2923640 contributor: fullname: Gao – ident: ref_20 – volume: 115 start-page: 126 year: 2021 ident: ref_28 article-title: SDN-based cyber defense: A survey publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2020.09.006 contributor: fullname: Yurekten – volume: 36 start-page: 100805 year: 2022 ident: ref_39 article-title: Hybrid Bayesian optimization hypertuned catboost approach for malicious access and anomaly detection in IoT nomalyframework publication-title: Sustain. Comput. contributor: fullname: Nayak – ident: ref_59 – volume: 1107 start-page: 12031 year: 2021 ident: ref_36 article-title: Insider Threat Detection using Binary Classification Algorithms publication-title: IOP Conf. Ser. doi: 10.1088/1757-899X/1107/1/012031 contributor: fullname: Oladimeji – volume: 2018 start-page: 9463653 year: 2018 ident: ref_44 article-title: A Classification Detection Algorithm Based on Joint Entropy Vector against Application-Layer DDoS Attack publication-title: Secur. Commun. Netw. doi: 10.1155/2018/9463653 contributor: fullname: Zhao – ident: ref_24 – ident: ref_34 – volume: 12 start-page: 11055 year: 2017 ident: ref_23 article-title: Internet of things architecture: Current challenges and future direction of research publication-title: Int. J. Appl. Eng. Res. contributor: fullname: Burhanuddin – ident: ref_33 doi: 10.1007/978-3-030-24305-0_45 – volume: 7 start-page: 124379 year: 2019 ident: ref_50 article-title: Cyber security threats detection in internet of things using deep learning approach publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2937347 contributor: fullname: Ullah – ident: ref_14 – ident: ref_18 – volume: 192 start-page: 108040 year: 2021 ident: ref_27 article-title: A survey on IoT platforms: Communication, security, and privacy perspectives publication-title: Comput. Netw. doi: 10.1016/j.comnet.2021.108040 contributor: fullname: Babun – volume: 62 start-page: 1 year: 2016 ident: ref_61 article-title: A multiobjective weighted voting ensemble classifier based on differential evolution algorithm for text sentiment classification publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2016.06.005 contributor: fullname: Onan – volume: 51 start-page: 1133 year: 2021 ident: ref_67 article-title: I-SiamIDS: An improved Siam-IDS for handling class imbalance in network-based intrusion detection systems publication-title: Appl. Intell. doi: 10.1007/s10489-020-01886-y contributor: fullname: Bedi – volume: 159 start-page: 96 year: 2019 ident: ref_71 article-title: Adversarial environment reinforcement learning algorithm for intrusion detection publication-title: Comput. Netw. doi: 10.1016/j.comnet.2019.05.013 contributor: fullname: Caminero – volume: 27 start-page: 1515 year: 2021 ident: ref_9 article-title: Security of internet of things based on cryptographic algorithms: A survey publication-title: Wirel. Netw. doi: 10.1007/s11276-020-02535-5 contributor: fullname: Mousavi – ident: ref_7 doi: 10.1109/ICWISE.2017.8267153 – ident: ref_37 doi: 10.1109/SPW.2018.00013 – volume: 12 start-page: 465 year: 2023 ident: ref_73 article-title: Analysis of Intrusion Detection Systems in UNSW-NB15 and NSL-KDD Datasets with Machine Learning Algorithms publication-title: Bitlis Eren Univ. Bilim. Derg. contributor: fullname: Fuat – volume: 82 start-page: 103766 year: 2021 ident: ref_2 article-title: Real time monitoring of medical images and nursing intervention after heart valve replacement publication-title: Microprocess. Microsyst. doi: 10.1016/j.micpro.2020.103766 contributor: fullname: Xing – volume: 2018 start-page: 11 year: 2018 ident: ref_43 article-title: HADEC: Hadoop-based live DDoS detection framework publication-title: EURASIP J. Inf. Secur. doi: 10.1186/s13635-018-0081-z contributor: fullname: Hameed – volume: 39 start-page: 100318 year: 2021 ident: ref_25 article-title: Big data and IoT-based applications in smart environments: A systematic review publication-title: Comput. Sci. Rev. doi: 10.1016/j.cosrev.2020.100318 contributor: fullname: Hajjaji – volume: 9 start-page: 30 year: 2021 ident: ref_13 article-title: Attack and anomaly detection in iot networks using machine learning techniques: A review publication-title: Asian J. Res. Comput. Sci. doi: 10.9734/ajrcos/2021/v9i230218 contributor: fullname: Haji – ident: ref_54 – volume: 8 start-page: 95864 year: 2020 ident: ref_68 article-title: TIDCS: A Dynamic Intrusion Detection and Classification System Based Feature Selection publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2994931 contributor: fullname: Chkirbene – volume: 28 start-page: 773 year: 2014 ident: ref_52 article-title: A time-efficient breadth-first level-wise lattice-traversal algorithm to discover rare itemsets publication-title: Data Min. Knowl. Discov. doi: 10.1007/s10618-013-0304-3 contributor: fullname: Troiano – volume: Volume 1 start-page: 615 year: 2019 ident: ref_8 article-title: Vulnerabilities in IoT Devices for Smart Home Environment publication-title: Proceedings of the 5th International Conference on Information Systems Security and Privacy, ICISSP 2019 contributor: fullname: Costa – volume: 2 start-page: 1848 year: 2013 ident: ref_64 article-title: A Detailed Analysis on NSL-KDD Dataset using various Machine Learning Techniques for Intrusion Detection publication-title: Int. J. Eng. Res. Technol. IJERT contributor: fullname: Revathi – ident: ref_49 doi: 10.3390/electronics11040667 – volume: 24 start-page: 3011 year: 2021 ident: ref_29 article-title: A novel mechanism to handle address spoofing attacks in SDN based IoT publication-title: Clust. Comput. doi: 10.1007/s10586-021-03309-0 contributor: fullname: Aldabbas – volume: 9 start-page: 7550 year: 2021 ident: ref_65 article-title: Intrusion Detection of Imbalanced Network Traffic Based on Machine Learning and Deep Learning publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3048198 contributor: fullname: Liu – volume: 112 start-page: 97 year: 2018 ident: ref_42 article-title: User behavior analytics-based classification of application layer HTTP-GET flood attacks publication-title: J. Netw. Comput. Appl. doi: 10.1016/j.jnca.2018.03.030 contributor: fullname: Singh – volume: 34 start-page: e4515 year: 2021 ident: ref_30 article-title: IoT-based platform for environment data sharing in smart cities publication-title: Int. J. Commun. Syst. doi: 10.1002/dac.4515 – volume: 648 start-page: 12039 year: 2019 ident: ref_4 article-title: Design of hardware module for the vehicle condition monitoring system based on the internet of things publication-title: IOP Conf. Ser. doi: 10.1088/1757-899X/648/1/012039 contributor: fullname: Fahmi – volume: 34 start-page: 825 year: 2019 ident: ref_46 article-title: A deep learning based intelligent framework to mitigate DDoS attack in fog environment publication-title: J. King Saud Univ. contributor: fullname: Priyadarshini – volume: 14 start-page: 47 year: 2021 ident: ref_12 article-title: UIDS: A unified intrusion detection system for IoT environment publication-title: Evol. Intell. doi: 10.1007/s12065-019-00291-w contributor: fullname: Kumar – volume: 2161 start-page: 12043 year: 2022 ident: ref_63 article-title: Network intrusion detection: A comparative study of four classifiers using the NSL-KDD and KDD’99 datasets publication-title: Ournal Phys. contributor: fullname: Devarakonda – volume: 54 start-page: 101728 year: 2020 ident: ref_1 article-title: Internet of Things: Evolution and technologies from a security perspective publication-title: Sustain. Cities Soc. doi: 10.1016/j.scs.2019.101728 contributor: fullname: Ande – volume: 32 start-page: 1 year: 2020 ident: ref_41 article-title: Machine learning algorithms to detect DDoS attacks in SDN publication-title: Concurr. Comput. doi: 10.1002/cpe.5402 contributor: fullname: Santos – ident: ref_57 – ident: ref_19 doi: 10.1145/3290605.3300764 – volume: 16 start-page: 617 year: 2020 ident: ref_47 article-title: Modelling Behavioural Dynamics for Asymmetric Application Layer DDoS Detection publication-title: IEEE Trans. Inf. Forensics Secur. doi: 10.1109/TIFS.2020.3017928 contributor: fullname: Praseed – volume: 162 start-page: 105047 year: 2020 ident: ref_6 article-title: Opportunities and challenges in IoT-enabled circular business model implementation—A case study publication-title: Resour. Conserv. Recycl. doi: 10.1016/j.resconrec.2020.105047 contributor: fullname: Ingemarsdotter |
SSID | ssj0023338 |
Score | 2.452917 |
Snippet | An Internet of Things (IoT) network is prone to many ways of threatening individuals. IoT sensors are lightweight, lack complicated security protocols, and... |
SourceID | doaj pubmedcentral proquest gale crossref pubmed |
SourceType | Open Website Open Access Repository Aggregation Database Index Database |
StartPage | 6379 |
SubjectTerms | Access control Accuracy Algorithms Blockchain Confidentiality Data collection Data security Internet of Things Machine learning Medical equipment Network security Patients Performance evaluation Privacy Protection and preservation Sensors Software threat protection system Threats Virtual private networks |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELWgJzggvgkUZBASp6hx_Blu_diqCFFV7IK4WU48FkhttmJ3_z8zcTbaFQcunCIljmS_ifPmOc4bxt53IiSItisbHVCg2FiVrm1NKWsHWmrZwfDX-8XcXv5wZzOyyZlKfdGesGwPnIE7qoNJQajgpEooPrRLMQBm9SohN5nRRrIyWzE1Si2Jyiv7CEkU9UcrzGKUkbRfa4d9BpP-v1_FO1y0v09yh3jOH7IHY8bIj3NPH7E70D9m93d8BJ-wy0_LxeJq_pHP-hXctNfAv36ef__CqdDZdXmCRBV5XvqDNV8mnot14oEyRn6VrRowQDz7lz9l385ni9OLciyUUHbI9-vStNKKTivooHUOVKygAhFFXSdbtTI0LQ7fpboK5FUjARrVxNC4ZGRUug7yGTvolz28YBxb6EYEEFUMeEvbdBLxjiKahFrZmoK92wLob7MfhkcdQSj7CeWCnRC0UwOysB5OYGD9GFj_r8AW7AMFxtNEQ_S7MP4vgP0kyyp_bDUmp9JWumCH29j5cQauPNKuFJjtWVGwt9NlnDv0QST0sNwMbRRVWjM4rOc51FOfpdVEIrJgbu8h2BvU_pX-18_Bn5s85ymvfvk_YHjF7lGFe1pOFvKQHax_b-A1u7uKmzfDI_8HDzEEmA priority: 102 providerName: Directory of Open Access Journals |
Title | IoTTPS: Ensemble RKSVM Model-Based Internet of Things Threat Protection System |
URI | https://www.ncbi.nlm.nih.gov/pubmed/37514673 https://www.proquest.com/docview/2843126471 https://search.proquest.com/docview/2844083166 https://pubmed.ncbi.nlm.nih.gov/PMC10383977 https://doaj.org/article/2a6fa14a834f40758fdae4954f181602 |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6xPcEB8SZQKoOQOKUbx89wa8tWRajVil0Qt8jxAyrtJlV39_8zzmO1ETdOkWJbsWfGnvkc-xuAj5aa4J2yaSEMAhTlslRXlUxZrr1gglnf3nq_WqibX_rLLNLkyOEuTHto31a3p_VqfVrf_mnPVt6t7XQ4JzadX19EUu8YuEwnMMHgcMDoPcxiiLo6DiGGgH66wQiGS6YiPyhTIq4MbOSEWq7-f1fkA5c0Pi554H8un8DjPnAkZ10Hn8IDXz-DRwd0gs_h5muzXM4Xn8ms3vh1tfLk-7fFz2sS852t0nP0V450O4B-S5pAupyd-IiBI5l3jA2oJ9LRmL-AH5ez5cVV2udLSC26_W0qK6aoFdxbX2ntuct85qmjeR5UVjFTVCgJHfLMRMoa5n3BC2cKHSRzXOSGvYSjuqn9ayBYQxTUeJo5g02qwjJnvKNOBoTMSibwYRBgedfRYpQIJ6LAy73AEziPot1XiEzW7Yvm_nfZ67PMjQyGcqMZDwguhQ74IURtPGDsIbM8gU9RMWWcbyh9a_prA9jPyFxVnimBMSpTmUjgeNBd2U_ETYnel1EM-hRN4P2-GKdQ_C9iat_s2jo8JlyTOKxXnar3fR4sJgE9MoLRoMYlaLUtTfdgpW_-v-lbeBjT28e9ZMqO4Wh7v_PvYLJxu5N28-Cktfy_Rw8HJQ |
link.rule.ids | 230,315,729,782,786,866,887,2106,27933,27934,53800,53802 |
linkProvider | National Library of Medicine |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxELZoOQAH3o-FAgYhcdrGXq8fy60tqVK1iSISEDfL6wdUSnarJvn_jPcRJeLW00prW2t7Zjzzee1vEPpiqQneSZsW3ABAkY6kqixFyjLlOePM-ubW-2gmJ7_V92GkyRH9XZjm0L4tr4-rxfK4uv7bnK28WdpBf05sMB2fRVLvGLgMDtB9MFhCepTeAS0GuKtlEWIA6QcriGFywWRkCGWSx7WB7bmhhq3__zV5xyntH5jc8UDnT-7a96focRdz4pO2_Bm656vn6NEOE-ELNLmo5_Pp7BseViu_LBce_7ic_RrjmCptkZ6Cq3O43Tz0a1wH3Kb7hEeMOfG0JXsAEeOWAf0l-nk-nJ-N0i7VQmohYlinomSSWp5760ulfO6IJ546mmVBkpKZooQpVCEjJrLdMO-LvHCmUEEwl_PMsFfosKor_wZhqMELajwlzkCTsrDMGe-oEwHQthQJ-tzPvL5pGTU0IJEoKb2VVIJOo0y2FSIJdvOivv2ju-nUmRHB0NwolgfApVwF-BAAvjxA2CJIlqCvUaI6miqIzZruxgH0M5Je6RPJIbxlkvAEHfVC150NrzQ4bkYhXpQ0QZ-2xWB98ZeKqXy9aerkMVebgGG9bnVk2-de1RKk9rRnb1D7JaA0DcN3ryRv7970I3owmo-v9NXF5PIdepiBVcQtacqO0OH6duPfo4OV23xoDOcfezEb7w |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-xISH2wPcgMCAgJJ6yxHEcO3vbR6tNY1VFC-LNcvzBJrVJtbb_P-d8VK14g6dIsa3Yvjvf_ZzzzwBfNFHOGq6jgikEKNwkkSjLPKKpsIwyqm1z6v1ywke_xMXA0-Sc9GdhmqR9Xd4dV7P5cXV32-RWLuY67vPE4vHNuSf19oFLvDAu3oOHaLRJ2iP1DmxRxF4tkxBFWB8vMY7Jcso9SyjlzK8PdMcVNYz9f6_LW45pN2lyywsNn_5P_5_Bky72DE_bOs_hga1ewMEWI-FLGF3V0-l4chIOqqWdlzMbfr-e_LwJ_ZVps-gMXZ4J201EuwprF7bXfuLDx57huCV9QFGHLRP6K_gxHEzPL6PuyoVIY-SwivKScqJZZrUthbCZSWxiiSFp6nhSUlWUOI3CpYnyrDfU2iIrjCqEy6nJWKroIexXdWXfQIg1WEGUJYlR2KQsNDXKGmJyh6ib5wF87mdfLlpmDYmIxEtLbqQVwJmXy6aCJ8NuXtT3v2U3pTJVuVMkU4JmDvEpEw4_hMAvcxi-5EkawFcvVelNFkWnVXfyAPvpya_kKWcY5lKesACOesHLzpaXEh04JRg3chLAp00xWqH_taIqW6-bOpm_sy3HYb1u9WTT517dAhA7GrQzqN0SVJyG6btXlLf_3vQjPBpfDOW3q9H1O3icomH4nWlCj2B_db-272FvadYfGtv5A3EfHm8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=IoTTPS%3A+Ensemble+RKSVM+Model-Based+Internet+of+Things+Threat+Protection+System&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Urooj+Akram&rft.au=Sharif%2C+Wareesa&rft.au=Shahroz%2C+Mobeen&rft.au=Muhammad+Faheem+Mushtaq&rft.date=2023-07-13&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=23&rft.issue=14&rft.spage=6379&rft_id=info:doi/10.3390%2Fs23146379&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |