occAssess: An R package for assessing potential biases in species occurrence data

Species occurrence records from a variety of sources are increasingly aggregated into heterogeneous databases and made available to ecologists for immediate analytical use. However, these data are typically biased, i.e. they are not a probability sample of the target population of interest, meaning...

Full description

Saved in:
Bibliographic Details
Published in:Ecology and evolution Vol. 11; no. 22; pp. 16177 - 16187
Main Authors: Boyd, Robin J., Powney, Gary D., Carvell, Claire, Pescott, Oliver L.
Format: Journal Article
Language:English
Published: England John Wiley & Sons, Inc 01-11-2021
John Wiley and Sons Inc
Wiley
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Species occurrence records from a variety of sources are increasingly aggregated into heterogeneous databases and made available to ecologists for immediate analytical use. However, these data are typically biased, i.e. they are not a probability sample of the target population of interest, meaning that the information they provide may not be an accurate reflection of reality. It is therefore crucial that species occurrence data are properly scrutinised before they are used for research. In this article, we introduce occAssess, an R package that enables straightforward screening of species occurrence data for potential biases. The package contains a number of discrete functions, each of which returns a measure of the potential for bias in one or more of the taxonomic, temporal, spatial, and environmental dimensions. Users can opt to provide a set of time periods into which the data will be split; in this case separate outputs will be provided for each period, making the package particularly useful for assessing the suitability of a dataset for estimating temporal trends in species' distributions. The outputs are provided visually (as ggplot2 objects) and do not include a formal recommendation as to whether data are of sufficient quality for any given inferential use. Instead, they should be used as ancillary information and viewed in the context of the question that is being asked, and the methods that are being used to answer it. We demonstrate the utility of occAssess by applying it to data on two key pollinator taxa in South America: leaf‐nosed bats (Phyllostomidae) and hoverflies (Syrphidae). In this worked example, we briefly assess the degree to which various aspects of data coverage appear to have changed over time. We then discuss additional applications of the package, highlight its limitations, and point to future development opportunities. With the advent of online data aggregators and the digitization of historic records, ecologists now have access to huge quantities of species occurrence records. However, these data are typically biased – that is, they are not representative of the target populations of interest – which can lead to spurious inferences about species' distributions and how they have changed over time. In this paper, we present occAssess, an R package that enables straightforward screening of species occurrence data for biases, thereby helping researchers to avoid reaching biased conclusions.
AbstractList Species occurrence records from a variety of sources are increasingly aggregated into heterogeneous databases and made available to ecologists for immediate analytical use. However, these data are typically biased, i.e. they are not a probability sample of the target population of interest, meaning that the information they provide may not be an accurate reflection of reality. It is therefore crucial that species occurrence data are properly scrutinised before they are used for research. In this article, we introduce occAssess, an R package that enables straightforward screening of species occurrence data for potential biases. The package contains a number of discrete functions, each of which returns a measure of the potential for bias in one or more of the taxonomic, temporal, spatial, and environmental dimensions. Users can opt to provide a set of time periods into which the data will be split; in this case separate outputs will be provided for each period, making the package particularly useful for assessing the suitability of a dataset for estimating temporal trends in species' distributions. The outputs are provided visually (as ggplot2 objects) and do not include a formal recommendation as to whether data are of sufficient quality for any given inferential use. Instead, they should be used as ancillary information and viewed in the context of the question that is being asked, and the methods that are being used to answer it. We demonstrate the utility of occAssess by applying it to data on two key pollinator taxa in South America: leaf‐nosed bats (Phyllostomidae) and hoverflies (Syrphidae). In this worked example, we briefly assess the degree to which various aspects of data coverage appear to have changed over time. We then discuss additional applications of the package, highlight its limitations, and point to future development opportunities. With the advent of online data aggregators and the digitization of historic records, ecologists now have access to huge quantities of species occurrence records. However, these data are typically biased – that is, they are not representative of the target populations of interest – which can lead to spurious inferences about species' distributions and how they have changed over time. In this paper, we present occAssess, an R package that enables straightforward screening of species occurrence data for biases, thereby helping researchers to avoid reaching biased conclusions.
Species occurrence records from a variety of sources are increasingly aggregated into heterogeneous databases and made available to ecologists for immediate analytical use. However, these data are typically biased, i.e. they are not a probability sample of the target population of interest, meaning that the information they provide may not be an accurate reflection of reality. It is therefore crucial that species occurrence data are properly scrutinised before they are used for research. In this article, we introduce occAssess, an R package that enables straightforward screening of species occurrence data for potential biases. The package contains a number of discrete functions, each of which returns a measure of the potential for bias in one or more of the taxonomic, temporal, spatial, and environmental dimensions. Users can opt to provide a set of time periods into which the data will be split; in this case separate outputs will be provided for each period, making the package particularly useful for assessing the suitability of a dataset for estimating temporal trends in species' distributions. The outputs are provided visually (as ggplot2 objects) and do not include a formal recommendation as to whether data are of sufficient quality for any given inferential use. Instead, they should be used as ancillary information and viewed in the context of the question that is being asked, and the methods that are being used to answer it. We demonstrate the utility of occAssess by applying it to data on two key pollinator taxa in South America: leaf‐nosed bats (Phyllostomidae) and hoverflies (Syrphidae). In this worked example, we briefly assess the degree to which various aspects of data coverage appear to have changed over time. We then discuss additional applications of the package, highlight its limitations, and point to future development opportunities.
Abstract Species occurrence records from a variety of sources are increasingly aggregated into heterogeneous databases and made available to ecologists for immediate analytical use. However, these data are typically biased, i.e. they are not a probability sample of the target population of interest, meaning that the information they provide may not be an accurate reflection of reality. It is therefore crucial that species occurrence data are properly scrutinised before they are used for research. In this article, we introduce occAssess, an R package that enables straightforward screening of species occurrence data for potential biases. The package contains a number of discrete functions, each of which returns a measure of the potential for bias in one or more of the taxonomic, temporal, spatial, and environmental dimensions. Users can opt to provide a set of time periods into which the data will be split; in this case separate outputs will be provided for each period, making the package particularly useful for assessing the suitability of a dataset for estimating temporal trends in species' distributions. The outputs are provided visually (as ggplot2 objects) and do not include a formal recommendation as to whether data are of sufficient quality for any given inferential use. Instead, they should be used as ancillary information and viewed in the context of the question that is being asked, and the methods that are being used to answer it. We demonstrate the utility of occAssess by applying it to data on two key pollinator taxa in South America: leaf‐nosed bats (Phyllostomidae) and hoverflies (Syrphidae). In this worked example, we briefly assess the degree to which various aspects of data coverage appear to have changed over time. We then discuss additional applications of the package, highlight its limitations, and point to future development opportunities.
Author Pescott, Oliver L.
Powney, Gary D.
Carvell, Claire
Boyd, Robin J.
AuthorAffiliation 1 UK Centre for Ecology and Hydrology Wallingford UK
2 Oxford Martin School & School of Geography and Environment University of Oxford Oxford UK
AuthorAffiliation_xml – name: 1 UK Centre for Ecology and Hydrology Wallingford UK
– name: 2 Oxford Martin School & School of Geography and Environment University of Oxford Oxford UK
Author_xml – sequence: 1
  givenname: Robin J.
  orcidid: 0000-0002-7973-9865
  surname: Boyd
  fullname: Boyd, Robin J.
  email: robboy@ceh.ac.uk
  organization: UK Centre for Ecology and Hydrology
– sequence: 2
  givenname: Gary D.
  surname: Powney
  fullname: Powney, Gary D.
  organization: University of Oxford
– sequence: 3
  givenname: Claire
  surname: Carvell
  fullname: Carvell, Claire
  organization: UK Centre for Ecology and Hydrology
– sequence: 4
  givenname: Oliver L.
  orcidid: 0000-0002-0685-8046
  surname: Pescott
  fullname: Pescott, Oliver L.
  organization: UK Centre for Ecology and Hydrology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34824820$$D View this record in MEDLINE/PubMed
BookMark eNp1kV1rFDEUhoNU7Ie98A9IwBt7sW2-k_GisCyrFgqi6HXIZM6sWWeTMZlV-u_N7tbSCoZADue8PLwn7yk6iikCQq8ouaSEsCvwwC8Na5pn6IQRIWdaS3P0qD5G56WsST2KMEH0C3TMhWH1khP0OXk_LwVKeYfnEX_Bo_M_3ApwnzJ2-0GIKzymCeIU3IDb4GoTh4jLCD7UshK2OUP0gDs3uZfoee-GAuf37xn69n75dfFxdvvpw81ifjvzkjTNTPWMck6UqEu4tpOgJXDKRNt2Wpm-5dp33suWaak9506JRjswqgehuPCan6GbA7dLbm3HHDYu39nkgt03Ul5Zl6fgB7BtR7hqHO2l5kJR0hjSdr6X1PTAFFOVdX1gjdt2A52vu2Y3PIE-ncTw3a7SL2sUoQ2XFfD2HpDTzy2UyW5C8TAMLkLaFssUEYRyI3iVvvlHuk7bHOtXWSYbow2jdOfo4qDyOZWSoX8wQ4nd5W53udtd7lX7-rH7B-XflKvg6iD4HQa4-z_JLhdLvkf-Af6Ft0Y
CitedBy_id crossref_primary_10_1016_j_ecolind_2023_110276
crossref_primary_10_1111_geb_13847
crossref_primary_10_1111_ddi_13698
crossref_primary_10_1111_ddi_13551
crossref_primary_10_1016_j_ecolind_2022_109117
crossref_primary_10_1002_ecy_4214
crossref_primary_10_3389_fevo_2024_1305916
crossref_primary_10_1111_ecog_06721
crossref_primary_10_1111_2041_210X_13857
crossref_primary_10_1016_j_ecolmodel_2022_110242
crossref_primary_10_1111_ecog_06584
crossref_primary_10_3390_fishes7060383
crossref_primary_10_1016_j_biocon_2022_109884
crossref_primary_10_1007_s10531_022_02502_w
crossref_primary_10_1111_1365_2664_14455
crossref_primary_10_1017_S002531542200008X
crossref_primary_10_1111_brv_12961
Cites_doi 10.1371/journal.pone.0215891
10.1111/ecog.05618
10.1111/ddi.13255
10.1111/2041-210X.12254
10.3897/BDJ.3.e5361
10.1371/journal.pbio.1000385
10.2307/1931034
10.1111/j.2041-210X.2011.00146.x
10.1111/bij.12581
10.1016/j.oneear.2020.12.005
10.1098/rstb.2017.0391
10.1111/j.1467-985X.2004.00349.x
10.1017/9781139028271
10.1093/sysbio/syy044
10.1179/2042349713Y.0000000020
10.1038/s41597-019-0269-1
10.1371/journal.pone.0215794
10.1111/bij.12532
10.4102/koedoe.v62i1.1579
10.1007/978-3-319-24277-4
10.1038/s41467-019-08974-9
10.1002/2688-8319.12048
10.1371/journal.pone.0196417
10.33928/bib.2019.01.250
10.1016/S0006-3207(02)00050-2
10.1002/joc.5086
10.1177/0309133309355630
10.1111/ele.12624
10.1111/ecog.05102
10.3389/fevo.2017.00086
10.1016/S0006-3207(99)00010-5
10.1111/j.1467-985X.2008.00547.x
10.1111/1365-2664.12158
10.1201/b19708
10.1111/2041-210X.13152
10.1111/icad.12345
10.1016/j.tree.2019.08.006
10.1525/bio.2011.61.5.4
10.1016/j.ecoinf.2013.11.002
10.1890/09-0877.1
10.1890/07-2153.1
ContentType Journal Article
Copyright 2021 The Authors. published by John Wiley & Sons Ltd.
2021 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd.
2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 The Authors. published by John Wiley & Sons Ltd.
– notice: 2021 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd.
– notice: 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
WIN
NPM
AAYXX
CITATION
3V.
7SN
7SS
7ST
7X2
8FD
8FE
8FH
8FK
ABUWG
AFKRA
ATCPS
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
LK8
M0K
M7P
P64
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
RC3
SOI
7X8
5PM
DOA
DOI 10.1002/ece3.8299
DatabaseName Wiley-Blackwell Titles (Open access)
Wiley Online Library Open Access
PubMed
CrossRef
ProQuest Central (Corporate)
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Agricultural Science Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
Biological Sciences
Agriculture Science Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals
DatabaseTitle PubMed
CrossRef
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
Technology Research Database
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest Central
Genetics Abstracts
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Biological Science Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
Biological Science Database
ProQuest SciTech Collection
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
CrossRef


Agricultural Science Database
MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: http://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Ecology
DocumentTitleAlternate BOYD et al
EISSN 2045-7758
EndPage 16187
ExternalDocumentID oai_doaj_org_article_bd0369a1f5734610980bdcf518fe2626
10_1002_ece3_8299
34824820
ECE38299
Genre article
Journal Article
GrantInformation_xml – fundername: SURPASS2
  funderid: NE/S011870/2
– fundername: Natural Environment Research Council
  funderid: NE/R016429/1
– fundername: SURPASS2
  grantid: NE/S011870/2
– fundername: ;
  grantid: NE/R016429/1
GroupedDBID 0R~
1OC
24P
53G
5VS
7X2
8-0
8-1
8FE
8FH
AAFWJ
AAHBH
AAHHS
AAZKR
ACCFJ
ACGFO
ACPRK
ACXQS
ADBBV
ADKYN
ADRAZ
ADZMN
ADZOD
AEEZP
AENEX
AEQDE
AFKRA
AFPKN
AFRAH
AIAGR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AOIJS
ATCPS
AVUZU
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
CCPQU
D-8
D-9
DIK
EBS
ECGQY
EJD
GODZA
GROUPED_DOAJ
GX1
HCIFZ
HYE
IAO
IEP
KQ8
LK8
M0K
M48
M7P
M~E
OK1
PIMPY
PROAC
RNS
ROL
RPM
SUPJJ
WIN
ITC
NPM
AAYXX
CITATION
3V.
7SN
7SS
7ST
8FD
8FK
ABUWG
AZQEC
C1K
DWQXO
FR3
GNUQQ
P64
PQEST
PQQKQ
PQUKI
PRINS
RC3
SOI
7X8
5PM
ID FETCH-LOGICAL-c5099-6f2133064100abd5e75e3124bbd768fb37cdcc5b2757c33a6497ae86fe4634c73
IEDL.DBID RPM
ISSN 2045-7758
IngestDate Tue Oct 22 15:14:23 EDT 2024
Tue Sep 17 21:16:57 EDT 2024
Sat Oct 26 05:50:13 EDT 2024
Thu Oct 10 19:59:48 EDT 2024
Thu Nov 21 21:40:39 EST 2024
Sat Nov 02 12:30:25 EDT 2024
Sat Aug 24 00:59:04 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 22
Keywords species distributions
R
bias
biological records
nonprobability samples
convenience samples
species occurrence data
Language English
License Attribution
2021 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5099-6f2133064100abd5e75e3124bbd768fb37cdcc5b2757c33a6497ae86fe4634c73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-0685-8046
0000-0002-7973-9865
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8601935/
PMID 34824820
PQID 2598782116
PQPubID 2034651
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_bd0369a1f5734610980bdcf518fe2626
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8601935
proquest_miscellaneous_2604013843
proquest_journals_2598782116
crossref_primary_10_1002_ece3_8299
pubmed_primary_34824820
wiley_primary_10_1002_ece3_8299_ECE38299
PublicationCentury 2000
PublicationDate November 2021
PublicationDateYYYYMMDD 2021-11-01
PublicationDate_xml – month: 11
  year: 2021
  text: November 2021
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Bognor Regis
– name: Hoboken
PublicationTitle Ecology and evolution
PublicationTitleAlternate Ecol Evol
PublicationYear 2021
Publisher John Wiley & Sons, Inc
John Wiley and Sons Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: John Wiley and Sons Inc
– name: Wiley
References 2010; 34
2017; 5
2021; 27
2013; 3
2021; 4
2019; 6
2016; 19
2021; 2
2015; 3
2021; 44
2011
2020; 62
2010
2019; 1
2019; 10
2019; 12
2019; 14
2011; 61
2020; 35
2009; 172
2002
2018; 67
2010; 20
2014; 5
2012; 3
2017; 37
2015; 115
2021
1954; 35
2005; 168
2013; 50
2019
2002; 107
2018
2017
2016
2015
2014; 19
2009; 19
1999; 90
2010; 8
2019; 374
2018; 13
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
Preston C. D. (e_1_2_8_36_1) 2002
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_41_1
e_1_2_8_17_1
GBIF (e_1_2_8_13_1) 2021
e_1_2_8_19_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_30_1
e_1_2_8_29_1
Petersen T. K. (e_1_2_8_32_1) 2021; 2
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_4_1
Oswald P. (e_1_2_8_25_1) 2011
e_1_2_8_6_1
e_1_2_8_8_1
Krzanowski W. (e_1_2_8_21_1) 2010
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_40_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
R Core Team (e_1_2_8_37_1) 2019
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_50_1
References_xml – volume: 27
  start-page: 1066
  issue: 6
  year: 2021
  end-page: 1075
  article-title: Integrated species distribution models: A comparison of approaches under different data quality scenarios
  publication-title: Diversity and Distributions
– volume: 374
  start-page: 2
  year: 2019
  end-page: 10
  article-title: The history and impact of digitization and digital data mobilization on biodiversity research
  publication-title: Philosophical Transactions of the Royal Society B: Biological Sciences
– year: 2011
– volume: 172
  start-page: 21
  year: 2009
  end-page: 47
  article-title: Bias modelling in evidence synthesis
  publication-title: Journal of the Royal Statistical Society: Series A (Statistics in Society)
– volume: 12
  start-page: 382
  year: 2019
  end-page: 388
  article-title: Mapping species distributions in 2 weeks using citizen science
  publication-title: Insect Conservation and Diversity
– volume: 2
  issue: 4
  year: 2021
  article-title: Species data for understanding biodiversity dynamics: The what , where and when of species occurrence data collection
  publication-title: Ecological Solutions and Evidence
– volume: 13
  start-page: 1
  year: 2018
  end-page: 17
  article-title: Contrasting spatial, temporal and environmental patterns in observation and specimen based species occurrence data
  publication-title: PLoS One
– volume: 19
  start-page: 10
  year: 2014
  end-page: 15
  article-title: Spatial bias in the GBIF database and its effect on modeling species' geographic distributions
  publication-title: Ecological Informatics
– volume: 19
  start-page: 992
  year: 2016
  end-page: 1006
  article-title: Multidimensional biases, gaps and uncertainties in global plant occurrence information
  publication-title: Ecology Letters
– volume: 115
  start-page: 505
  year: 2015
  end-page: 521
  article-title: Ecological monitoring with citizen science: The design and implementation of schemes for recording plants in Britain and Ireland
  publication-title: Biological Journal of the Linnean Society
– volume: 1
  start-page: 250
  year: 2019
  end-page: 282
  article-title: Temporal changes in distributions and the species atlas: How can British and Irish plant data shoulder the inferential burden?
  publication-title: British & Irish Botany
– year: 2021
– volume: 61
  start-page: 354
  year: 2011
  end-page: 362
  article-title: Common ecology
  publication-title: BioScience
– volume: 34
  start-page: 3
  year: 2010
  end-page: 22
  article-title: Applications and limitations of museum data for conservation and ecology, with particular attention to species distribution models
  publication-title: Progress in Physical Geography
– volume: 19
  start-page: 181
  year: 2009
  end-page: 197
  article-title: Sample selection bias and presence‐only distribution models: Implications for background and pseudo‐absence data
  publication-title: Ecological Applications
– volume: 50
  start-page: 1450
  year: 2013
  end-page: 1458
  article-title: Opportunistic citizen science data of animal species produce reliable estimates of distribution trends if analysed with occupancy models
  publication-title: Journal of Applied Ecology
– year: 2016
– volume: 4
  start-page: 114
  year: 2021
  end-page: 123
  article-title: Worldwide occurrence records suggest a global decline in bee species richness
  publication-title: One Earth
– year: 2018
– volume: 107
  start-page: 99
  year: 2002
  end-page: 109
  article-title: A general method for measuring relative change in range size from biological atlas data
  publication-title: Biological Conservation
– year: 2010
– volume: 14
  start-page: 1
  issue: 9
  year: 2019
  end-page: 26
  article-title: Research applications of primary biodiversity databases in the digital age
  publication-title: PLoS One
– volume: 20
  start-page: 2157
  year: 2010
  end-page: 2169
  article-title: Regional avian species declines estimated from volunteer‐collected long‐term data using List Length Analysis
  publication-title: Ecological Applications
– volume: 168
  start-page: 267
  year: 2005
  end-page: 306
  article-title: Multiple‐bias modelling for analysis of observational data
  publication-title: Journal of the Royal Statistical Society: Series B (Statistical Methodology)
– volume: 8
  year: 2010
  article-title: Distorted views of biodiversity: Spatial and temporal bias in species occurrence data
  publication-title: PLoS Biology
– volume: 90
  start-page: 53
  year: 1999
  end-page: 68
  article-title: Evidence of disarray amongst granivorous bird assemblages in the savannas of northern Australia, a region of sparse human settlement
  publication-title: Biological Conservation
– volume: 3
  start-page: 2
  year: 2013
  end-page: 14
  article-title: Following the BSBI's lead: The influence of the Atlas of the British flora, 1962–2012
  publication-title: New Journal of Botany
– volume: 3
  start-page: 195
  issue: 1
  year: 2012
  end-page: 205
  article-title: Local frequency as a key to interpreting species occurrence data when recording effort is not known
  publication-title: Methods in Ecology and Evolution
– year: 2002
– volume: 37
  start-page: 4302
  issue: 12
  year: 2017
  end-page: 4315
  article-title: WorldClim 2: New 1‐km spatial resolution climate surfaces for global land areas
  publication-title: International Journal of Climatology
– volume: 5
  start-page: 1
  year: 2017
  end-page: 12
  article-title: Citizen science as a tool for augmenting museum collection data from urban areas
  publication-title: Frontiers in Ecology and Evolution
– volume: 62
  start-page: 1
  year: 2020
  end-page: 9
  article-title: Sampling bias in reptile occurrence data for the Kruger National Park
  publication-title: Koedoe
– volume: 5
  start-page: 1052
  year: 2014
  end-page: 1060
  article-title: Statistics for citizen science: Extracting signals of change from noisy ecological data
  publication-title: Methods in Ecology and Evolution
– volume: 44
  start-page: 25
  year: 2021
  end-page: 32
  article-title: Sampbias, a method for quantifying geographic sampling biases in species distribution data
  publication-title: Ecography (Cop.)
– volume: 35
  start-page: 445
  year: 1954
  end-page: 453
  article-title: Distance to nearest neighbour as a measure of spatial relationships in populations
  publication-title: Ecology
– volume: 14
  start-page: 1
  year: 2019
  end-page: 30
  article-title: The design, launch and assessment of a new volunteer‐based plant monitoring scheme for the United Kingdom
  publication-title: PLoS One
– volume: 6
  start-page: 1970
  year: 2019
  end-page: 2015
  article-title: Annual estimates of occupancy for bryophytes, lichens and invertebrates in the UK, 1970–2015
  publication-title: Scientific Data
– volume: 67
  start-page: 1110
  year: 2018
  end-page: 1119
  article-title: The increasing disconnection of primary biodiversity data from specimens: How does it happen and how to handle it?
  publication-title: Systematic Biology
– volume: 3
  year: 2015
  article-title: Displaying bias in sampling effort of data accessed from biodiversity databases using ignorance maps
  publication-title: Biodiversity Data Journal
– volume: 35
  start-page: 56
  year: 2020
  end-page: 67
  article-title: Data integration for large‐scale models of species distributions
  publication-title: Trends in Ecology & Evolution
– volume: 115
  start-page: 522
  year: 2015
  end-page: 531
  article-title: Bias and information in biological records
  publication-title: Biological Journal of the Linnean Society
– year: 2017
– year: 2019
– year: 2015
– volume: 10
  start-page: 744
  year: 2019
  end-page: 751
  article-title: CoordinateCleaner: Standardized cleaning of occurrence records from biological collection databases
  publication-title: Methods in Ecology and Evolution
– volume: 10
  start-page: 1
  issue: 1
  year: 2019
  end-page: 6
  article-title: Widespread losses of pollinating insects in Britain
  publication-title: Nature Communications
– ident: e_1_2_8_30_1
  doi: 10.1371/journal.pone.0215891
– ident: e_1_2_8_27_1
  doi: 10.1111/ecog.05618
– ident: e_1_2_8_2_1
  doi: 10.1111/ddi.13255
– ident: e_1_2_8_20_1
  doi: 10.1111/2041-210X.12254
– ident: e_1_2_8_38_1
  doi: 10.3897/BDJ.3.e5361
– ident: e_1_2_8_7_1
  doi: 10.1371/journal.pbio.1000385
– ident: e_1_2_8_9_1
  doi: 10.2307/1931034
– ident: e_1_2_8_17_1
  doi: 10.1111/j.2041-210X.2011.00146.x
– ident: e_1_2_8_31_1
  doi: 10.1111/bij.12581
– ident: e_1_2_8_48_1
  doi: 10.1016/j.oneear.2020.12.005
– ident: e_1_2_8_23_1
  doi: 10.1098/rstb.2017.0391
– ident: e_1_2_8_14_1
  doi: 10.1111/j.1467-985X.2004.00349.x
– ident: e_1_2_8_15_1
  doi: 10.1017/9781139028271
– ident: e_1_2_8_44_1
  doi: 10.1093/sysbio/syy044
– volume-title: John Ray's Cambridge catalogue (1660)
  year: 2011
  ident: e_1_2_8_25_1
  contributor:
    fullname: Oswald P.
– ident: e_1_2_8_35_1
  doi: 10.1179/2042349713Y.0000000020
– ident: e_1_2_8_26_1
  doi: 10.1038/s41597-019-0269-1
– ident: e_1_2_8_4_1
  doi: 10.1371/journal.pone.0215794
– ident: e_1_2_8_19_1
  doi: 10.1111/bij.12532
– ident: e_1_2_8_29_1
– ident: e_1_2_8_5_1
  doi: 10.4102/koedoe.v62i1.1579
– ident: e_1_2_8_47_1
  doi: 10.1007/978-3-319-24277-4
– ident: e_1_2_8_34_1
  doi: 10.1038/s41467-019-08974-9
– volume: 2
  start-page: e12048
  issue: 4
  year: 2021
  ident: e_1_2_8_32_1
  article-title: Species data for understanding biodiversity dynamics: The what , where and when of species occurrence data collection
  publication-title: Ecological Solutions and Evidence
  doi: 10.1002/2688-8319.12048
  contributor:
    fullname: Petersen T. K.
– volume-title: GBIF occurrence download: Hoverflies and leaf‐nosed bats
  year: 2021
  ident: e_1_2_8_13_1
  contributor:
    fullname: GBIF
– ident: e_1_2_8_40_1
  doi: 10.1371/journal.pone.0196417
– ident: e_1_2_8_28_1
  doi: 10.33928/bib.2019.01.250
– ident: e_1_2_8_43_1
  doi: 10.1016/S0006-3207(02)00050-2
– ident: e_1_2_8_10_1
  doi: 10.1002/joc.5086
– ident: e_1_2_8_24_1
  doi: 10.1177/0309133309355630
– ident: e_1_2_8_22_1
  doi: 10.1111/ele.12624
– ident: e_1_2_8_49_1
  doi: 10.1111/ecog.05102
– ident: e_1_2_8_39_1
  doi: 10.3389/fevo.2017.00086
– ident: e_1_2_8_11_1
  doi: 10.1016/S0006-3207(99)00010-5
– ident: e_1_2_8_45_1
  doi: 10.1111/j.1467-985X.2008.00547.x
– ident: e_1_2_8_46_1
  doi: 10.1111/1365-2664.12158
– ident: e_1_2_8_3_1
  doi: 10.1201/b19708
– volume-title: An introduction to statistical modelling
  year: 2010
  ident: e_1_2_8_21_1
  contributor:
    fullname: Krzanowski W.
– ident: e_1_2_8_50_1
  doi: 10.1111/2041-210X.13152
– ident: e_1_2_8_41_1
  doi: 10.1111/icad.12345
– ident: e_1_2_8_16_1
– ident: e_1_2_8_18_1
  doi: 10.1016/j.tree.2019.08.006
– volume-title: New Atlas of the British and Irish Flora
  year: 2002
  ident: e_1_2_8_36_1
  contributor:
    fullname: Preston C. D.
– ident: e_1_2_8_8_1
– ident: e_1_2_8_12_1
  doi: 10.1525/bio.2011.61.5.4
– volume-title: R: A language and environment for statistical computing
  year: 2019
  ident: e_1_2_8_37_1
  contributor:
    fullname: R Core Team
– ident: e_1_2_8_6_1
  doi: 10.1016/j.ecoinf.2013.11.002
– ident: e_1_2_8_42_1
  doi: 10.1890/09-0877.1
– ident: e_1_2_8_33_1
  doi: 10.1890/07-2153.1
SSID ssj0000602407
Score 2.402206
Snippet Species occurrence records from a variety of sources are increasingly aggregated into heterogeneous databases and made available to ecologists for immediate...
Abstract Species occurrence records from a variety of sources are increasingly aggregated into heterogeneous databases and made available to ecologists for...
SourceID doaj
pubmedcentral
proquest
crossref
pubmed
wiley
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 16177
SubjectTerms Bias
Biodiversity
biological records
convenience samples
Datasets
Discrete functions
nonprobability samples
Software
Species
species distributions
species occurrence data
Taxonomy
Trends
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEB7aQKCX0jzaOk2CWnLIxY2tt3NLUoecCn0EehOSLNMl4A3Z7KH_vjPy7jZLW3IJ-GA8wkgz0sx8aPQJ4EhW3nc4FUq6yr2UKunSVyKVXCIOa2JqRENnh6--mc8_7KeWaHJWV31RTdhIDzwq7iR06GMbX_fKiMwNbqvQxV7Vtk8cs_HsfSv9AEyNPpi4u8ySSqjiJykm8dHyzPH6JwBlnv5_JZd_10g-zF1z8Ll8BS8XWSM7G3u7Bc_SsA2bbWac_rUDX6Yxjru3p-xsYF8ZAuEbdBQMM1LmswAjFLud3lNtEP4oTDB4zdhkYHTSEsEywz9kpqaYGBWN7sL1Zfv94qpc3JVQRkUkm7rniDYxv8DB-tCpZFQSGLtD6BBQ9EGY2MWoAjfKRCG8lo3xyeo-SS1kNOI1bAzTIb0Fpq1GdNqjbS2tcGWjlE0tk9e88yHUBXxYKtDdjpQYbiQ_5o607EjLBZyTalcNiMU6f0DbuoVt3WO2LWB_aRi3WFozh3jNYlpT1yh-vxLjoqCdDj-k6Rzb6Ipwo5WigDejHVc9ITYffKoCzJqF17q6LhkmPzPxtkX02ghVwHGeC_8fvWsvWkEve0-hhnfwglMlTT4BuQ8b93fzdADPZ938MM_6336ZA-U
  priority: 102
  providerName: Directory of Open Access Journals
Title occAssess: An R package for assessing potential biases in species occurrence data
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fece3.8299
https://www.ncbi.nlm.nih.gov/pubmed/34824820
https://www.proquest.com/docview/2598782116
https://search.proquest.com/docview/2604013843
https://pubmed.ncbi.nlm.nih.gov/PMC8601935
https://doaj.org/article/bd0369a1f5734610980bdcf518fe2626
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6xlUC9IN4ESmUQBy7ZTeJnuJUlVS8gnhK3yHacsoImq273wL9nxklWXQEXpByijJXYnrFnvnj8GeClyKxt0BRSOso9FTKo1GY8pIVAHFb6UPKS9g6ffdbvv5m3FdHkyGkvTEza9241735ezLvV95hbub7wiylPbPHh3dIgiii5XMxghrHhNYg-TL9E26UnFqGsWAQf-NzgvHsIt4jLBa9szw1Ftv6_hZh_Zkpej2CjCzq9A7fH2JGdDHW8CzdCdw9uVpF3-td9-Nh7P6zhvmYnHfvEEA7_wOmCYVzKbBSgn2Lr_ooyhPBFboUubMNWHaP9lgiZGb4h8jX5wCh19AF8Pa2-LM_S8cSE1Eui2lRtgZgTowxst3WNDFoGjh7cuQZhReu49o330hVaas-5VaLUNhjVBqG48Jo_hIOu78JjYMooxKgtatjQOJfGC1HmIlhVNNa5PIEXUwfW64EYox4okIuaOrymDk_gDXXtrgBxWccH_eV5PWq0dg160dLmrdQ8sr-bzDW-lblpQ4F4K4GjSTH1OMA2NaI2g8FNnqP4-U6MQ4PWO2wX-i2WURmhRyN4Ao8GPe5qMtlBAnpPw3tV3ZegNUb67dH6EngVbeHfra-rZcXp5sl_f-QpHBaURBM3Px7BwdXlNjyD2abZHse_B8fR9n8D58UF-w
link.rule.ids 230,315,729,782,786,866,887,2106,27933,27934,53800,53802
linkProvider National Library of Medicine
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB7RImgvvEsDBQziwCW7SWzHDreypFpEW_EoEjfLdpx2RZusut0D_56xk6y6Ai6VcogyVuJ4ZjzzyePPAG9ZonWFphD7o9xjxl0e64S6OGOIwwrrClr4vcPT7-L4p_xYepocPuyFCUX71sxGzfnFqJmdhdrK-YUdD3Vi4y9HE4kooqB8vAG30V-T5BpI7yZgT9wlBh6hJBs76-hI4sy7DXc9mwteyVogCnz9_0oy_66VvJ7DhiB0cP-G3X8A9_qsk-x34odwyzWP4E4ZGKt_P4avrbXd6u97st-QbwSB9C-caAhmtEQHAUY4Mm-vfG0RvsjMMPgtyKwhfqcmgm2CbwhMT9YRX3T6BH4clCeTadyftRBb7kk68zpDtIr5CY6XNhV3gjuKsd-YCgFJbaiwlbXcZIILS6nOWSG0k3ntWE6ZFXQHNpu2cbtAcpkjuq3RNqSfIbi0jBUpczrPKm1MGsGbYeDVvKPUUB15cqa8opRXVAQfvEpWDTwLdnjQXp6qfjCVqTD-FjqtuaCBN14mprI1T2XtMkRqEewNClW9ay4U4j2JaVGaovj1SoxO5VdKdOPaJbbJE487JaMRPO30v-rJYD8RiDXLWOvqugQNIRB394qP4F2wof__vSonJfU3z278kVewNT05OlSHn44_P4ftzJfihC2Ue7B5dbl0L2BjUS1fBs_5Ay3iGo4
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RIqpeeJcGChjEgUs2D9uxw61ssyoCqvKSuFm248CKNll1uwf-PWMnWXUFXEDKIcpYju0Ze-aTx58BXrBU6xpNIfZXuceMuyLWKXVxzhCHldaVtPRnh48_iZOv8qjyNDnrq75C0r4180l7dj5p599DbuXi3CZjnlhy-n4qEUWUlCeLukm24DrO2TS_AtT7RdiTd4mRSyjNE2cdnUhcfXdhxzO64JNuOKPA2f-nQPP3fMmrcWxwRLNb_9GF23BziD7JYV_kDlxz7V24UQXm6p_34ENnbb8L_IoctuQjQUD9AxccgpEt0UGAno4sukufY4QVmTk6wSWZt8Sf2ETQTbCGwPhkHfHJp_fhy6z6PD2OhzsXYss9WWfR5IhaMU7BMdOm5k5wRzEGMKZGYNIYKmxtLTe54MJSqgtWCu1k0ThWUGYF3YPttmvdPpBCFohyG7QR6VcKLi1jZcacLvJaG5NF8HwcfLXoqTVUT6KcK68s5ZUVwWuvlnUBz4YdPnQX39QwoMrU6IdLnTVc0MAfL1NT24ZnsnE5IrYIDkalqmGKLhXiPonhUZah-NlajJPL75jo1nUrLFOkHn9KRiN40NvAuiWjDUUgNqxjo6mbEjSGQOA9KD-Cl8GO_t57VU0r6l8e_vNPnsLO6dFMvXtz8vYR7OY-IyecpDyA7cuLlXsMW8t69SRMnl8gyB0O
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=occAssess%3A+An+R+package+for+assessing+potential+biases+in+species+occurrence+data&rft.jtitle=Ecology+and+evolution&rft.au=Boyd%2C+Robin+J.&rft.au=Powney%2C+Gary+D.&rft.au=Carvell%2C+Claire&rft.au=Pescott%2C+Oliver+L.&rft.date=2021-11-01&rft.issn=2045-7758&rft.eissn=2045-7758&rft.volume=11&rft.issue=22&rft.spage=16177&rft.epage=16187&rft_id=info:doi/10.1002%2Fece3.8299&rft.externalDBID=10.1002%252Fece3.8299&rft.externalDocID=ECE38299
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-7758&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-7758&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-7758&client=summon