Nuclear and peroxisomal targeting of catalase

Catalase is a well‐known component of the cellular antioxidant network, but there have been conflicting conclusions reached regarding the nature of its peroxisome targeting signal. It has also been reported that catalase can be hijacked to the nucleus by effector proteins of plant pathogens. Using a...

Full description

Saved in:
Bibliographic Details
Published in:Plant, cell and environment Vol. 45; no. 4; pp. 1096 - 1108
Main Authors: Al‐Hajaya, Yousef, Karpinska, Barbara, Foyer, Christine H., Baker, Alison
Format: Journal Article
Language:English
Published: United States Wiley Subscription Services, Inc 01-04-2022
John Wiley and Sons Inc
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Catalase is a well‐known component of the cellular antioxidant network, but there have been conflicting conclusions reached regarding the nature of its peroxisome targeting signal. It has also been reported that catalase can be hijacked to the nucleus by effector proteins of plant pathogens. Using a physiologically relevant system where native untagged catalase variants are expressed in a cat2‐1 mutant background, the C terminal most 18 amino acids could be deleted without affecting activity, peroxisomal targeting or ability to complement multiple phenotypes of the cat2‐1 mutant. In contrast, converting the native C terminal tripeptide PSI to the canonical PTS1 sequence ARL resulted in lower catalase specific activity. Localisation experiments using split superfolder green fluorescent protein revealed that catalase can be targeted to the nucleus in the absence of any pathogen effectors, and that C terminal tagging in combination with alterations of the native C terminus can interfere with nuclear localisation. These findings provide fundamental new insights into catalase targeting and pave the way for exploration of the mechanism of catalase targeting to the nucleus and its role in non‐infected plants. Summary statement Arabidopsis thaliana CAT2 is targeted to the nucleus and the peroxisome. Peroxisome targeting was independent of the C terminus and required the noncanonical import pathway for optimal activity. Modification to the C terminus interfered with nuclear targeting in the absence of pathogen effectors.
AbstractList Catalase is a well‐known component of the cellular antioxidant network, but there have been conflicting conclusions reached regarding the nature of its peroxisome targeting signal. It has also been reported that catalase can be hijacked to the nucleus by effector proteins of plant pathogens. Using a physiologically relevant system where native untagged catalase variants are expressed in a cat2‐1 mutant background, the C terminal most 18 amino acids could be deleted without affecting activity, peroxisomal targeting or ability to complement multiple phenotypes of the cat2‐1 mutant. In contrast, converting the native C terminal tripeptide PSI to the canonical PTS1 sequence ARL resulted in lower catalase specific activity. Localisation experiments using split superfolder green fluorescent protein revealed that catalase can be targeted to the nucleus in the absence of any pathogen effectors, and that C terminal tagging in combination with alterations of the native C terminus can interfere with nuclear localisation. These findings provide fundamental new insights into catalase targeting and pave the way for exploration of the mechanism of catalase targeting to the nucleus and its role in non‐infected plants.
Catalase is a well‐known component of the cellular antioxidant network, but there have been conflicting conclusions reached regarding the nature of its peroxisome targeting signal. It has also been reported that catalase can be hijacked to the nucleus by effector proteins of plant pathogens. Using a physiologically relevant system where native untagged catalase variants are expressed in a cat2‐1 mutant background, the C terminal most 18 amino acids could be deleted without affecting activity, peroxisomal targeting or ability to complement multiple phenotypes of the cat2‐1 mutant. In contrast, converting the native C terminal tripeptide PSI to the canonical PTS1 sequence ARL resulted in lower catalase specific activity. Localisation experiments using split superfolder green fluorescent protein revealed that catalase can be targeted to the nucleus in the absence of any pathogen effectors, and that C terminal tagging in combination with alterations of the native C terminus can interfere with nuclear localisation. These findings provide fundamental new insights into catalase targeting and pave the way for exploration of the mechanism of catalase targeting to the nucleus and its role in non‐infected plants. Summary statement Arabidopsis thaliana CAT2 is targeted to the nucleus and the peroxisome. Peroxisome targeting was independent of the C terminus and required the noncanonical import pathway for optimal activity. Modification to the C terminus interfered with nuclear targeting in the absence of pathogen effectors.
Catalase is a well‐known component of the cellular antioxidant network, but there have been conflicting conclusions reached regarding the nature of its peroxisome targeting signal. It has also been reported that catalase can be hijacked to the nucleus by effector proteins of plant pathogens. Using a physiologically relevant system where native untagged catalase variants are expressed in a cat2‐1 mutant background, the C terminal most 18 amino acids could be deleted without affecting activity, peroxisomal targeting or ability to complement multiple phenotypes of the cat2‐1 mutant. In contrast, converting the native C terminal tripeptide PSI to the canonical PTS1 sequence ARL resulted in lower catalase specific activity. Localisation experiments using split superfolder green fluorescent protein revealed that catalase can be targeted to the nucleus in the absence of any pathogen effectors, and that C terminal tagging in combination with alterations of the native C terminus can interfere with nuclear localisation. These findings provide fundamental new insights into catalase targeting and pave the way for exploration of the mechanism of catalase targeting to the nucleus and its role in non‐infected plants. Arabidopsis thaliana CAT2 is targeted to the nucleus and the peroxisome. Peroxisome targeting was independent of the C terminus and required the noncanonical import pathway for optimal activity. Modification to the C terminus interfered with nuclear targeting in the absence of pathogen effectors.
Author Baker, Alison
Karpinska, Barbara
Al‐Hajaya, Yousef
Foyer, Christine H.
AuthorAffiliation 1 Centre for Plant Sciences and School of Molecular and Cellular Biology University of Leeds Leeds UK
2 Centre for Plant Sciences and School of Biology University of Leeds Leeds UK
4 Present address: Department of Laboratory Medical Sciences Mutah University Karak Jordan
3 Astbury Centre for Structural Molecular Biology University of Leeds Leeds UK
5 Present address: School of Biosciences, College of Life and Environmental Sciences University of Birmingham Edgbaston UK
AuthorAffiliation_xml – name: 4 Present address: Department of Laboratory Medical Sciences Mutah University Karak Jordan
– name: 1 Centre for Plant Sciences and School of Molecular and Cellular Biology University of Leeds Leeds UK
– name: 2 Centre for Plant Sciences and School of Biology University of Leeds Leeds UK
– name: 3 Astbury Centre for Structural Molecular Biology University of Leeds Leeds UK
– name: 5 Present address: School of Biosciences, College of Life and Environmental Sciences University of Birmingham Edgbaston UK
Author_xml – sequence: 1
  givenname: Yousef
  surname: Al‐Hajaya
  fullname: Al‐Hajaya, Yousef
  organization: University of Leeds
– sequence: 2
  givenname: Barbara
  surname: Karpinska
  fullname: Karpinska, Barbara
  organization: University of Leeds
– sequence: 3
  givenname: Christine H.
  orcidid: 0000-0001-5989-6989
  surname: Foyer
  fullname: Foyer, Christine H.
  organization: University of Leeds
– sequence: 4
  givenname: Alison
  orcidid: 0000-0003-2181-4057
  surname: Baker
  fullname: Baker, Alison
  email: a.baker@leeds.ac.uk
  organization: University of Leeds
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35040158$$D View this record in MEDLINE/PubMed
BookMark eNp1kU1LAzEQhoNU7Ice_AOy4EUPa5PNpru5CFLqBxT1oOcwm87WLdtNTXbV_ntTtxYVzGUg8_AwM2-fdCpTISHHjF4w_4YrjRcsjkbRHukxPhIhpzHtkB5lMQ2TRLIu6Tu3oNR_JPKAdLnwABNpj4T3jS4RbADVLFihNR-FM0sogxrsHOuimgcmDzTUUILDQ7KfQ-nwaFsH5Pl68jS-DacPN3fjq2moBZVRmPFRBKBlzDnVyYwzyHSUaoCMxshGIgdJIUYpWSLzWZaBSNOMS8G0YHGWIh-Qy9a7arIlzjRWtYVSrWyxBLtWBgr1u1MVL2pu3pTkVIiYecHZVmDNa4OuVsvCaSxLqNA0TvlbMcpSnm7Q0z_owjS28ut5iicikRGPPHXeUtoa5yzmu2EYVZsQlA9BfYXg2ZOf0-_I76t7YNgC70WJ6_9N6nE8aZWf4XWR1w
CitedBy_id crossref_primary_10_1093_plcell_koad167
crossref_primary_10_1016_j_envexpbot_2022_104863
crossref_primary_10_1016_j_freeradbiomed_2023_01_014
crossref_primary_10_3389_fcell_2022_934331
crossref_primary_10_3389_fpls_2022_1035573
crossref_primary_10_1111_tpj_16276
crossref_primary_10_1007_s12374_024_09432_w
crossref_primary_10_1016_j_scitotenv_2024_169939
crossref_primary_10_1093_jxb_erae177
crossref_primary_10_1093_plcell_koae001
crossref_primary_10_3390_pr10071318
crossref_primary_10_1016_j_redox_2023_102917
crossref_primary_10_1042_EBC20210059
crossref_primary_10_3390_microorganisms10081511
crossref_primary_10_1111_jph_13260
crossref_primary_10_1016_j_plantsci_2023_111597
crossref_primary_10_1093_jxb_erae090
crossref_primary_10_1590_1807_1929_agriambi_v27n5p309_316
Cites_doi 10.1105/tpc.107.050989
10.1007/s00299-016-2055-2
10.1016/j.molcel.2006.10.024
10.1104/pp.111.180042
10.1104/pp.010141
10.1146/annurev-arplant-042817-040322
10.1105/tpc.113.117192
10.1104/pp.16.00375
10.1038/emboj.2011.411
10.1038/nprot.2009.197
10.1073/pnas.91.22.10541
10.1046/j.1365-313x.1998.00343.x
10.1080/09168451.2018.1530094
10.1016/j.abb.2012.04.015
10.1002/bies.20493
10.1016/j.abb.2004.12.017
10.1146/annurev.arplant.49.1.249
10.1093/pcp/pcn038
10.1186/1746-4811-5-16
10.3389/fcell.2020.00198
10.3389/fmicb.2018.00700
10.1046/j.1365-313X.1997.12020313.x
10.1083/jcb.108.5.1657
10.1105/tpc.17.00047
10.1105/tpc.114.135095
10.1093/pcp/pcf057
10.1111/j.1365-313X.2007.03263.x
10.1021/bi027034z
10.1074/jbc.M111.287201
10.1093/nar/gkx267
10.1073/pnas.1703344114
10.1104/pp.16.00166
10.1093/aob/mcv074
10.1105/tpc.18.00177
10.1242/jcs.216986
10.1104/pp.105.065896
10.1104/pp.104.043695
10.1016/j.bbamcr.2006.08.022
10.1111/pce.12726
10.1046/j.0960-7412.2003.001605.x
10.1111/jipb.12649
10.1105/tpc.16.00038
10.1093/jxb/erq282
10.1104/pp.114.252437
10.1016/S0005-2728(89)80347-0
ContentType Journal Article
Copyright 2022 The Authors. published by John Wiley & Sons Ltd.
2022 The Authors. Plant, Cell & Environment published by John Wiley & Sons Ltd.
2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 The Authors. published by John Wiley & Sons Ltd.
– notice: 2022 The Authors. Plant, Cell & Environment published by John Wiley & Sons Ltd.
– notice: 2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
WIN
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QP
7ST
C1K
SOI
7X8
5PM
DOI 10.1111/pce.14262
DatabaseName Wiley-Blackwell Open Access Collection
Wiley Free Archive
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Calcium & Calcified Tissue Abstracts
Environment Abstracts
Environmental Sciences and Pollution Management
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Calcium & Calcified Tissue Abstracts
Environment Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList Calcium & Calcified Tissue Abstracts

MEDLINE

CrossRef
Database_xml – sequence: 1
  dbid: ECM
  name: MEDLINE
  url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Botany
DocumentTitleAlternate AL‐HAJAYA et al
EISSN 1365-3040
EndPage 1108
ExternalDocumentID 10_1111_pce_14262
35040158
PCE14262
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Mu'tah University Jordan
  funderid: PhD scholarship to YAH
– fundername: Wellcome Trust
  funderid: WT104918MA
– fundername: Wellcome Trust
  grantid: WT104918MA
– fundername: Mu'tah University Jordan
  grantid: PhD scholarship to YAH
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
123
186
1OB
1OC
24P
29O
2WC
31~
33P
36B
3SF
4.4
42X
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AETEA
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHEFC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BAWUL
BDRZF
BFHJK
BHBCM
BIYOS
BMNLL
BNHUX
BROTX
BRXPI
BY8
CAG
COF
CS3
D-E
D-F
DC6
DCZOG
DIK
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
ESX
F00
F01
F04
F5P
FEDTE
FIJ
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IPNFZ
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
UB1
W8V
W99
WBKPD
WH7
WHG
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XSW
YNT
ZZTAW
~02
~IA
~KM
~WT
CGR
CUY
CVF
ECM
EIF
NPM
AAMNL
AAYXX
CITATION
7QP
7ST
C1K
SOI
7X8
5PM
ID FETCH-LOGICAL-c5092-b362aac94330c7d31abc28caab04e165fa90a4e99179fdbba588b3951c514b8e3
IEDL.DBID 33P
ISSN 0140-7791
IngestDate Tue Sep 17 21:10:22 EDT 2024
Sat Aug 17 02:01:36 EDT 2024
Thu Oct 10 15:02:43 EDT 2024
Thu Nov 21 23:00:04 EST 2024
Sat Sep 28 08:20:06 EDT 2024
Sat Aug 24 00:56:53 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords redox signalling
nucleus
peroxisome
ROS
Language English
License Attribution
2022 The Authors. Plant, Cell & Environment published by John Wiley & Sons Ltd.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5092-b362aac94330c7d31abc28caab04e165fa90a4e99179fdbba588b3951c514b8e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-2181-4057
0000-0001-5989-6989
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fpce.14262
PMID 35040158
PQID 2637579232
PQPubID 37957
PageCount 13
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9305541
proquest_miscellaneous_2621018381
proquest_journals_2637579232
crossref_primary_10_1111_pce_14262
pubmed_primary_35040158
wiley_primary_10_1111_pce_14262_PCE14262
PublicationCentury 2000
PublicationDate April 2022
PublicationDateYYYYMMDD 2022-04-01
PublicationDate_xml – month: 04
  year: 2022
  text: April 2022
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Oxford
– name: Hoboken
PublicationTitle Plant, cell and environment
PublicationTitleAlternate Plant Cell Environ
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
John Wiley and Sons Inc
Publisher_xml – name: Wiley Subscription Services, Inc
– name: John Wiley and Sons Inc
References 1998; 49
2007; 19
2013; 25
1989; 975
2015; 167
2005; 435
2005; 139
2017; 45
2006; 1763
2017; 29
2007; 52
2018; 60
2016; 39
2017; 114
2011; 156
1997; 9
2012; 525
2012; 31
2003; 33
2010; 61
2018; 69
2001; 127
1998; 16
2020; 8
2018; 131
2018; 9
2015; 27
2004; 136
2019; 83
1989; 108
2017; 36
2015; 116
2006; 24
2006; 28
2002; 43
2008; 49
1997; 12
2018; 30
2009; 5
2016; 171
1994; 91
2016; 28
2010; 5
2003; 42
1996; 8
2011; 286
e_1_2_9_30_1
e_1_2_9_31_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_37_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_42_1
e_1_2_9_20_1
e_1_2_9_40_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_6_1
e_1_2_9_5_1
e_1_2_9_4_1
Kato A. (e_1_2_9_16_1) 1996; 8
e_1_2_9_3_1
e_1_2_9_2_1
e_1_2_9_9_1
e_1_2_9_26_1
e_1_2_9_25_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_29_1
Lee M.S. (e_1_2_9_19_1) 1997; 9
References_xml – volume: 171
  start-page: 1551
  issue: 3
  year: 2016
  end-page: 1559
  article-title: The roles of mitochondrial reactive oxygen species in cellular signaling and stress response in plants
  publication-title: Plant Physiology
– volume: 5
  start-page: p16
  issue: 1
  year: 2009
  article-title: Tape‐Arabidopsis Sandwich‐a simpler Arabidopsis protoplast isolation method
  publication-title: Plant Methods
– volume: 45
  start-page: 5061
  issue: 9
  year: 2017
  end-page: 5073
  article-title: A high quality Arabidopsis transcriptome for accurate transcript‐level analysis of alternative splicing
  publication-title: Nucleic Acids Research
– volume: 171
  start-page: 1541
  issue: 3
  year: 2016
  end-page: 1550
  article-title: Redox‐and reactive oxygen species‐dependent signaling into and out of the photosynthesizing chloroplast
  publication-title: Plant Physiology
– volume: 136
  start-page: 2587
  issue: 1
  year: 2004
  end-page: 2608
  article-title: AraPerox. A database of putative Arabidopsis proteins from plant peroxisomes
  publication-title: Plant Physiology
– volume: 116
  start-page: 475
  issue: 4
  year: 2015
  end-page: 485
  article-title: Peroxisomes sense and respond to environmental cues by regulating ROS and RNS signalling networks
  publication-title: Annals of Botany
– volume: 61
  start-page: 4197
  issue: 15
  year: 2010
  end-page: 4220
  article-title: Catalase function in plants: a focus on Arabidopsis mutants as stress‐mimic models
  publication-title: Journal of Experimental Botany
– volume: 156
  start-page: 2026
  issue: 4
  year: 2011
  end-page: 2036
  article-title: Virus‐induced necrosis is a consequence of direct protein‐protein interaction between a viral RNA‐silencing suppressor and a host catalase
  publication-title: Plant Physiology
– volume: 167
  start-page: 164
  issue: 1
  year: 2015
  end-page: 175
  article-title: Two cytoplasmic effectors of regulate plant cell death via interactions with plant catalases
  publication-title: Plant Physiology
– volume: 8
  start-page: 1601
  issue: 9
  year: 1996
  end-page: 1611
  article-title: Targeting and processing of a chimeric protein with the N‐terminal presequence of the precursor to glyoxysomal citrate synthase
  publication-title: The Plant Cell
– volume: 9
  start-page: 185
  issue: 2
  year: 1997
  end-page: 197
  article-title: Oilseed isocitrate lyases lacking their essential type 1 peroxisomal targeting signal are piggybacked to glyoxysomes
  publication-title: The Plant Cell
– volume: 69
  start-page: 209
  year: 2018
  end-page: 236
  article-title: Reactive oxygen species in plant signaling
  publication-title: Annual Review of Plant Biology
– volume: 9
  year: 2018
  article-title: A novel protein elicitor BAR11 from Hhs. 015 improves plant resistance to pathogens and interacts with catalases as targets
  publication-title: Frontiers in Microbiology
– volume: 91
  start-page: 10541
  issue: 22
  year: 1994
  end-page: 10545
  article-title: peroxisomal thiolase is imported as a dimer
  publication-title: Proceedings of the National Academy of Sciences United States of America
– volume: 12
  start-page: 313
  issue: 2
  year: 1997
  end-page: 322
  article-title: Identification of the peroxisomal targeting signal for cottonseed catalase
  publication-title: The Plant Journal
– volume: 131
  issue: 17
  year: 2018
  article-title: The budding yeast Pex5p receptor directs Fox2p and Cta1p into peroxisomes via its N‐terminal region near the FxxxW domain
  publication-title: Journal of Cell Science
– volume: 8
  year: 2020
  article-title: The peroxisomal targeting signal 3 (PTS3) of the budding yeast acyl‐CoA oxidase Is a signal patch
  publication-title: Frontiers in Cell and Developmental Biology
– volume: 114
  start-page: 8414
  issue: 31
  year: 2017
  end-page: 8419
  article-title: Nucleoredoxin guards against oxidative stress by protecting antioxidant enzymes
  publication-title: Proceedings of the National Academy of Sciences United States of America
– volume: 29
  start-page: 1571
  issue: 7
  year: 2017
  end-page: 1584
  article-title: Spatiotemporal monitoring of effectors via type III secretion using split fluorescent protein fragments
  publication-title: The Plant Cell
– volume: 28
  start-page: 1091
  issue: 11
  year: 2006
  end-page: 1101
  article-title: Reactive oxygen species as signals that modulate plant stress responses and programmed cell death
  publication-title: BioEssays
– volume: 33
  start-page: 161
  issue: 1
  year: 2003
  end-page: 175
  article-title: Identification of peroxisomal targeting signal of pumpkin catalase and the binding analysis with PTS1 receptor
  publication-title: The Plant Journal
– volume: 975
  start-page: 384
  issue: 3
  year: 1989
  end-page: 394
  article-title: Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy
  publication-title: Biochimica et Biophysica Acta (BBA)‐Bioenergetics
– volume: 60
  start-page: 591
  issue: 7
  year: 2018
  end-page: 607
  article-title: The Arabidopsis catalase triple mutant reveals important roles of catalases and peroxisome‐derived signaling in plant development
  publication-title: Journal of Integrative Plant Biology
– volume: 83
  start-page: 322
  issue: 2
  year: 2019
  end-page: 325
  article-title: Effect of mutation of C‐terminal and heme binding region of Arabidopsis catalase on the import to peroxisomes
  publication-title: Bioscience, Biotechnology, and Biochemistry
– volume: 52
  start-page: 640
  issue: 4
  year: 2007
  end-page: 657
  article-title: Conditional oxidative stress responses in the Arabidopsis photorespiratory mutant CAT2 demonstrate that redox state is a key modulator of daylength‐dependent gene expression, and define photoperiod as a crucial factor in the regulation of H O ‐induced cell death
  publication-title: The Plant Journal
– volume: 27
  start-page: 908
  issue: 3
  year: 2015
  end-page: 925
  article-title: A chaperone function of NO CATALASE ACTIVITY1 is required to maintain catalase activity and for multiple stress responses in Arabidopsis
  publication-title: The Plant Cell
– volume: 49
  start-page: 249
  issue: 1
  year: 1998
  end-page: 279
  article-title: Ascorbate and glutathione: keeping active oxygen under control
  publication-title: Annual Review of Plant Biology
– volume: 16
  start-page: 735
  issue: 6
  year: 1998
  end-page: 743
  article-title: Floral dip: a simplified method for Agrobacterium‐mediated transformation of
  publication-title: The Plant Journal
– volume: 42
  start-page: 1660
  issue: 6
  year: 2003
  end-page: 1666
  article-title: Correlating structure and affinity for PEX5: PTS1 complexes
  publication-title: Biochemistry
– volume: 28
  start-page: 1844
  issue: 8
  year: 2016
  end-page: 1859
  article-title: SHORT‐ROOT deficiency alleviates the cell death phenotype of the Arabidopsis catalase2 mutant under photorespiration‐promoting conditions
  publication-title: The Plant Cell
– volume: 286
  start-page: 40509
  issue: 47
  year: 2011
  end-page: 40519
  article-title: PEX5 protein binds monomeric catalase blocking its tetramerization and releases it upon binding the N‐terminal domain of PEX14
  publication-title: Journal of Biological Chemistry
– volume: 5
  start-page: 51
  issue: 1
  year: 2010
  end-page: 66
  article-title: Measurement of superoxide dismutase, catalase and glutathione peroxidase in cultured cells and tissue
  publication-title: Nature Protocols
– volume: 30
  start-page: 1424
  issue: 7
  year: 2018
  end-page: 1444
  article-title: Rapid and dynamic alternative splicing impacts the Arabidopsis cold response transcriptome
  publication-title: The Plant Cell
– volume: 39
  start-page: 1140
  issue: 5
  year: 2016
  end-page: 1160
  article-title: Oxidative stress and antioxidative systems: recipes for successful data collection and interpretation
  publication-title: Plant, Cell & Environment
– volume: 108
  start-page: 1657
  issue: 5
  year: 1989
  end-page: 1664
  article-title: A conserved tripeptide sorts proteins to peroxisomes
  publication-title: The Journal of Cell Biology
– volume: 139
  start-page: 806
  issue: 2
  year: 2005
  end-page: 821
  article-title: Genome‐wide analysis of hydrogen peroxide‐regulated gene expression in Arabidopsis reveals a high light‐induced transcriptional cluster involved in anthocyanin biosynthesis
  publication-title: Plant Physiology
– volume: 31
  start-page: 391
  issue: 2
  year: 2012
  end-page: 402
  article-title: Insights into ubiquitin‐conjugating enzyme/co‐activator interactions from the structure of the Pex4p: Pex22p complex
  publication-title: The EMBO Journal
– volume: 435
  start-page: 243
  issue: 2
  year: 2005
  end-page: 252
  article-title: A protective association between catalase and isocitrate lyase in peroxisomes
  publication-title: Archives of Biochemistry and Biophysics
– volume: 49
  start-page: 671
  issue: 4
  year: 2008
  end-page: 677
  article-title: Plant catalase is imported into peroxisomes by Pex5p but is distinct from typical PTS1 import
  publication-title: Plant and Cell Physiology
– volume: 19
  start-page: 3170
  issue: 10
  year: 2007
  end-page: 3193
  article-title: Proteome analysis of Arabidopsis leaf peroxisomes reveals novel targeting peptides, metabolic pathways, and defense mechanisms
  publication-title: The Plant Cell
– volume: 127
  start-page: 426
  issue: 2
  year: 2001
  end-page: 435
  article-title: Low ascorbic acid in the vtc‐1 mutant of Arabidopsis is associated with decreased growth and intracellular redistribution of the antioxidant system
  publication-title: Plant Physiology
– volume: 25
  start-page: 4616
  issue: 11
  year: 2013
  end-page: 4626
  article-title: Catalase and NO CATALASE ACTIVITY1 promote autophagy‐dependent cell death in Arabidopsis
  publication-title: The Plant Cell
– volume: 525
  start-page: 181
  issue: 2
  year: 2012
  end-page: 194
  article-title: Plant catalases: peroxisomal redox guardians
  publication-title: Archives of Biochemistry and Biophysics
– volume: 24
  start-page: 653
  issue: 5
  year: 2006
  end-page: 663
  article-title: Recognition of a functional peroxisome type 1 target by the dynamic import receptor pex5p
  publication-title: Molecular Cell
– volume: 36
  start-page: 37
  issue: 1
  year: 2017
  end-page: 47
  article-title: Interaction between Cucumber mosaic virus 2b protein and plant catalase induces a specific necrosis in association with proteasome activity
  publication-title: Plant Cell Reports
– volume: 1763
  start-page: 1565
  issue: 12
  year: 2006
  end-page: 1573
  article-title: Peroxisome targeting signal 1: is it really a simple tripeptide?
  publication-title: Biochimica et Biophysica Acta (BBA)‐Molecular Cell Research
– volume: 43
  start-page: 355
  issue: 4
  year: 2002
  end-page: 366
  article-title: Direct interaction and determination of binding domains among peroxisomal import factors in
  publication-title: Plant and Cell Physiology
– ident: e_1_2_9_32_1
  doi: 10.1105/tpc.107.050989
– ident: e_1_2_9_24_1
  doi: 10.1007/s00299-016-2055-2
– ident: e_1_2_9_36_1
  doi: 10.1016/j.molcel.2006.10.024
– ident: e_1_2_9_14_1
  doi: 10.1104/pp.111.180042
– ident: e_1_2_9_39_1
  doi: 10.1104/pp.010141
– ident: e_1_2_9_40_1
  doi: 10.1146/annurev-arplant-042817-040322
– ident: e_1_2_9_12_1
  doi: 10.1105/tpc.113.117192
– ident: e_1_2_9_5_1
  doi: 10.1104/pp.16.00375
– ident: e_1_2_9_43_1
  doi: 10.1038/emboj.2011.411
– ident: e_1_2_9_42_1
  doi: 10.1038/nprot.2009.197
– ident: e_1_2_9_10_1
  doi: 10.1073/pnas.91.22.10541
– ident: e_1_2_9_4_1
  doi: 10.1046/j.1365-313x.1998.00343.x
– ident: e_1_2_9_7_1
  doi: 10.1080/09168451.2018.1530094
– ident: e_1_2_9_21_1
  doi: 10.1016/j.abb.2012.04.015
– ident: e_1_2_9_9_1
  doi: 10.1002/bies.20493
– ident: e_1_2_9_45_1
  doi: 10.1016/j.abb.2004.12.017
– ident: e_1_2_9_26_1
  doi: 10.1146/annurev.arplant.49.1.249
– ident: e_1_2_9_28_1
  doi: 10.1093/pcp/pcn038
– ident: e_1_2_9_44_1
  doi: 10.1186/1746-4811-5-16
– ident: e_1_2_9_17_1
  doi: 10.3389/fcell.2020.00198
– ident: e_1_2_9_48_1
  doi: 10.3389/fmicb.2018.00700
– ident: e_1_2_9_23_1
  doi: 10.1046/j.1365-313X.1997.12020313.x
– ident: e_1_2_9_11_1
  doi: 10.1083/jcb.108.5.1657
– ident: e_1_2_9_29_1
  doi: 10.1105/tpc.17.00047
– ident: e_1_2_9_20_1
  doi: 10.1105/tpc.114.135095
– ident: e_1_2_9_25_1
  doi: 10.1093/pcp/pcf057
– volume: 8
  start-page: 1601
  issue: 9
  year: 1996
  ident: e_1_2_9_16_1
  article-title: Targeting and processing of a chimeric protein with the N‐terminal presequence of the precursor to glyoxysomal citrate synthase
  publication-title: The Plant Cell
  contributor:
    fullname: Kato A.
– ident: e_1_2_9_31_1
  doi: 10.1111/j.1365-313X.2007.03263.x
– ident: e_1_2_9_8_1
  doi: 10.1021/bi027034z
– ident: e_1_2_9_6_1
  doi: 10.1074/jbc.M111.287201
– ident: e_1_2_9_47_1
  doi: 10.1093/nar/gkx267
– volume: 9
  start-page: 185
  issue: 2
  year: 1997
  ident: e_1_2_9_19_1
  article-title: Oilseed isocitrate lyases lacking their essential type 1 peroxisomal targeting signal are piggybacked to glyoxysomes
  publication-title: The Plant Cell
  contributor:
    fullname: Lee M.S.
– ident: e_1_2_9_18_1
  doi: 10.1073/pnas.1703344114
– ident: e_1_2_9_13_1
  doi: 10.1104/pp.16.00166
– ident: e_1_2_9_35_1
  doi: 10.1093/aob/mcv074
– ident: e_1_2_9_3_1
  doi: 10.1105/tpc.18.00177
– ident: e_1_2_9_34_1
  doi: 10.1242/jcs.216986
– ident: e_1_2_9_38_1
  doi: 10.1104/pp.105.065896
– ident: e_1_2_9_33_1
  doi: 10.1104/pp.104.043695
– ident: e_1_2_9_2_1
  doi: 10.1016/j.bbamcr.2006.08.022
– ident: e_1_2_9_27_1
  doi: 10.1111/pce.12726
– ident: e_1_2_9_15_1
  doi: 10.1046/j.0960-7412.2003.001605.x
– ident: e_1_2_9_37_1
  doi: 10.1111/jipb.12649
– ident: e_1_2_9_41_1
  doi: 10.1105/tpc.16.00038
– ident: e_1_2_9_22_1
  doi: 10.1093/jxb/erq282
– ident: e_1_2_9_46_1
  doi: 10.1104/pp.114.252437
– ident: e_1_2_9_30_1
  doi: 10.1016/S0005-2728(89)80347-0
SSID ssj0001479
Score 2.5246084
Snippet Catalase is a well‐known component of the cellular antioxidant network, but there have been conflicting conclusions reached regarding the nature of its...
Catalase is a well-known component of the cellular antioxidant network, but there have been conflicting conclusions reached regarding the nature of its...
SourceID pubmedcentral
proquest
crossref
pubmed
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 1096
SubjectTerms Amino acids
Antioxidants
C-Terminus
CAT2 gene
CAT2 protein
Catalase
Catalase - metabolism
Cellular communication
Fluorescence
Green fluorescent protein
Green Fluorescent Proteins - metabolism
Localization
Mutants
Nuclei (cytology)
nucleus
Original
Pathogens
peroxisome
Peroxisome-Targeting Signal 1 Receptor - metabolism
Peroxisomes - metabolism
Phenotypes
Proteins
Receptors, Cytoplasmic and Nuclear - metabolism
redox signalling
ROS
Title Nuclear and peroxisomal targeting of catalase
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fpce.14262
https://www.ncbi.nlm.nih.gov/pubmed/35040158
https://www.proquest.com/docview/2637579232
https://search.proquest.com/docview/2621018381
https://pubmed.ncbi.nlm.nih.gov/PMC9305541
Volume 45
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB60KHjxUV_VKqt48LLQTXa7CZ60tvRUCip4W_Ja7MHd0lqw_95J9kFLEQRvC0l2w0xm5kt25gvAXcpizUJtfM1S6YeGS591tfQVhlcdUBFGzBYnD1_i0Tt77luanIeqFqbgh6gP3KxlOH9tDVzI-YqRT5VBMyfO_-IuwZVv0HHthYOw4Nmz6YtxzIOSVchm8dQj12PRBsDczJNcxa8uAA0O_jX1Q9gvcaf3WCyUI9gyWRN2i5sol03YecoRJS6PwR9ZgmMx80SmPUsi_j2Z5584skgZx0Dn5annDn0w_p3A26D_2hv65ZUKvkJkQHyJ8UoIxUNKOyrWNBBSEaaEkJ3QBN0oFbwjUGO4ieOpllJEjEmKKEwhsJLM0FNoZHlmzsELdWqJZLgxiqAXIFIExIiUUMplyjVvwW0l3GRaMGck1Y4DBZA4AbSgXYk9KY1nnpAujSPLa4jNN3UzLnv7L0NkJl_YPsRyjSHeaMFZoaX6KzRCzxRErAXxmv7qDpZSe70lm3w4am1uCdBCfOe909_vE0_Gvb57uPh710vYI7Z4wuX9tKHxNVuYK9ie68W1W7s_LSjwNA
link.rule.ids 230,315,782,786,887,1408,27933,27934,46064,46488
linkProvider Wiley-Blackwell
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NT9swFH8aDLRd2PgYlDEIiAOXSI3tNLbEhbGiokFVCZC4Rf6K1sOSqqUS_Pd7z2kjqgoJabdIthPrff7sPP8McFrIzEnhfOxkYWLhlYllx5nYYnp1CdcilXQ4uXeX9R_lry7R5JzPz8LU_BDNhht5RojX5OC0If3Ky0fWo58zCsAfRQcNkQ5w8EEThxNRM-1RAWOWqWTGK0R1PM3QxWy0BDGXKyVfI9iQgq6-_N_kv8LGDHpGF7WtbMIHX27Ben0Z5csWrP2sECi-bEPcJ45jPY506SLiEX8eTqq_OLKuGsdcF1VFFPZ9MAXuwMNV9_6yF89uVYgtggMWG0xZWlslOG_bzPFEG8uk1dq0hU86aaFVW6PScB2nCmeMTqU0HIGYRWxlpOffYLWsSr8HkXAFccko7y1D-TOjE-Z1wThXplBOteBkLt18VJNn5PNFBwogDwJowcFc7vnMfyY56_AsJWpDbD5umtHy6XeGLn01pT6M6MYQcrRgt1ZT8xWeYnBKUtmCbEGBTQdi1V5sKYd_Aru2Ig40ge88Cwp8e-L54LIbHvbf3_UIPvXub2_ym-v-7-_wmdFZilAGdACrT-Op_wErEzc9DIb8D1qM9Fw
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dSxwxEB_8qOJLtbbq-dW19KEvC7dJ9jbBp6p3KC3HQRV8W_KJPnT38DzQ_96Z7N3iIYWCbwtJdsNMZuaX7MwvAN-DLJwUzqdOBpMKr0wqe86kFsOry7gWuaTi5Ms_xfBWXvSJJud0XgvT8EO0B25kGdFfk4GPXXhl5GPr0cwZ-d9VgTCciPM5H7VuOBMN0R7lLxaFyma0QpTG0w5dDEZvEObbRMnXADZGoMHmu-a-BR9nwDP52ayUT7Dkq21Ya66ifN6GD2c1wsTnz5AOieFYPyS6cgmxiD_dT-q_OLLJGcdIl9Qhiac-GAC_wM2gf31-mc7uVEgtQgOWGgxYWlslOO_awvFMG8uk1dp0hc96edCqq1FluItTwRmjcykNRxhmEVkZ6fkOrFR15fcgES4Qk4zy3jJ0A8zojHkdGOfKBOVUB77NhVuOG-qMcr7lQAGUUQAdOJyLvZxZz6RkPV7kRGyIzSdtM657-pmhK19PqQ8jsjEEHB3YbbTUfoXn6JqyXHagWNBf24E4tRdbqvu7yK2tiAFN4Dt_RP39e-Ll6LwfH_b_v-tXWB9dDMrfV8NfB7DBqJAi5gAdwsrjw9QfwfLETY_jMn4BbXXzAg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nuclear+and+peroxisomal+targeting+of+catalase&rft.jtitle=Plant%2C+cell+and+environment&rft.au=Al%E2%80%90Hajaya%2C+Yousef&rft.au=Karpinska%2C+Barbara&rft.au=Foyer%2C+Christine+H.&rft.au=Baker%2C+Alison&rft.date=2022-04-01&rft.issn=0140-7791&rft.eissn=1365-3040&rft.volume=45&rft.issue=4&rft.spage=1096&rft.epage=1108&rft_id=info:doi/10.1111%2Fpce.14262&rft.externalDBID=10.1111%252Fpce.14262&rft.externalDocID=PCE14262
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0140-7791&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0140-7791&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0140-7791&client=summon