Nuclear and peroxisomal targeting of catalase
Catalase is a well‐known component of the cellular antioxidant network, but there have been conflicting conclusions reached regarding the nature of its peroxisome targeting signal. It has also been reported that catalase can be hijacked to the nucleus by effector proteins of plant pathogens. Using a...
Saved in:
Published in: | Plant, cell and environment Vol. 45; no. 4; pp. 1096 - 1108 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
Wiley Subscription Services, Inc
01-04-2022
John Wiley and Sons Inc |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Catalase is a well‐known component of the cellular antioxidant network, but there have been conflicting conclusions reached regarding the nature of its peroxisome targeting signal. It has also been reported that catalase can be hijacked to the nucleus by effector proteins of plant pathogens. Using a physiologically relevant system where native untagged catalase variants are expressed in a cat2‐1 mutant background, the C terminal most 18 amino acids could be deleted without affecting activity, peroxisomal targeting or ability to complement multiple phenotypes of the cat2‐1 mutant. In contrast, converting the native C terminal tripeptide PSI to the canonical PTS1 sequence ARL resulted in lower catalase specific activity. Localisation experiments using split superfolder green fluorescent protein revealed that catalase can be targeted to the nucleus in the absence of any pathogen effectors, and that C terminal tagging in combination with alterations of the native C terminus can interfere with nuclear localisation. These findings provide fundamental new insights into catalase targeting and pave the way for exploration of the mechanism of catalase targeting to the nucleus and its role in non‐infected plants.
Summary statement
Arabidopsis thaliana CAT2 is targeted to the nucleus and the peroxisome. Peroxisome targeting was independent of the C terminus and required the noncanonical import pathway for optimal activity. Modification to the C terminus interfered with nuclear targeting in the absence of pathogen effectors. |
---|---|
AbstractList | Catalase is a well‐known component of the cellular antioxidant network, but there have been conflicting conclusions reached regarding the nature of its peroxisome targeting signal. It has also been reported that catalase can be hijacked to the nucleus by effector proteins of plant pathogens. Using a physiologically relevant system where native untagged catalase variants are expressed in a cat2‐1 mutant background, the C terminal most 18 amino acids could be deleted without affecting activity, peroxisomal targeting or ability to complement multiple phenotypes of the cat2‐1 mutant. In contrast, converting the native C terminal tripeptide PSI to the canonical PTS1 sequence ARL resulted in lower catalase specific activity. Localisation experiments using split superfolder green fluorescent protein revealed that catalase can be targeted to the nucleus in the absence of any pathogen effectors, and that C terminal tagging in combination with alterations of the native C terminus can interfere with nuclear localisation. These findings provide fundamental new insights into catalase targeting and pave the way for exploration of the mechanism of catalase targeting to the nucleus and its role in non‐infected plants. Catalase is a well‐known component of the cellular antioxidant network, but there have been conflicting conclusions reached regarding the nature of its peroxisome targeting signal. It has also been reported that catalase can be hijacked to the nucleus by effector proteins of plant pathogens. Using a physiologically relevant system where native untagged catalase variants are expressed in a cat2‐1 mutant background, the C terminal most 18 amino acids could be deleted without affecting activity, peroxisomal targeting or ability to complement multiple phenotypes of the cat2‐1 mutant. In contrast, converting the native C terminal tripeptide PSI to the canonical PTS1 sequence ARL resulted in lower catalase specific activity. Localisation experiments using split superfolder green fluorescent protein revealed that catalase can be targeted to the nucleus in the absence of any pathogen effectors, and that C terminal tagging in combination with alterations of the native C terminus can interfere with nuclear localisation. These findings provide fundamental new insights into catalase targeting and pave the way for exploration of the mechanism of catalase targeting to the nucleus and its role in non‐infected plants. Summary statement Arabidopsis thaliana CAT2 is targeted to the nucleus and the peroxisome. Peroxisome targeting was independent of the C terminus and required the noncanonical import pathway for optimal activity. Modification to the C terminus interfered with nuclear targeting in the absence of pathogen effectors. Catalase is a well‐known component of the cellular antioxidant network, but there have been conflicting conclusions reached regarding the nature of its peroxisome targeting signal. It has also been reported that catalase can be hijacked to the nucleus by effector proteins of plant pathogens. Using a physiologically relevant system where native untagged catalase variants are expressed in a cat2‐1 mutant background, the C terminal most 18 amino acids could be deleted without affecting activity, peroxisomal targeting or ability to complement multiple phenotypes of the cat2‐1 mutant. In contrast, converting the native C terminal tripeptide PSI to the canonical PTS1 sequence ARL resulted in lower catalase specific activity. Localisation experiments using split superfolder green fluorescent protein revealed that catalase can be targeted to the nucleus in the absence of any pathogen effectors, and that C terminal tagging in combination with alterations of the native C terminus can interfere with nuclear localisation. These findings provide fundamental new insights into catalase targeting and pave the way for exploration of the mechanism of catalase targeting to the nucleus and its role in non‐infected plants. Arabidopsis thaliana CAT2 is targeted to the nucleus and the peroxisome. Peroxisome targeting was independent of the C terminus and required the noncanonical import pathway for optimal activity. Modification to the C terminus interfered with nuclear targeting in the absence of pathogen effectors. |
Author | Baker, Alison Karpinska, Barbara Al‐Hajaya, Yousef Foyer, Christine H. |
AuthorAffiliation | 1 Centre for Plant Sciences and School of Molecular and Cellular Biology University of Leeds Leeds UK 2 Centre for Plant Sciences and School of Biology University of Leeds Leeds UK 4 Present address: Department of Laboratory Medical Sciences Mutah University Karak Jordan 3 Astbury Centre for Structural Molecular Biology University of Leeds Leeds UK 5 Present address: School of Biosciences, College of Life and Environmental Sciences University of Birmingham Edgbaston UK |
AuthorAffiliation_xml | – name: 4 Present address: Department of Laboratory Medical Sciences Mutah University Karak Jordan – name: 1 Centre for Plant Sciences and School of Molecular and Cellular Biology University of Leeds Leeds UK – name: 2 Centre for Plant Sciences and School of Biology University of Leeds Leeds UK – name: 3 Astbury Centre for Structural Molecular Biology University of Leeds Leeds UK – name: 5 Present address: School of Biosciences, College of Life and Environmental Sciences University of Birmingham Edgbaston UK |
Author_xml | – sequence: 1 givenname: Yousef surname: Al‐Hajaya fullname: Al‐Hajaya, Yousef organization: University of Leeds – sequence: 2 givenname: Barbara surname: Karpinska fullname: Karpinska, Barbara organization: University of Leeds – sequence: 3 givenname: Christine H. orcidid: 0000-0001-5989-6989 surname: Foyer fullname: Foyer, Christine H. organization: University of Leeds – sequence: 4 givenname: Alison orcidid: 0000-0003-2181-4057 surname: Baker fullname: Baker, Alison email: a.baker@leeds.ac.uk organization: University of Leeds |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35040158$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kU1LAzEQhoNU7Ice_AOy4EUPa5PNpru5CFLqBxT1oOcwm87WLdtNTXbV_ntTtxYVzGUg8_AwM2-fdCpTISHHjF4w_4YrjRcsjkbRHukxPhIhpzHtkB5lMQ2TRLIu6Tu3oNR_JPKAdLnwABNpj4T3jS4RbADVLFihNR-FM0sogxrsHOuimgcmDzTUUILDQ7KfQ-nwaFsH5Pl68jS-DacPN3fjq2moBZVRmPFRBKBlzDnVyYwzyHSUaoCMxshGIgdJIUYpWSLzWZaBSNOMS8G0YHGWIh-Qy9a7arIlzjRWtYVSrWyxBLtWBgr1u1MVL2pu3pTkVIiYecHZVmDNa4OuVsvCaSxLqNA0TvlbMcpSnm7Q0z_owjS28ut5iicikRGPPHXeUtoa5yzmu2EYVZsQlA9BfYXg2ZOf0-_I76t7YNgC70WJ6_9N6nE8aZWf4XWR1w |
CitedBy_id | crossref_primary_10_1093_plcell_koad167 crossref_primary_10_1016_j_envexpbot_2022_104863 crossref_primary_10_1016_j_freeradbiomed_2023_01_014 crossref_primary_10_3389_fcell_2022_934331 crossref_primary_10_3389_fpls_2022_1035573 crossref_primary_10_1111_tpj_16276 crossref_primary_10_1007_s12374_024_09432_w crossref_primary_10_1016_j_scitotenv_2024_169939 crossref_primary_10_1093_jxb_erae177 crossref_primary_10_1093_plcell_koae001 crossref_primary_10_3390_pr10071318 crossref_primary_10_1016_j_redox_2023_102917 crossref_primary_10_1042_EBC20210059 crossref_primary_10_3390_microorganisms10081511 crossref_primary_10_1111_jph_13260 crossref_primary_10_1016_j_plantsci_2023_111597 crossref_primary_10_1093_jxb_erae090 crossref_primary_10_1590_1807_1929_agriambi_v27n5p309_316 |
Cites_doi | 10.1105/tpc.107.050989 10.1007/s00299-016-2055-2 10.1016/j.molcel.2006.10.024 10.1104/pp.111.180042 10.1104/pp.010141 10.1146/annurev-arplant-042817-040322 10.1105/tpc.113.117192 10.1104/pp.16.00375 10.1038/emboj.2011.411 10.1038/nprot.2009.197 10.1073/pnas.91.22.10541 10.1046/j.1365-313x.1998.00343.x 10.1080/09168451.2018.1530094 10.1016/j.abb.2012.04.015 10.1002/bies.20493 10.1016/j.abb.2004.12.017 10.1146/annurev.arplant.49.1.249 10.1093/pcp/pcn038 10.1186/1746-4811-5-16 10.3389/fcell.2020.00198 10.3389/fmicb.2018.00700 10.1046/j.1365-313X.1997.12020313.x 10.1083/jcb.108.5.1657 10.1105/tpc.17.00047 10.1105/tpc.114.135095 10.1093/pcp/pcf057 10.1111/j.1365-313X.2007.03263.x 10.1021/bi027034z 10.1074/jbc.M111.287201 10.1093/nar/gkx267 10.1073/pnas.1703344114 10.1104/pp.16.00166 10.1093/aob/mcv074 10.1105/tpc.18.00177 10.1242/jcs.216986 10.1104/pp.105.065896 10.1104/pp.104.043695 10.1016/j.bbamcr.2006.08.022 10.1111/pce.12726 10.1046/j.0960-7412.2003.001605.x 10.1111/jipb.12649 10.1105/tpc.16.00038 10.1093/jxb/erq282 10.1104/pp.114.252437 10.1016/S0005-2728(89)80347-0 |
ContentType | Journal Article |
Copyright | 2022 The Authors. published by John Wiley & Sons Ltd. 2022 The Authors. Plant, Cell & Environment published by John Wiley & Sons Ltd. 2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2022 The Authors. published by John Wiley & Sons Ltd. – notice: 2022 The Authors. Plant, Cell & Environment published by John Wiley & Sons Ltd. – notice: 2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P WIN CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QP 7ST C1K SOI 7X8 5PM |
DOI | 10.1111/pce.14262 |
DatabaseName | Wiley-Blackwell Open Access Collection Wiley Free Archive Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Calcium & Calcified Tissue Abstracts Environment Abstracts Environmental Sciences and Pollution Management Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Calcium & Calcified Tissue Abstracts Environment Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | Calcium & Calcified Tissue Abstracts MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: ECM name: MEDLINE url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Botany |
DocumentTitleAlternate | AL‐HAJAYA et al |
EISSN | 1365-3040 |
EndPage | 1108 |
ExternalDocumentID | 10_1111_pce_14262 35040158 PCE14262 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Mu'tah University Jordan funderid: PhD scholarship to YAH – fundername: Wellcome Trust funderid: WT104918MA – fundername: Wellcome Trust grantid: WT104918MA – fundername: Mu'tah University Jordan grantid: PhD scholarship to YAH |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 123 186 1OB 1OC 24P 29O 2WC 31~ 33P 36B 3SF 4.4 42X 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AETEA AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHEFC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BAWUL BDRZF BFHJK BHBCM BIYOS BMNLL BNHUX BROTX BRXPI BY8 CAG COF CS3 D-E D-F DC6 DCZOG DIK DPXWK DR2 DRFUL DRSTM DU5 EBS ECGQY EJD ESX F00 F01 F04 F5P FEDTE FIJ FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ IHE IPNFZ IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG OK1 P2P P2W P2X P4D PALCI Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ UB1 W8V W99 WBKPD WH7 WHG WIH WIK WIN WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 XSW YNT ZZTAW ~02 ~IA ~KM ~WT CGR CUY CVF ECM EIF NPM AAMNL AAYXX CITATION 7QP 7ST C1K SOI 7X8 5PM |
ID | FETCH-LOGICAL-c5092-b362aac94330c7d31abc28caab04e165fa90a4e99179fdbba588b3951c514b8e3 |
IEDL.DBID | 33P |
ISSN | 0140-7791 |
IngestDate | Tue Sep 17 21:10:22 EDT 2024 Sat Aug 17 02:01:36 EDT 2024 Thu Oct 10 15:02:43 EDT 2024 Thu Nov 21 23:00:04 EST 2024 Sat Sep 28 08:20:06 EDT 2024 Sat Aug 24 00:56:53 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | redox signalling nucleus peroxisome ROS |
Language | English |
License | Attribution 2022 The Authors. Plant, Cell & Environment published by John Wiley & Sons Ltd. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5092-b362aac94330c7d31abc28caab04e165fa90a4e99179fdbba588b3951c514b8e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-2181-4057 0000-0001-5989-6989 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fpce.14262 |
PMID | 35040158 |
PQID | 2637579232 |
PQPubID | 37957 |
PageCount | 13 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_9305541 proquest_miscellaneous_2621018381 proquest_journals_2637579232 crossref_primary_10_1111_pce_14262 pubmed_primary_35040158 wiley_primary_10_1111_pce_14262_PCE14262 |
PublicationCentury | 2000 |
PublicationDate | April 2022 |
PublicationDateYYYYMMDD | 2022-04-01 |
PublicationDate_xml | – month: 04 year: 2022 text: April 2022 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Oxford – name: Hoboken |
PublicationTitle | Plant, cell and environment |
PublicationTitleAlternate | Plant Cell Environ |
PublicationYear | 2022 |
Publisher | Wiley Subscription Services, Inc John Wiley and Sons Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc – name: John Wiley and Sons Inc |
References | 1998; 49 2007; 19 2013; 25 1989; 975 2015; 167 2005; 435 2005; 139 2017; 45 2006; 1763 2017; 29 2007; 52 2018; 60 2016; 39 2017; 114 2011; 156 1997; 9 2012; 525 2012; 31 2003; 33 2010; 61 2018; 69 2001; 127 1998; 16 2020; 8 2018; 131 2018; 9 2015; 27 2004; 136 2019; 83 1989; 108 2017; 36 2015; 116 2006; 24 2006; 28 2002; 43 2008; 49 1997; 12 2018; 30 2009; 5 2016; 171 1994; 91 2016; 28 2010; 5 2003; 42 1996; 8 2011; 286 e_1_2_9_30_1 e_1_2_9_31_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_37_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_42_1 e_1_2_9_20_1 e_1_2_9_40_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_8_1 e_1_2_9_7_1 e_1_2_9_6_1 e_1_2_9_5_1 e_1_2_9_4_1 Kato A. (e_1_2_9_16_1) 1996; 8 e_1_2_9_3_1 e_1_2_9_2_1 e_1_2_9_9_1 e_1_2_9_26_1 e_1_2_9_25_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_29_1 Lee M.S. (e_1_2_9_19_1) 1997; 9 |
References_xml | – volume: 171 start-page: 1551 issue: 3 year: 2016 end-page: 1559 article-title: The roles of mitochondrial reactive oxygen species in cellular signaling and stress response in plants publication-title: Plant Physiology – volume: 5 start-page: p16 issue: 1 year: 2009 article-title: Tape‐Arabidopsis Sandwich‐a simpler Arabidopsis protoplast isolation method publication-title: Plant Methods – volume: 45 start-page: 5061 issue: 9 year: 2017 end-page: 5073 article-title: A high quality Arabidopsis transcriptome for accurate transcript‐level analysis of alternative splicing publication-title: Nucleic Acids Research – volume: 171 start-page: 1541 issue: 3 year: 2016 end-page: 1550 article-title: Redox‐and reactive oxygen species‐dependent signaling into and out of the photosynthesizing chloroplast publication-title: Plant Physiology – volume: 136 start-page: 2587 issue: 1 year: 2004 end-page: 2608 article-title: AraPerox. A database of putative Arabidopsis proteins from plant peroxisomes publication-title: Plant Physiology – volume: 116 start-page: 475 issue: 4 year: 2015 end-page: 485 article-title: Peroxisomes sense and respond to environmental cues by regulating ROS and RNS signalling networks publication-title: Annals of Botany – volume: 61 start-page: 4197 issue: 15 year: 2010 end-page: 4220 article-title: Catalase function in plants: a focus on Arabidopsis mutants as stress‐mimic models publication-title: Journal of Experimental Botany – volume: 156 start-page: 2026 issue: 4 year: 2011 end-page: 2036 article-title: Virus‐induced necrosis is a consequence of direct protein‐protein interaction between a viral RNA‐silencing suppressor and a host catalase publication-title: Plant Physiology – volume: 167 start-page: 164 issue: 1 year: 2015 end-page: 175 article-title: Two cytoplasmic effectors of regulate plant cell death via interactions with plant catalases publication-title: Plant Physiology – volume: 8 start-page: 1601 issue: 9 year: 1996 end-page: 1611 article-title: Targeting and processing of a chimeric protein with the N‐terminal presequence of the precursor to glyoxysomal citrate synthase publication-title: The Plant Cell – volume: 9 start-page: 185 issue: 2 year: 1997 end-page: 197 article-title: Oilseed isocitrate lyases lacking their essential type 1 peroxisomal targeting signal are piggybacked to glyoxysomes publication-title: The Plant Cell – volume: 69 start-page: 209 year: 2018 end-page: 236 article-title: Reactive oxygen species in plant signaling publication-title: Annual Review of Plant Biology – volume: 9 year: 2018 article-title: A novel protein elicitor BAR11 from Hhs. 015 improves plant resistance to pathogens and interacts with catalases as targets publication-title: Frontiers in Microbiology – volume: 91 start-page: 10541 issue: 22 year: 1994 end-page: 10545 article-title: peroxisomal thiolase is imported as a dimer publication-title: Proceedings of the National Academy of Sciences United States of America – volume: 12 start-page: 313 issue: 2 year: 1997 end-page: 322 article-title: Identification of the peroxisomal targeting signal for cottonseed catalase publication-title: The Plant Journal – volume: 131 issue: 17 year: 2018 article-title: The budding yeast Pex5p receptor directs Fox2p and Cta1p into peroxisomes via its N‐terminal region near the FxxxW domain publication-title: Journal of Cell Science – volume: 8 year: 2020 article-title: The peroxisomal targeting signal 3 (PTS3) of the budding yeast acyl‐CoA oxidase Is a signal patch publication-title: Frontiers in Cell and Developmental Biology – volume: 114 start-page: 8414 issue: 31 year: 2017 end-page: 8419 article-title: Nucleoredoxin guards against oxidative stress by protecting antioxidant enzymes publication-title: Proceedings of the National Academy of Sciences United States of America – volume: 29 start-page: 1571 issue: 7 year: 2017 end-page: 1584 article-title: Spatiotemporal monitoring of effectors via type III secretion using split fluorescent protein fragments publication-title: The Plant Cell – volume: 28 start-page: 1091 issue: 11 year: 2006 end-page: 1101 article-title: Reactive oxygen species as signals that modulate plant stress responses and programmed cell death publication-title: BioEssays – volume: 33 start-page: 161 issue: 1 year: 2003 end-page: 175 article-title: Identification of peroxisomal targeting signal of pumpkin catalase and the binding analysis with PTS1 receptor publication-title: The Plant Journal – volume: 975 start-page: 384 issue: 3 year: 1989 end-page: 394 article-title: Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy publication-title: Biochimica et Biophysica Acta (BBA)‐Bioenergetics – volume: 60 start-page: 591 issue: 7 year: 2018 end-page: 607 article-title: The Arabidopsis catalase triple mutant reveals important roles of catalases and peroxisome‐derived signaling in plant development publication-title: Journal of Integrative Plant Biology – volume: 83 start-page: 322 issue: 2 year: 2019 end-page: 325 article-title: Effect of mutation of C‐terminal and heme binding region of Arabidopsis catalase on the import to peroxisomes publication-title: Bioscience, Biotechnology, and Biochemistry – volume: 52 start-page: 640 issue: 4 year: 2007 end-page: 657 article-title: Conditional oxidative stress responses in the Arabidopsis photorespiratory mutant CAT2 demonstrate that redox state is a key modulator of daylength‐dependent gene expression, and define photoperiod as a crucial factor in the regulation of H O ‐induced cell death publication-title: The Plant Journal – volume: 27 start-page: 908 issue: 3 year: 2015 end-page: 925 article-title: A chaperone function of NO CATALASE ACTIVITY1 is required to maintain catalase activity and for multiple stress responses in Arabidopsis publication-title: The Plant Cell – volume: 49 start-page: 249 issue: 1 year: 1998 end-page: 279 article-title: Ascorbate and glutathione: keeping active oxygen under control publication-title: Annual Review of Plant Biology – volume: 16 start-page: 735 issue: 6 year: 1998 end-page: 743 article-title: Floral dip: a simplified method for Agrobacterium‐mediated transformation of publication-title: The Plant Journal – volume: 42 start-page: 1660 issue: 6 year: 2003 end-page: 1666 article-title: Correlating structure and affinity for PEX5: PTS1 complexes publication-title: Biochemistry – volume: 28 start-page: 1844 issue: 8 year: 2016 end-page: 1859 article-title: SHORT‐ROOT deficiency alleviates the cell death phenotype of the Arabidopsis catalase2 mutant under photorespiration‐promoting conditions publication-title: The Plant Cell – volume: 286 start-page: 40509 issue: 47 year: 2011 end-page: 40519 article-title: PEX5 protein binds monomeric catalase blocking its tetramerization and releases it upon binding the N‐terminal domain of PEX14 publication-title: Journal of Biological Chemistry – volume: 5 start-page: 51 issue: 1 year: 2010 end-page: 66 article-title: Measurement of superoxide dismutase, catalase and glutathione peroxidase in cultured cells and tissue publication-title: Nature Protocols – volume: 30 start-page: 1424 issue: 7 year: 2018 end-page: 1444 article-title: Rapid and dynamic alternative splicing impacts the Arabidopsis cold response transcriptome publication-title: The Plant Cell – volume: 39 start-page: 1140 issue: 5 year: 2016 end-page: 1160 article-title: Oxidative stress and antioxidative systems: recipes for successful data collection and interpretation publication-title: Plant, Cell & Environment – volume: 108 start-page: 1657 issue: 5 year: 1989 end-page: 1664 article-title: A conserved tripeptide sorts proteins to peroxisomes publication-title: The Journal of Cell Biology – volume: 139 start-page: 806 issue: 2 year: 2005 end-page: 821 article-title: Genome‐wide analysis of hydrogen peroxide‐regulated gene expression in Arabidopsis reveals a high light‐induced transcriptional cluster involved in anthocyanin biosynthesis publication-title: Plant Physiology – volume: 31 start-page: 391 issue: 2 year: 2012 end-page: 402 article-title: Insights into ubiquitin‐conjugating enzyme/co‐activator interactions from the structure of the Pex4p: Pex22p complex publication-title: The EMBO Journal – volume: 435 start-page: 243 issue: 2 year: 2005 end-page: 252 article-title: A protective association between catalase and isocitrate lyase in peroxisomes publication-title: Archives of Biochemistry and Biophysics – volume: 49 start-page: 671 issue: 4 year: 2008 end-page: 677 article-title: Plant catalase is imported into peroxisomes by Pex5p but is distinct from typical PTS1 import publication-title: Plant and Cell Physiology – volume: 19 start-page: 3170 issue: 10 year: 2007 end-page: 3193 article-title: Proteome analysis of Arabidopsis leaf peroxisomes reveals novel targeting peptides, metabolic pathways, and defense mechanisms publication-title: The Plant Cell – volume: 127 start-page: 426 issue: 2 year: 2001 end-page: 435 article-title: Low ascorbic acid in the vtc‐1 mutant of Arabidopsis is associated with decreased growth and intracellular redistribution of the antioxidant system publication-title: Plant Physiology – volume: 25 start-page: 4616 issue: 11 year: 2013 end-page: 4626 article-title: Catalase and NO CATALASE ACTIVITY1 promote autophagy‐dependent cell death in Arabidopsis publication-title: The Plant Cell – volume: 525 start-page: 181 issue: 2 year: 2012 end-page: 194 article-title: Plant catalases: peroxisomal redox guardians publication-title: Archives of Biochemistry and Biophysics – volume: 24 start-page: 653 issue: 5 year: 2006 end-page: 663 article-title: Recognition of a functional peroxisome type 1 target by the dynamic import receptor pex5p publication-title: Molecular Cell – volume: 36 start-page: 37 issue: 1 year: 2017 end-page: 47 article-title: Interaction between Cucumber mosaic virus 2b protein and plant catalase induces a specific necrosis in association with proteasome activity publication-title: Plant Cell Reports – volume: 1763 start-page: 1565 issue: 12 year: 2006 end-page: 1573 article-title: Peroxisome targeting signal 1: is it really a simple tripeptide? publication-title: Biochimica et Biophysica Acta (BBA)‐Molecular Cell Research – volume: 43 start-page: 355 issue: 4 year: 2002 end-page: 366 article-title: Direct interaction and determination of binding domains among peroxisomal import factors in publication-title: Plant and Cell Physiology – ident: e_1_2_9_32_1 doi: 10.1105/tpc.107.050989 – ident: e_1_2_9_24_1 doi: 10.1007/s00299-016-2055-2 – ident: e_1_2_9_36_1 doi: 10.1016/j.molcel.2006.10.024 – ident: e_1_2_9_14_1 doi: 10.1104/pp.111.180042 – ident: e_1_2_9_39_1 doi: 10.1104/pp.010141 – ident: e_1_2_9_40_1 doi: 10.1146/annurev-arplant-042817-040322 – ident: e_1_2_9_12_1 doi: 10.1105/tpc.113.117192 – ident: e_1_2_9_5_1 doi: 10.1104/pp.16.00375 – ident: e_1_2_9_43_1 doi: 10.1038/emboj.2011.411 – ident: e_1_2_9_42_1 doi: 10.1038/nprot.2009.197 – ident: e_1_2_9_10_1 doi: 10.1073/pnas.91.22.10541 – ident: e_1_2_9_4_1 doi: 10.1046/j.1365-313x.1998.00343.x – ident: e_1_2_9_7_1 doi: 10.1080/09168451.2018.1530094 – ident: e_1_2_9_21_1 doi: 10.1016/j.abb.2012.04.015 – ident: e_1_2_9_9_1 doi: 10.1002/bies.20493 – ident: e_1_2_9_45_1 doi: 10.1016/j.abb.2004.12.017 – ident: e_1_2_9_26_1 doi: 10.1146/annurev.arplant.49.1.249 – ident: e_1_2_9_28_1 doi: 10.1093/pcp/pcn038 – ident: e_1_2_9_44_1 doi: 10.1186/1746-4811-5-16 – ident: e_1_2_9_17_1 doi: 10.3389/fcell.2020.00198 – ident: e_1_2_9_48_1 doi: 10.3389/fmicb.2018.00700 – ident: e_1_2_9_23_1 doi: 10.1046/j.1365-313X.1997.12020313.x – ident: e_1_2_9_11_1 doi: 10.1083/jcb.108.5.1657 – ident: e_1_2_9_29_1 doi: 10.1105/tpc.17.00047 – ident: e_1_2_9_20_1 doi: 10.1105/tpc.114.135095 – ident: e_1_2_9_25_1 doi: 10.1093/pcp/pcf057 – volume: 8 start-page: 1601 issue: 9 year: 1996 ident: e_1_2_9_16_1 article-title: Targeting and processing of a chimeric protein with the N‐terminal presequence of the precursor to glyoxysomal citrate synthase publication-title: The Plant Cell contributor: fullname: Kato A. – ident: e_1_2_9_31_1 doi: 10.1111/j.1365-313X.2007.03263.x – ident: e_1_2_9_8_1 doi: 10.1021/bi027034z – ident: e_1_2_9_6_1 doi: 10.1074/jbc.M111.287201 – ident: e_1_2_9_47_1 doi: 10.1093/nar/gkx267 – volume: 9 start-page: 185 issue: 2 year: 1997 ident: e_1_2_9_19_1 article-title: Oilseed isocitrate lyases lacking their essential type 1 peroxisomal targeting signal are piggybacked to glyoxysomes publication-title: The Plant Cell contributor: fullname: Lee M.S. – ident: e_1_2_9_18_1 doi: 10.1073/pnas.1703344114 – ident: e_1_2_9_13_1 doi: 10.1104/pp.16.00166 – ident: e_1_2_9_35_1 doi: 10.1093/aob/mcv074 – ident: e_1_2_9_3_1 doi: 10.1105/tpc.18.00177 – ident: e_1_2_9_34_1 doi: 10.1242/jcs.216986 – ident: e_1_2_9_38_1 doi: 10.1104/pp.105.065896 – ident: e_1_2_9_33_1 doi: 10.1104/pp.104.043695 – ident: e_1_2_9_2_1 doi: 10.1016/j.bbamcr.2006.08.022 – ident: e_1_2_9_27_1 doi: 10.1111/pce.12726 – ident: e_1_2_9_15_1 doi: 10.1046/j.0960-7412.2003.001605.x – ident: e_1_2_9_37_1 doi: 10.1111/jipb.12649 – ident: e_1_2_9_41_1 doi: 10.1105/tpc.16.00038 – ident: e_1_2_9_22_1 doi: 10.1093/jxb/erq282 – ident: e_1_2_9_46_1 doi: 10.1104/pp.114.252437 – ident: e_1_2_9_30_1 doi: 10.1016/S0005-2728(89)80347-0 |
SSID | ssj0001479 |
Score | 2.5246084 |
Snippet | Catalase is a well‐known component of the cellular antioxidant network, but there have been conflicting conclusions reached regarding the nature of its... Catalase is a well-known component of the cellular antioxidant network, but there have been conflicting conclusions reached regarding the nature of its... |
SourceID | pubmedcentral proquest crossref pubmed wiley |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 1096 |
SubjectTerms | Amino acids Antioxidants C-Terminus CAT2 gene CAT2 protein Catalase Catalase - metabolism Cellular communication Fluorescence Green fluorescent protein Green Fluorescent Proteins - metabolism Localization Mutants Nuclei (cytology) nucleus Original Pathogens peroxisome Peroxisome-Targeting Signal 1 Receptor - metabolism Peroxisomes - metabolism Phenotypes Proteins Receptors, Cytoplasmic and Nuclear - metabolism redox signalling ROS |
Title | Nuclear and peroxisomal targeting of catalase |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fpce.14262 https://www.ncbi.nlm.nih.gov/pubmed/35040158 https://www.proquest.com/docview/2637579232 https://search.proquest.com/docview/2621018381 https://pubmed.ncbi.nlm.nih.gov/PMC9305541 |
Volume | 45 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB60KHjxUV_VKqt48LLQTXa7CZ60tvRUCip4W_Ja7MHd0lqw_95J9kFLEQRvC0l2w0xm5kt25gvAXcpizUJtfM1S6YeGS591tfQVhlcdUBFGzBYnD1_i0Tt77luanIeqFqbgh6gP3KxlOH9tDVzI-YqRT5VBMyfO_-IuwZVv0HHthYOw4Nmz6YtxzIOSVchm8dQj12PRBsDczJNcxa8uAA0O_jX1Q9gvcaf3WCyUI9gyWRN2i5sol03YecoRJS6PwR9ZgmMx80SmPUsi_j2Z5584skgZx0Dn5annDn0w_p3A26D_2hv65ZUKvkJkQHyJ8UoIxUNKOyrWNBBSEaaEkJ3QBN0oFbwjUGO4ieOpllJEjEmKKEwhsJLM0FNoZHlmzsELdWqJZLgxiqAXIFIExIiUUMplyjVvwW0l3GRaMGck1Y4DBZA4AbSgXYk9KY1nnpAujSPLa4jNN3UzLnv7L0NkJl_YPsRyjSHeaMFZoaX6KzRCzxRErAXxmv7qDpZSe70lm3w4am1uCdBCfOe909_vE0_Gvb57uPh710vYI7Z4wuX9tKHxNVuYK9ie68W1W7s_LSjwNA |
link.rule.ids | 230,315,782,786,887,1408,27933,27934,46064,46488 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NT9swFH8aDLRd2PgYlDEIiAOXSI3tNLbEhbGiokFVCZC4Rf6K1sOSqqUS_Pd7z2kjqgoJabdIthPrff7sPP8McFrIzEnhfOxkYWLhlYllx5nYYnp1CdcilXQ4uXeX9R_lry7R5JzPz8LU_BDNhht5RojX5OC0If3Ky0fWo58zCsAfRQcNkQ5w8EEThxNRM-1RAWOWqWTGK0R1PM3QxWy0BDGXKyVfI9iQgq6-_N_kv8LGDHpGF7WtbMIHX27Ben0Z5csWrP2sECi-bEPcJ45jPY506SLiEX8eTqq_OLKuGsdcF1VFFPZ9MAXuwMNV9_6yF89uVYgtggMWG0xZWlslOG_bzPFEG8uk1dq0hU86aaFVW6PScB2nCmeMTqU0HIGYRWxlpOffYLWsSr8HkXAFccko7y1D-TOjE-Z1wThXplBOteBkLt18VJNn5PNFBwogDwJowcFc7vnMfyY56_AsJWpDbD5umtHy6XeGLn01pT6M6MYQcrRgt1ZT8xWeYnBKUtmCbEGBTQdi1V5sKYd_Aru2Ig40ge88Cwp8e-L54LIbHvbf3_UIPvXub2_ym-v-7-_wmdFZilAGdACrT-Op_wErEzc9DIb8D1qM9Fw |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dSxwxEB_8qOJLtbbq-dW19KEvC7dJ9jbBp6p3KC3HQRV8W_KJPnT38DzQ_96Z7N3iIYWCbwtJdsNMZuaX7MwvAN-DLJwUzqdOBpMKr0wqe86kFsOry7gWuaTi5Ms_xfBWXvSJJud0XgvT8EO0B25kGdFfk4GPXXhl5GPr0cwZ-d9VgTCciPM5H7VuOBMN0R7lLxaFyma0QpTG0w5dDEZvEObbRMnXADZGoMHmu-a-BR9nwDP52ayUT7Dkq21Ya66ifN6GD2c1wsTnz5AOieFYPyS6cgmxiD_dT-q_OLLJGcdIl9Qhiac-GAC_wM2gf31-mc7uVEgtQgOWGgxYWlslOO_awvFMG8uk1dp0hc96edCqq1FluItTwRmjcykNRxhmEVkZ6fkOrFR15fcgES4Qk4zy3jJ0A8zojHkdGOfKBOVUB77NhVuOG-qMcr7lQAGUUQAdOJyLvZxZz6RkPV7kRGyIzSdtM657-pmhK19PqQ8jsjEEHB3YbbTUfoXn6JqyXHagWNBf24E4tRdbqvu7yK2tiAFN4Dt_RP39e-Ll6LwfH_b_v-tXWB9dDMrfV8NfB7DBqJAi5gAdwsrjw9QfwfLETY_jMn4BbXXzAg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nuclear+and+peroxisomal+targeting+of+catalase&rft.jtitle=Plant%2C+cell+and+environment&rft.au=Al%E2%80%90Hajaya%2C+Yousef&rft.au=Karpinska%2C+Barbara&rft.au=Foyer%2C+Christine+H.&rft.au=Baker%2C+Alison&rft.date=2022-04-01&rft.issn=0140-7791&rft.eissn=1365-3040&rft.volume=45&rft.issue=4&rft.spage=1096&rft.epage=1108&rft_id=info:doi/10.1111%2Fpce.14262&rft.externalDBID=10.1111%252Fpce.14262&rft.externalDocID=PCE14262 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0140-7791&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0140-7791&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0140-7791&client=summon |