The Arabidopsis thaliana LysM‐containing Receptor‐Like Kinase 2 is required for elicitor‐induced resistance to pathogens
In Arabidopsis thaliana, perception of chitin from fungal cell walls is mediated by three LysM‐containing Receptor‐Like Kinases (LYKs): CERK1, which is absolutely required for chitin perception, and LYK4 and LYK5, which act redundantly. The role in plant innate immunity of a fourth LYK protein, LYK2...
Saved in:
Published in: | Plant, cell and environment Vol. 44; no. 12; pp. 3545 - 3562 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Chichester, UK
John Wiley & Sons, Ltd
01-12-2021
Wiley Subscription Services, Inc |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In Arabidopsis thaliana, perception of chitin from fungal cell walls is mediated by three LysM‐containing Receptor‐Like Kinases (LYKs): CERK1, which is absolutely required for chitin perception, and LYK4 and LYK5, which act redundantly. The role in plant innate immunity of a fourth LYK protein, LYK2, is currently not known. Here we show that CERK1, LYK2 and LYK5 are dispensable for basal susceptibility to B. cinerea but are necessary for chitin‐induced resistance to this pathogen. LYK2 is dispensable for chitin perception and early signalling events, though it contributes to callose deposition induced by this elicitor. Notably, LYK2 is also necessary for enhanced resistance to B. cinerea and Pseudomonas syringae induced by flagellin and for elicitor‐induced priming of defence gene expression during fungal infection. Consistently, overexpression of LYK2 enhances resistance to B. cinerea and P. syringae and results in increased expression of defence‐related genes during fungal infection. LYK2 appears to be required to establish a primed state in plants exposed to biotic elicitors, ensuring a robust resistance to subsequent pathogen infections.
Arabidopsis thaliana LYK2 is not involved in the direct perception of chitin, but it is necessary for elicitor‐induced resistance to pathogens and priming of defence response. |
---|---|
Bibliography: | Funding information Moira Giovannoni and Damiano Lironi contributed equally to this study. DFG, ERA‐CAPS, Grant/Award Number: SIPIS; MIUR, ERA‐CAPS; PRIN 2017, Grant/Award Number: 2017ZBBYNC; Progetti di Ricerca 2015, Grant/Award Number: C26A15CFKE; Progetti di Ricerca 2019, Grant/Award Number: RM11916B6F156C03 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Funding information DFG, ERA‐CAPS, Grant/Award Number: SIPIS; MIUR, ERA‐CAPS; PRIN 2017, Grant/Award Number: 2017ZBBYNC; Progetti di Ricerca 2015, Grant/Award Number: C26A15CFKE; Progetti di Ricerca 2019, Grant/Award Number: RM11916B6F156C03 |
ISSN: | 0140-7791 1365-3040 |
DOI: | 10.1111/pce.14192 |