Regional vesicular acetylcholine transporter distribution in human brain: A [18F]fluoroethoxybenzovesamicol positron emission tomography study
Prior efforts to image cholinergic projections in human brain in vivo had significant technical limitations. We used the vesicular acetylcholine transporter (VAChT) ligand [18F]fluoroethoxybenzovesamicol ([18F]FEOBV) and positron emission tomography to determine the regional distribution of VAChT bi...
Saved in:
Published in: | Journal of comparative neurology (1911) Vol. 526; no. 17; pp. 2884 - 2897 |
---|---|
Main Authors: | , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Hoboken, USA
John Wiley & Sons, Inc
01-12-2018
Wiley Subscription Services, Inc |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Prior efforts to image cholinergic projections in human brain in vivo had significant technical limitations. We used the vesicular acetylcholine transporter (VAChT) ligand [18F]fluoroethoxybenzovesamicol ([18F]FEOBV) and positron emission tomography to determine the regional distribution of VAChT binding sites in normal human brain. We studied 29 subjects (mean age 47 [range 20–81] years; 18 men; 11 women). [18F]FEOBV binding was highest in striatum, intermediate in the amygdala, hippocampal formation, thalamus, rostral brainstem, some cerebellar regions, and lower in other regions. Neocortical [18F]FEOBV binding was inhomogeneous with relatively high binding in insula, BA24, BA25, BA27, BA28, BA34, BA35, pericentral cortex, and lowest in BA17–19. Thalamic [18F]FEOBV binding was inhomogeneous with greatest binding in the lateral geniculate nuclei and relatively high binding in medial and posterior thalamus. Cerebellar cortical [18F]FEOBV binding was high in vermis and flocculus, and lower in the lateral cortices. Brainstem [18F]FEOBV binding was most prominent at the mesopontine junction, likely associated with the pedunculopontine–laterodorsal tegmental complex. Significant [18F]FEOBV binding was present throughout the brainstem. Some regions, including the striatum, primary sensorimotor cortex, and anterior cingulate cortex exhibited age‐related decreases in [18F]FEOBV binding. These results are consistent with prior studies of cholinergic projections in other species and prior postmortem human studies. There is a distinctive pattern of human neocortical VChAT expression. The patterns of thalamic and cerebellar cortical cholinergic terminal distribution are likely unique to humans. Normal aging is associated with regionally specific reductions in [18F]FEOBV binding in some cortical regions and the striatum.
Using [18F]FEOBV PET, we describe the distribution of cholinergic terminals in human brain. The distribution of cholinergic terminals is similar to that found in other mammals with some distinctive features in cortex, thalamus, and cerebellum. There are regionally specific age‐related changes in cholinergic terminal density. |
---|---|
AbstractList | Prior efforts to image cholinergic projections in human brain in vivo had significant technical limitations. We used the vesicular acetylcholine transporter (VAChT) ligand [18F]fluoroethoxybenzovesamicol ([18F]FEOBV) and positron emission tomography to determine the regional distribution of VAChT binding sites in normal human brain. We studied 29 subjects (mean age 47 [range 20–81] years; 18 men; 11 women). [18F]FEOBV binding was highest in striatum, intermediate in the amygdala, hippocampal formation, thalamus, rostral brainstem, some cerebellar regions, and lower in other regions. Neocortical [18F]FEOBV binding was inhomogeneous with relatively high binding in insula, BA24, BA25, BA27, BA28, BA34, BA35, pericentral cortex, and lowest in BA17–19. Thalamic [18F]FEOBV binding was inhomogeneous with greatest binding in the lateral geniculate nuclei and relatively high binding in medial and posterior thalamus. Cerebellar cortical [18F]FEOBV binding was high in vermis and flocculus, and lower in the lateral cortices. Brainstem [18F]FEOBV binding was most prominent at the mesopontine junction, likely associated with the pedunculopontine–laterodorsal tegmental complex. Significant [18F]FEOBV binding was present throughout the brainstem. Some regions, including the striatum, primary sensorimotor cortex, and anterior cingulate cortex exhibited age‐related decreases in [18F]FEOBV binding. These results are consistent with prior studies of cholinergic projections in other species and prior postmortem human studies. There is a distinctive pattern of human neocortical VChAT expression. The patterns of thalamic and cerebellar cortical cholinergic terminal distribution are likely unique to humans. Normal aging is associated with regionally specific reductions in [18F]FEOBV binding in some cortical regions and the striatum.
Using [18F]FEOBV PET, we describe the distribution of cholinergic terminals in human brain. The distribution of cholinergic terminals is similar to that found in other mammals with some distinctive features in cortex, thalamus, and cerebellum. There are regionally specific age‐related changes in cholinergic terminal density. Prior efforts to image cholinergic projections in human brain in vivo had significant technical limitations. We used the vesicular acetylcholine transporter (VAChT) ligand [18F]fluoroethoxybenzovesamicol ([18F]FEOBV) and positron emission tomography to determine the regional distribution of VAChT binding sites in normal human brain. We studied 29 subjects (mean age 47 [range 20–81] years; 18 men; 11 women). [18F]FEOBV binding was highest in striatum, intermediate in the amygdala, hippocampal formation, thalamus, rostral brainstem, some cerebellar regions, and lower in other regions. Neocortical [18F]FEOBV binding was inhomogeneous with relatively high binding in insula, BA24, BA25, BA27, BA28, BA34, BA35, pericentral cortex, and lowest in BA17–19. Thalamic [18F]FEOBV binding was inhomogeneous with greatest binding in the lateral geniculate nuclei and relatively high binding in medial and posterior thalamus. Cerebellar cortical [18F]FEOBV binding was high in vermis and flocculus, and lower in the lateral cortices. Brainstem [18F]FEOBV binding was most prominent at the mesopontine junction, likely associated with the pedunculopontine–laterodorsal tegmental complex. Significant [18F]FEOBV binding was present throughout the brainstem. Some regions, including the striatum, primary sensorimotor cortex, and anterior cingulate cortex exhibited age‐related decreases in [18F]FEOBV binding. These results are consistent with prior studies of cholinergic projections in other species and prior postmortem human studies. There is a distinctive pattern of human neocortical VChAT expression. The patterns of thalamic and cerebellar cortical cholinergic terminal distribution are likely unique to humans. Normal aging is associated with regionally specific reductions in [18F]FEOBV binding in some cortical regions and the striatum. Prior efforts to image cholinergic projections in human brain in vivo had significant technical limitations. We used the vesicular acetylcholine transporter (VAChT) ligand [ 18 F]fluoroethoxybenzovesamicol ([ 18 F]FEOBV) and positron emission tomography to determine the regional distribution of VAChT binding sites in normal human brain. We studied 29 subjects (mean age 47 [range 20–81] years; 18 men; 11 women). [ 18 F]FEOBV binding was highest in striatum, intermediate in the amygdala, hippocampal formation, thalamus, rostral brainstem, some cerebellar regions, and lower in other regions. Neocortical [ 18 F]FEOBV binding was inhomogeneous with relatively high binding in insula, BA24, BA25, BA27, BA28, BA34, BA35, pericentral cortex, and lowest in BA17–19. Thalamic [ 18 F]FEOBV binding was inhomogeneous with greatest binding in the lateral geniculate nuclei and relatively high binding in medial and posterior thalamus. Cerebellar cortical [ 18 F]FEOBV binding was high in vermis and flocculus, and lower in the lateral cortices. Brainstem [ 18 F]FEOBV binding was most prominent at the mesopontine junction, likely associated with the pedunculopontine-laterodorsal tegmental complex. Significant [ 18 F]FEOBV binding was present throughout the brainstem. Some regions, including the striatum, primary sensorimotor cortex, and anterior cingulate cortex exhibited age-related decreases in [ 18 F]FEOBV binding. These results are consistent with prior studies of cholinergic projections in other species and prior post-mortem human studies. There is a distinctive pattern of human neocortical VChAT expression. The patterns of thalamic and cerebellar cortical cholinergic terminal distribution are likely unique to humans. Normal aging is associated with regionally specific reductions in [ 18 F]FEOBV binding in some cortical regions and the striatum. Prior efforts to image cholinergic projections in human brain in vivo had significant technical limitations. We used the vesicular acetylcholine transporter (VAChT) ligand [ 18 F]fluoroethoxybenzovesamicol ([ 18 F]FEOBV) and positron emission tomography to determine the regional distribution of VAChT binding sites in normal human brain. We studied 29 subjects (mean age 47 [range 20–81] years; 18 men; 11 women). [ 18 F]FEOBV binding was highest in striatum, intermediate in the amygdala, hippocampal formation, thalamus, rostral brainstem, some cerebellar regions, and lower in other regions. Neocortical [ 18 F]FEOBV binding was inhomogeneous with relatively high binding in insula, BA24, BA25, BA27, BA28, BA34, BA35, pericentral cortex, and lowest in BA17–19. Thalamic [ 18 F]FEOBV binding was inhomogeneous with greatest binding in the lateral geniculate nuclei and relatively high binding in medial and posterior thalamus. Cerebellar cortical [ 18 F]FEOBV binding was high in vermis and flocculus, and lower in the lateral cortices. Brainstem [ 18 F]FEOBV binding was most prominent at the mesopontine junction, likely associated with the pedunculopontine–laterodorsal tegmental complex. Significant [ 18 F]FEOBV binding was present throughout the brainstem. Some regions, including the striatum, primary sensorimotor cortex, and anterior cingulate cortex exhibited age‐related decreases in [ 18 F]FEOBV binding. These results are consistent with prior studies of cholinergic projections in other species and prior postmortem human studies. There is a distinctive pattern of human neocortical VChAT expression. The patterns of thalamic and cerebellar cortical cholinergic terminal distribution are likely unique to humans. Normal aging is associated with regionally specific reductions in [ 18 F]FEOBV binding in some cortical regions and the striatum. Prior efforts to image cholinergic projections in human brain in vivo had significant technical limitations. We used the vesicular acetylcholine transporter (VAChT) ligand [ F]fluoroethoxybenzovesamicol ([ F]FEOBV) and positron emission tomography to determine the regional distribution of VAChT binding sites in normal human brain. We studied 29 subjects (mean age 47 [range 20-81] years; 18 men; 11 women). [ F]FEOBV binding was highest in striatum, intermediate in the amygdala, hippocampal formation, thalamus, rostral brainstem, some cerebellar regions, and lower in other regions. Neocortical [ F]FEOBV binding was inhomogeneous with relatively high binding in insula, BA24, BA25, BA27, BA28, BA34, BA35, pericentral cortex, and lowest in BA17-19. Thalamic [ F]FEOBV binding was inhomogeneous with greatest binding in the lateral geniculate nuclei and relatively high binding in medial and posterior thalamus. Cerebellar cortical [ F]FEOBV binding was high in vermis and flocculus, and lower in the lateral cortices. Brainstem [ F]FEOBV binding was most prominent at the mesopontine junction, likely associated with the pedunculopontine-laterodorsal tegmental complex. Significant [ F]FEOBV binding was present throughout the brainstem. Some regions, including the striatum, primary sensorimotor cortex, and anterior cingulate cortex exhibited age-related decreases in [ F]FEOBV binding. These results are consistent with prior studies of cholinergic projections in other species and prior postmortem human studies. There is a distinctive pattern of human neocortical VChAT expression. The patterns of thalamic and cerebellar cortical cholinergic terminal distribution are likely unique to humans. Normal aging is associated with regionally specific reductions in [ F]FEOBV binding in some cortical regions and the striatum. |
Author | Dauer, William T. Albin, Roger L. Frey, Kirk A. Sarter, Martin Bohnen, Nicolaas I. Koeppe, Robert A. Muller, Martijn L. T. M. |
AuthorAffiliation | 4 Michigan Alzheimer Disease Center, Ann Arbor, Ml, 48105 3 University of Michigan Morris K. Udall Center of Excellence for Research in Parkinson’s Disease, Ann Arbor, Ml, 48109 5 Dept. of Radiology, University of Michigan, Ann Arbor, Ml, 48109 7 Dept. of Psychology, University of Michigan, Ann Arbor, Ml, 48109 2 Dept. of Neurology, University of Michigan, Ann Arbor, Ml, 48109 6 Dept. of Cell and Developmental Biology, University of Michigan, Ann Arbor, Ml, 48109 1 Neurology Service & GRECC, VAAAHS, Ann Arbor, Ml, 48105 |
AuthorAffiliation_xml | – name: 7 Dept. of Psychology, University of Michigan, Ann Arbor, Ml, 48109 – name: 3 University of Michigan Morris K. Udall Center of Excellence for Research in Parkinson’s Disease, Ann Arbor, Ml, 48109 – name: 6 Dept. of Cell and Developmental Biology, University of Michigan, Ann Arbor, Ml, 48109 – name: 4 Michigan Alzheimer Disease Center, Ann Arbor, Ml, 48105 – name: 5 Dept. of Radiology, University of Michigan, Ann Arbor, Ml, 48109 – name: 2 Dept. of Neurology, University of Michigan, Ann Arbor, Ml, 48109 – name: 1 Neurology Service & GRECC, VAAAHS, Ann Arbor, Ml, 48105 |
Author_xml | – sequence: 1 givenname: Roger L. orcidid: 0000-0002-0629-608X surname: Albin fullname: Albin, Roger L. email: ralbin@umich.edu organization: Michigan Alzheimer Disease Center – sequence: 2 givenname: Nicolaas I. surname: Bohnen fullname: Bohnen, Nicolaas I. organization: University of Michigan – sequence: 3 givenname: Martijn L. T. M. surname: Muller fullname: Muller, Martijn L. T. M. organization: University of Michigan – sequence: 4 givenname: William T. surname: Dauer fullname: Dauer, William T. organization: University of Michigan – sequence: 5 givenname: Martin surname: Sarter fullname: Sarter, Martin organization: University of Michigan – sequence: 6 givenname: Kirk A. surname: Frey fullname: Frey, Kirk A. organization: University of Michigan – sequence: 7 givenname: Robert A. surname: Koeppe fullname: Koeppe, Robert A. organization: University of Michigan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30255936$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kdFqFDEUhoNU7LZ64QtIwBu9mDbJzGQTL4SytCoUBdErkZDJnN1JySRrkqlOH6LPbNatRQVzE8j5zsc5-Y_QgQ8eEHpKyQklhJ0aDyesaRv6AC0okbySgtMDtCg1WknJl4foKKUrQoiUtXiEDmvC2lbWfIFuP8LGBq8dvoZkzeR0xNpAnp0ZgrMecI7ap22IGSLubcrRdlMuLdh6PEyj9riL2vpX-Ax_oeLi69pNIQbIQ_gxd-BvQhHr0Zrg8DYkm2NphdGmtHPkMIZN1NthxilP_fwYPVxrl-DJ3X2MPl-cf1q9rS4_vHm3OrusTEskrfiaGQ1lmY73pK5b3otOGtFoxpgw3bIltG_KgSVvOq2h7kh5MUz0XPeMmPoYvd57t1M3Qm_AlzWd2kY76jiroK36u-LtoDbhWnHBli2XRfDiThDDtwlSVmUlA85pD2FKilHKOCVts0Of_4NehSmWL99RteCcNlQU6uWeMjGkFGF9PwwlapeyKimrXykX9tmf09-Tv2MtwOke-G4dzP83qdX7873yJ7wGuB4 |
CitedBy_id | crossref_primary_10_1007_s00213_019_05354_5 crossref_primary_10_1007_s40473_020_00221_6 crossref_primary_10_1016_j_nbas_2022_100039 crossref_primary_10_1002_ana_25430 crossref_primary_10_3390_life12030460 crossref_primary_10_1002_mds_28360 crossref_primary_10_1080_17425255_2020_1779700 crossref_primary_10_1007_s00221_022_06382_y crossref_primary_10_1523_JNEUROSCI_1334_21_2022 crossref_primary_10_2196_59705 crossref_primary_10_1111_jnc_15990 crossref_primary_10_1016_j_nicl_2022_102992 crossref_primary_10_1186_s40658_022_00440_8 crossref_primary_10_3233_JPD_223489 crossref_primary_10_1002_ana_26596 crossref_primary_10_1002_mds_28532 crossref_primary_10_1093_gerona_glaa097 crossref_primary_10_1016_j_biopsych_2024_01_019 crossref_primary_10_1016_j_cpet_2020_12_002 crossref_primary_10_1007_s00213_021_05822_x crossref_primary_10_1007_s11307_019_01466_8 crossref_primary_10_1111_jnc_15683 crossref_primary_10_1016_j_neuroimage_2023_119908 crossref_primary_10_2967_jnumed_121_263198 crossref_primary_10_1007_s11910_021_01140_z crossref_primary_10_1093_braincomms_fcab109 crossref_primary_10_1093_braincomms_fcac318 crossref_primary_10_1093_brain_awaa465 crossref_primary_10_1002_mds_28883 crossref_primary_10_2967_jnumed_123_266860 crossref_primary_10_1021_acs_molpharmaceut_1c00961 crossref_primary_10_1152_jn_00402_2022 crossref_primary_10_1186_s13550_022_00889_9 crossref_primary_10_1016_j_nbas_2023_100071 crossref_primary_10_1093_cercor_bhaa387 |
Cites_doi | 10.1016/0361-9230(89)90197-4 10.1002/cne.903170304 10.1002/cne.902570302 10.1002/cne.903360110 10.1002/cne.903180308 10.1002/ana.410320505 10.1046/j.1471-4159.1998.70062227.x 10.1002/cne.902880411 10.1523/JNEUROSCI.16-07-02179.1996 10.1212/WNL.0b013e3181dc1a55 10.1016/S0891-0618(03)00068-1 10.1016/j.neuroscience.2016.09.013 10.1002/cne.23415 10.7554/eLife.08352 10.1016/0361-9230(86)90134-6 10.1002/cne.10759 10.1002/cne.902750205 10.1002/cne.903170303 10.1016/j.neuron.2017.02.027 10.1515/revneuro-2016-0008 10.1016/S0079-6123(03)45004-8 10.1016/0306-4522(83)90108-2 10.1523/ENEURO.0178-17.2017 10.2310/7290.2012.00043 10.1038/sj.jcbfm.9600599 10.1111/ejn.13354 10.1016/0361-9230(85)90178-9 10.1007/BF00971334 10.1038/jcbfm.2012.60 10.3389/fnana.2016.00001 10.1002/(SICI)1098-2396(199811)30:3<263::AID-SYN4>3.0.CO;2-9 10.1097/00004647-200102000-00004 10.1002/jlcr.1865 10.1038/mp.2017.183 10.1016/0361-9230(84)90236-3 10.1073/pnas.84.16.5976 10.1002/mds.26300 10.1002/cne.902830414 10.1016/S1474-4422(15)00389-0 10.1016/j.neuroimage.2017.02.006 10.1159/000438824 10.1523/JNEUROSCI.3460-16.2017 10.1111/bpa.12168 10.1111/nyas.12762 10.1016/j.brainres.2005.06.008 10.1002/mds.26556 10.1016/S0079-6123(08)63359-2 10.1177/1073858416682471 10.1016/S0140-6736(16)30272-0 10.1007/BF00712800 10.1016/0301-0082(91)90006-M 10.1002/(SICI)1096-9861(19970224)378:4<454::AID-CNE2>3.0.CO;2-1 10.1002/(SICI)1096-9861(19990906)411:4<693::AID-CNE13>3.0.CO;2-D 10.1038/npp.2010.104 10.1016/j.neuroimage.2007.05.050 10.1002/cne.903280304 10.1016/j.bbr.2010.11.058 10.1002/cne.903230209 10.1111/ejn.13638 10.1111/jnc.13910 10.1016/j.neuroscience.2015.12.055 10.1042/BJ20121662 10.1016/j.neuron.2016.09.006 10.1016/j.celrep.2017.01.060 10.1016/S0891-0618(97)00021-5 10.1523/JNEUROSCI.0490-15.2015 10.1002/cne.903450302 10.1016/S0306-4522(97)00291-1 10.1523/JNEUROSCI.5071-13.2014 10.1007/BF02736782 10.1002/cne.24087 10.1016/j.biopsych.2011.06.019 10.1016/S0306-4522(98)00380-7 10.1016/S0306-4522(00)00457-7 10.1002/ana.410400309 10.2967/jnumed.113.124792 10.1002/cne.903250107 10.1007/s00429-011-0320-2 10.1212/WNL.52.4.691 10.1016/S0304-3940(00)01244-1 10.1371/journal.pone.0001174 10.1016/S0140-6736(96)09124-6 10.1016/j.pnpbp.2010.12.005 10.1016/S0306-4522(97)00516-2 10.1038/sj.jcbfm.9600276 10.1212/WNL.0b013e3181f6128c |
ContentType | Journal Article |
Copyright | 2018 Wiley Periodicals, Inc. |
Copyright_xml | – notice: 2018 Wiley Periodicals, Inc. |
DBID | NPM AAYXX CITATION 7QR 7TK 8FD FR3 K9. P64 7X8 5PM |
DOI | 10.1002/cne.24541 |
DatabaseName | PubMed CrossRef Chemoreception Abstracts Neurosciences Abstracts Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | PubMed CrossRef ProQuest Health & Medical Complete (Alumni) Chemoreception Abstracts Engineering Research Database Technology Research Database Neurosciences Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) CrossRef PubMed |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Zoology |
EISSN | 1096-9861 |
EndPage | 2897 |
ExternalDocumentID | 10_1002_cne_24541 30255936 CNE24541 |
Genre | article Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIH‐NINDS funderid: P01 NS015655P50 NS091856R21 NS088302 – fundername: Michael J. Fox Foundation for Parkinson's Research – fundername: Michael J. Fox Foundation – fundername: National Institute of Neurological Disorders and Stroke grantid: P50 NS091856 – fundername: National Institute of Neurological Disorders and Stroke grantid: P01 NS015655 – fundername: National Institute of Neurological Disorders and Stroke grantid: R21 NS088302 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 123 1L6 1OB 1OC 1ZS 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5RE 5VS 66C 702 79B 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABIJN ABIVO ABJNI ABOCM ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACPRK ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AELAQ AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBS EJD EMOBN F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ L7B LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OVD P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K ROL RWD RWI RX1 RYL SUPJJ SV3 TEORI UB1 V2E W8V W99 WBKPD WIB WIH WIK WJL WNSPC WOHZO WQJ WRC WUP WXSBR WYISQ XG1 XV2 YQT ZZTAW ~IA ~WT NPM .55 .GJ .Y3 31~ 3O- 53G AAMNL AAYXX ABEML ACBWZ ACSCC ASPBG AVWKF AZFZN CITATION FEDTE GAKWD HF~ HVGLF M6M OHT SAMSI X7M XJT XOL ZGI ZXP 7QR 7TK 8FD FR3 K9. P64 7X8 5PM |
ID | FETCH-LOGICAL-c5091-6f2cae993b6d03356d8b9c84a2228cb7501d4444e764baae3b001dc28d6ad20c3 |
IEDL.DBID | 33P |
ISSN | 0021-9967 |
IngestDate | Tue Sep 17 21:11:30 EDT 2024 Fri Aug 16 05:51:27 EDT 2024 Thu Oct 10 19:06:21 EDT 2024 Fri Nov 22 00:39:53 EST 2024 Sat Sep 28 08:38:32 EDT 2024 Sat Aug 24 00:50:25 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 17 |
Keywords | striatum basal forebrain RRID: SCR_001847 RRID: SCR_007037 pedunculopontine nucleus acetylcholine aging cerebellum thalamus |
Language | English |
License | 2018 Wiley Periodicals, Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5091-6f2cae993b6d03356d8b9c84a2228cb7501d4444e764baae3b001dc28d6ad20c3 |
Notes | Funding information Michael J. Fox Foundation for Parkinson's Research; NIH‐NINDS, Grant/Award Number: P01 NS015655P50 NS091856R21 NS088302; Michael J. Fox Foundation ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-0629-608X |
OpenAccessLink | http://deepblue.lib.umich.edu/bitstream/2027.42/146604/1/cne24541.pdf |
PMID | 30255936 |
PQID | 2138661418 |
PQPubID | 1006438 |
PageCount | 14 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6827569 proquest_miscellaneous_2112610549 proquest_journals_2138661418 crossref_primary_10_1002_cne_24541 pubmed_primary_30255936 wiley_primary_10_1002_cne_24541_CNE24541 |
PublicationCentury | 2000 |
PublicationDate | December 1, 2018 |
PublicationDateYYYYMMDD | 2018-12-01 |
PublicationDate_xml | – month: 12 year: 2018 text: December 1, 2018 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Hoboken, USA |
PublicationPlace_xml | – name: Hoboken, USA – name: United States – name: New York |
PublicationTitle | Journal of comparative neurology (1911) |
PublicationTitleAlternate | J Comp Neurol |
PublicationYear | 2018 |
Publisher | John Wiley & Sons, Inc Wiley Subscription Services, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley Subscription Services, Inc |
References | 2015; 35 1997; 114 2001; 102 2017; 4 1993; 328 2017; 47 1991; 11 2015; 30 2015; 74 1992; 323 2017; 45 1992; 325 2016; 387 2016; 31 1999; 89 1983; 10 2013; 521 1989; 283 2011; 54 1998; 82 1998; 84 2007; 37 2012; 71 1997; 349 1994; 345 1987; 84 2017; 37 2016; 317 2013; 12 1997; 13 2008; 28 2006; 26 1984; 13 1992; 317 1994; 35 1992; 318 1999; 411 1999; 52 2007; 2 2015; 1349 2000; 288 1993; 336 2010; 74 2014; 55 2017; 525 1985; 14 2004; 145 1997; 378 2010; 75 1989; 23 2015; 4 2011; 216 1991; 37 2017; 22 2018; 223 2016; 10 1986; 16 2005; 1052 2011; 35 2016; 91 2011; 36 1992; 32 1996; 16 2016; 15 2012; 32 1995; 6 2001; 21 2017; 94 2015; 25 1989; 288 1994; 19 1987; 257 2002; 23 2003; 26 1996; 40 1998; 70 2017; 140 1988; 275 2017; 18 2013; 450 1998; 30 2016; 27 2017; 345 2014; 34 2003; 463 2017; 149 2011; 221 2016; 23 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_83_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_81_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_87_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_66_1 e_1_2_7_85_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_68_1 e_1_2_7_89_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_90_1 e_1_2_7_73_1 e_1_2_7_50_1 e_1_2_7_71_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_77_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_75_1 e_1_2_7_21_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_58_1 e_1_2_7_79_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_80_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_84_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_61_1 e_1_2_7_82_1 e_1_2_7_2_1 e_1_2_7_14_1 Hanyu H. (e_1_2_7_35_1) 2002; 23 e_1_2_7_42_1 e_1_2_7_63_1 e_1_2_7_88_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_65_1 e_1_2_7_86_1 Lecumberri A. (e_1_2_7_53_1) 2018; 223 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_67_1 e_1_2_7_48_1 e_1_2_7_69_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_72_1 e_1_2_7_51_1 e_1_2_7_70_1 e_1_2_7_30_1 e_1_2_7_76_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_74_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_78_1 e_1_2_7_38_1 Kuhl D. E. (e_1_2_7_47_1) 1994; 35 |
References_xml | – volume: 216 start-page: 331 year: 2011 end-page: 345 article-title: Projections from the rat pedunculopontine and laterodorsal tegmental nuclei to the anterior thalamus and ventral tegmental area arise from largely separate populations of neurons publication-title: Brain Structure and Function – volume: 23 start-page: 27 year: 2002 end-page: 32 article-title: MR analysis of the substantia innominata in normal aging, Alzheimer disease, and other types of dementia publication-title: American Journal of Neuroradiology – volume: 257 start-page: 317 year: 1987 end-page: 332 article-title: Choline acetyltransferase immunoreactivity in the rat thalamus publication-title: Journal of Comparative Neurology – volume: 323 start-page: 252 year: 1992 end-page: 268 article-title: Cholinergic innervation of the human striatum, globus pallidus, subthalamic nucleus, substantia nigra, and red nucleus publication-title: Journal of Comparative Neurology – volume: 12 start-page: 288 year: 2013 end-page: 299 article-title: Improvement of in vivo quantification of [123I]‐Iodobenzovesamicol in single‐photon emission computed tomography/computed tomography using anatomic image to brain atlas nonrigid registration publication-title: Molecular Imaging – volume: 94 start-page: 7 year: 2017 end-page: 18 article-title: Rethinking the Pedunculopontine nucleus: From cellular organization to function publication-title: Neuron – volume: 37 start-page: 694 year: 2007 end-page: 705 article-title: Topography of cortical and subcortical connections of the human pedunculopontine and subthalamic nuclei publication-title: NeuroImage – volume: 317 start-page: 233 year: 1992 end-page: 249 article-title: Cholinergic innervation of the cerebellum of rat, rabbit, cat, and monkey as revealed by choline acetyltransferase activity and immunohistochemistry publication-title: Journal of Comparative Neurology – volume: 54 start-page: 292 year: 2011 end-page: 307 article-title: Highlighting the versatility of the Tracerlab synthesis modules. Part 1: Fully automated production of [F]labelled radiopharmaceuticals using a Tracerlab FX(FN) publication-title: Journal of Labelled Compounds & Radiopharmaceuticals – volume: 6 start-page: 225 year: 1995 end-page: 235 article-title: Human and monkey cholinergic neurons visualized in paraffin‐embedded tissues by immunoreactivity for VAChT, the vesicular acetylcholine transporter publication-title: Journal of Molecular Neuroscience – volume: 35 start-page: 9424 year: 2015 end-page: 9431 article-title: Role of striatal cholinergic interneurons in set‐shifting in the rat publication-title: Journal of Neuroscience – volume: 2 start-page: e1174 year: 2007 article-title: Cholinergic interneurons are differentially distributed in the human striatum publication-title: PLoS One – volume: 26 start-page: 1198 year: 2006 end-page: 1212 article-title: Positron emission tomography of monoaminergic vesicular binding in aging and Parkinson disease publication-title: Journal of Cerebral Blood Flow and Metabolism – volume: 32 start-page: 1609 year: 2012 end-page: 1617 article-title: Heterogeneity of cholinergic denervation in Parkinson's disease without dementia publication-title: Journal of Cerebral Blood Flow and Metabolism – volume: 283 start-page: 611 year: 1989 end-page: 633 article-title: Human reticular formation: Cholinergic neurons of the pedunculopontine and laterodorsal tegmental nuclei and some cytochemical comparisons to forebrain cholinergic neurons publication-title: Journal of Comparative Neurology – volume: 31 start-page: 615 year: 2016 end-page: 624 article-title: The pedunculopontine tegmental nucleus‐a functional hypothesis from the comparative literature publication-title: Movement Disorders – volume: 318 start-page: 316 year: 1992 end-page: 328 article-title: Differential cholinergic innervation within functional subdivisions of the human cerebral cortex: A choline acetyltransferase study publication-title: Journal of Comparative Neurology – volume: 275 start-page: 216 year: 1988 end-page: 240 article-title: Nucleus basalis (Ch4) and cortical cholinergic innervation in the human brain: Observations based on the distribution of acetylcholinesterase and choline acetyltransferase publication-title: Journal of Comparative Neurology – volume: 28 start-page: 441 year: 2008 end-page: 444 article-title: Spared caudal brainstem SERT binding in early Parkinson's disease publication-title: Journal of Cerebral Blood Flow and Metabolism – volume: 328 start-page: 364 year: 1993 end-page: 376 article-title: Cholinergic innervation of the human cerebellum publication-title: Journal of Comparative Neurology – volume: 114 start-page: 67 year: 1997 end-page: 96 article-title: Cholinergic innervation and receptors in the cerebellum publication-title: Progress in Brain Research – volume: 32 start-page: 625 year: 1992 end-page: 632 article-title: Cortical biopsy in Alzheimer's disease: Diagnostic accuracy and neurochemical, neuropathological, and cognitive correlations. Intraventricular Bethanecol Study Group publication-title: Annals of Neurology – volume: 74 start-page: 86 year: 2015 end-page: 91 article-title: Impact of Rivastigmine on cognitive dysfunction and falling in Parkinson's disease patients publication-title: European Neurology – volume: 23 start-page: 415 year: 2016 end-page: 431 article-title: The cellular diversity of the Pedunculopontine nucleus: Relevance to behavior in health and aspects of Parkinson's disease publication-title: The Neuroscientist – volume: 13 start-page: 23 year: 1997 end-page: 39 article-title: Localization of two cholinergic markers, choline acetyltransferase and vesicular acetylcholine transporter in the central nervous system of the rat: In situ hybridization histochemistry and immunohistochemistry publication-title: Journal of Chemical Neuroanatomy – volume: 84 start-page: 331 year: 1998 end-page: 359 article-title: Cholinergic neurons and terminal fields revealed by immunohistochemistry for the vesicular acetylcholine transporter. I. Central nervous system publication-title: Neuroscience – volume: 36 start-page: 52 year: 2011 end-page: 73 article-title: Modes and models of forebrain cholinergic neuromodulation of cognition publication-title: Neuropsychopharmacology – volume: 288 start-page: 195 year: 2000 end-page: 198 article-title: Age‐related changes of neuronal counts in the human pedunculopontine nucleus publication-title: Neuroscience Letters – volume: 89 start-page: 759 year: 1999 end-page: 770 article-title: Quantification of cholinergic and select non‐cholinergic mesopontine neuronal populations in the human brain publication-title: Neuroscience – volume: 10 start-page: 1185 year: 1983 end-page: 1201 article-title: Central cholinergic pathways in the rat: An overview based on an alternative nomenclature (Ch1‐Ch6) publication-title: Neuroscience – volume: 35 start-page: 405 year: 1994 end-page: 410 article-title: In vivo mapping of cholinergic neurons in the human brain using SPECT and IBVM publication-title: Journal of Nuclear Medicine – volume: 37 start-page: 475 year: 1991 end-page: 524 article-title: Cholinergic systems in mammalian brain and spinal cord publication-title: Progress in Neurobiology – volume: 70 start-page: 2227 year: 1998 end-page: 2240 article-title: The cholinergic gene locus publication-title: Journal of Neurochemistry – volume: 82 start-page: 1195 year: 1998 end-page: 1212 article-title: Distribution of the vesicular transporter for acetylcholine in the rat central nervous system publication-title: Neuroscience – volume: 45 start-page: 217 year: 2017 end-page: 231 article-title: Reducing falls in Parkinson's disease: Interactions between donepezil and the 5‐HT6 receptor antagonist idalopirdine on falls in a rat model of impaired cognitive control of complex movements publication-title: European Journal of Neuroscience – volume: 463 start-page: 341 year: 2003 end-page: 357 article-title: Distribution of high affinity choline transporter immunoreactivity in the primate central nervous system publication-title: Journal of Comparative Neurology – volume: 91 start-page: 1199 year: 2016 end-page: 1218 article-title: Basal forebrain cholinergic circuits and signaling in cognition and cognitive decline publication-title: Neuron – volume: 84 start-page: 5976 year: 1987 end-page: 5980 article-title: Neuronal loss in the pedunculopontine tegmental nucleus in Parkinson disease and in progressive supranuclear palsy publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 145 start-page: 67 year: 2004 end-page: 78 article-title: The cholinergic innervation of the human cerebral cortex publication-title: Progress in Brain Research – volume: 336 start-page: 117 year: 1993 end-page: 134 article-title: Cholinergic innervation of the amygdaloid complex in the human brain and its alterations in old age and Alzheimer's disease publication-title: Journal of Comparative Neurology – volume: 40 start-page: 399 year: 1996 end-page: 410 article-title: In vivo mapping of cholinergic terminals in normal aging, Alzheimer's disease, and Parkinson's disease publication-title: Annals of Neurolory – volume: 140 start-page: 787 year: 2017 end-page: 798 article-title: Deletion of the vesicular acetylcholine transporter from pedunculopontine/laterodorsal tegmental neurons modifies gait publication-title: Journal of Neurochemistry – volume: 71 start-page: 805 year: 2012 end-page: 813 article-title: Atrophy of the cholinergic basal forebrain over the adult age range and in early stages of Alzheimer's disease publication-title: Biological Psychiatry – volume: 525 start-page: 553 year: 2017 end-page: 573 article-title: Cholinergic profiles in the Goettingen miniature pig ( ) brain publication-title: Journal of Comparative Neurology – volume: 4 start-page: 017817 year: 2017 article-title: Normal striatal vesicular acetylcholine transporter expression in Tourette syndrome publication-title: eNeuro – volume: 149 start-page: 295 year: 2017 end-page: 304 article-title: Thalamic cholinergic innervation makes a specific bottom‐up contribution to signal detection: Evidence from Parkinson's disease patients with defined cholinergic losses publication-title: NeuroImage – volume: 378 start-page: 454 year: 1997 end-page: 467 article-title: Vesicular acetylcholine transporter (VAChT) protein: A novel and unique marker for cholinergic neurons in the central and peripheral nervous systems publication-title: Journal of Comparative Neurology – volume: 317 start-page: 12 year: 2016 end-page: 22 article-title: Cholinergic excitation from the pedunculopontine tegmental nucleus to the dentate nucleus in the rat publication-title: Neuroscience – volume: 18 start-page: 1817 year: 2017 end-page: 1830 article-title: The input‐output relationship of the cholinergic basal forebrain publication-title: Cell Reports – volume: 55 start-page: 396 year: 2014 end-page: 404 article-title: In vivo imaging of human cholinergic nerve terminals with (−)‐5‐(18)F‐fluoroethoxybenzovesamicol: Biodistribution, dosimetry, and tracer kinetic analyses publication-title: Journal of Nuclear Medicine – volume: 221 start-page: 555 year: 2011 end-page: 563 article-title: The cholinergic system in aging and neuronal degeneration publication-title: Behavioural Brain Research – volume: 521 start-page: 4124 year: 2013 end-page: 4144 article-title: Cholinergic circuitry of the human nucleus basalis and its fate in Alzheimer's disease publication-title: Journal of Comparative Neurology – volume: 52 start-page: 691 year: 1999 end-page: 699 article-title: In vivo mapping of cerebral acetylcholinesterase activity in aging and Alzheimer's disease publication-title: Neurology – volume: 4 start-page: e08352 year: 2015 article-title: Forebrain deletion of the dystonia protein torsinA causes dystonic‐like movements and loss of striatal cholinergic neurons publication-title: eLife – volume: 345 start-page: 130 year: 2017 end-page: 141 article-title: Cholinergic circuits in cognitive flexibility publication-title: Neuroscience – volume: 35 start-page: 501 year: 2011 end-page: 509 article-title: Cholinergic depletion in the nucleus accumbens: Effects on amphetamine response and sensorimotor gating publication-title: Progress in Neuro‐Psychopharmacology & Biological Psychiatry – volume: 26 start-page: 233 year: 2003 end-page: 242 article-title: Human cholinergic basal forebrain: Chemoanatomy and neurologic dysfunction publication-title: Journal of Chemical Neuroanatomy – volume: 74 start-page: 1416 year: 2010 end-page: 1423 article-title: Cerebral cortical and subcortical cholinergic deficits in parkinsonian syndromes publication-title: Neurology – volume: 349 start-page: 1805 year: 1997 end-page: 1809 article-title: Measurement of acetylcholinesterase by positron emission tomography in the brains of healthy controls and patients with Alzheimer's disease publication-title: Lancet – volume: 102 start-page: 159 year: 2001 end-page: 166 article-title: Role of cholinergic mossy fibers in medial vestibular and prepositus hypoglossal nuclei in vestibular compensation publication-title: Neuroscience – volume: 387 start-page: 2507 year: 2016 end-page: 2520 article-title: Neuropsychiatric safety and efficacy of varenicline, bupropion, and nicotine patch in smokers with and without psychiatric disorders (EAGLES): A double‐blind, randomised, placebo‐controlled clinical trial publication-title: Lancet – volume: 345 start-page: 321 year: 1994 end-page: 344 article-title: Cholinergic innervation in the human hippocampal formation including the entorhinal cortex publication-title: Journal of Comparative Neurology – volume: 47 start-page: 1148 year: 2017 end-page: 1158 article-title: Striatal cholinergic interneurons and Parkinson's disease publication-title: European Journal of Neuroscience – volume: 75 start-page: 1263 year: 2010 end-page: 1269 article-title: Effects of a central cholinesterase inhibitor on reducing falls in Parkinson disease publication-title: Neurology – volume: 450 start-page: 265 year: 2013 end-page: 274 article-title: Regulation of cholinergic activity by the vesicular acetylcholine transporter publication-title: Biochemical Journal – volume: 19 start-page: 581 year: 1994 end-page: 589 article-title: Autoradiographic quantification of muscarinic cholinergic synaptic markers in bat, shrew, and rat brain publication-title: Neurochemical Research – volume: 13 start-page: 751 year: 1984 end-page: 784 article-title: Cholinergic systems in the rat brain: I. projections to the limbic telencephalon publication-title: Brain Research Bulletin – volume: 37 start-page: 2849 year: 2017 end-page: 2858 article-title: Compulsive social behavior emerges after selective ablation of striatal cholinergic interneurons publication-title: Journal of Neuroscience – volume: 22 start-page: 1531 year: 2017 end-page: 1538 article-title: Quantification of brain cholinergic denervation in Alzheimer's disease using PET imaging with [ F]‐FEOBV publication-title: Molecular Psychiatry – volume: 1052 start-page: 47 year: 2005 end-page: 55 article-title: Age‐related changes in cholinergic neurons in the laterodorsal and the pedunculo‐pontine tegmental nuclei of cats: a combined light and electron microscopic study publication-title: Brain Research – volume: 34 start-page: 4509 year: 2014 end-page: 4518 article-title: A major external source of cholinergic innervation of the striatum and nucleus accumbens originates in the brainstem publication-title: Journal of Neuroscience – volume: 288 start-page: 647 year: 1989 end-page: 675 article-title: Cholinergic and monoaminergic innervation of the cat's thalamus: Comparison of the lateral geniculate nucleus with other principal sensory nuclei publication-title: Journal of Comparative Neurology – volume: 325 start-page: 68 year: 1992 end-page: 82 article-title: Cholinergic innervation of the human thalamus: Dual origin and differential nuclear distribution publication-title: Journal of Comparative Neurology – volume: 30 start-page: 1014 year: 2015 end-page: 1025 article-title: Striatal cholinergic interneurons and cortico‐striatal synaptic plasticity in health and disease publication-title: Movement Disorders – volume: 23 start-page: 519 year: 1989 end-page: 540 article-title: Cholinergic systems in the rat brain: IV. Descending projections of the pontomesencephalic tegmentum publication-title: Brain Research Bulletin – volume: 16 start-page: 2179 year: 1996 end-page: 2190 article-title: Expression of the putative vesicular acetylcholine transporter in rat brain and localization in cholinergic synaptic vesicles publication-title: Journal of Neuroscience – volume: 15 start-page: 249 year: 2016 end-page: 258 article-title: Rivastigmine for gait stability in patients with Parkinson's disease (ReSPonD): A randomised, double‐blind, placebo‐controlled, phase 2 trial publication-title: Lancet Neurology – volume: 317 start-page: 250 year: 1992 end-page: 270 article-title: Secondary vestibular cholinergic projection to the cerebellum of rabbit and rat as revealed by choline acetyltransferase immunohistochemistry, retrograde and orthograde tracers publication-title: Journal of Comparative Neurology – volume: 30 start-page: 263 year: 1998 end-page: 274 article-title: [18F]fluoroethoxy‐benzovesamicol, a PET radiotracer for the vesicular acetylcholine transporter and cholinergic synapses publication-title: Synapse – volume: 25 start-page: 121 year: 2015 end-page: 135 article-title: The brainstem pathologies of Parkinson's disease and dementia with Lewy bodies publication-title: Brain Pathology – volume: 16 start-page: 603 year: 1986 end-page: 637 article-title: Cholinergic systems in the rat brain: III. Projections from the pontomesencephalic tegmentum to the thalamus, tectum, basal ganglia, and basal forebrain publication-title: Brain Research Bulletin – volume: 11 start-page: 55 year: 1991 end-page: 77 article-title: A noncholinergic action of acetylcholinesterase (AChE) in the brain: From neuronal secretion to the generation of movement publication-title: Cellular and Molecular Neurobiology – volume: 223 start-page: 1615 year: 2018 end-page: 1625 article-title: Neuronal density and proportion of interneurons in the associative, sensorimotor and limbic human striatum publication-title: Brain Structure & Function – volume: 21 start-page: 132 year: 2001 end-page: 143 article-title: Radiolabeled cholinesterase substrates: in vitro methods for determining structure‐activity relationships and identification of a positron emission tomography radiopharmaceutical for in vivo measurement of butyrylcholinesterase activity publication-title: Journal of Cerebral Blood Flow & Metabolism – volume: 10 start-page: 1 year: 2016 article-title: Extrinsic sources of cholinergic innervation of the striatal complex: A whole‐brain mapping analysis publication-title: Frontiers in Neuroanatomy – volume: 411 start-page: 693 year: 1999 end-page: 704 article-title: Preservation of nucleus basalis neurons containing choline acetyltransferase and the vesicular acetylcholine transporter in the elderly with mild cognitive impairment and early Alzheimer's disease publication-title: Journal of Comparative Neurology – volume: 1349 start-page: 1 year: 2015 end-page: 45 article-title: Cholinergic interneurons in the dorsal and ventral striatum: Anatomical and functional considerations in normal and diseased conditions publication-title: Annals of the New York Academy of Sciences – volume: 27 start-page: 769 year: 2016 end-page: 776 article-title: The cholinergic system in the cerebellum: From structure to function publication-title: Reviews in the Neurosciences – volume: 14 start-page: 63 year: 1985 end-page: 83 article-title: Cholinergic systems in the rat brain: II. Projections to the interpeduncular nucleus publication-title: Brain Research Bulletin – ident: e_1_2_7_87_1 doi: 10.1016/0361-9230(89)90197-4 – ident: e_1_2_7_12_1 doi: 10.1002/cne.903170304 – ident: e_1_2_7_54_1 doi: 10.1002/cne.902570302 – ident: e_1_2_7_24_1 doi: 10.1002/cne.903360110 – ident: e_1_2_7_64_1 doi: 10.1002/cne.903180308 – ident: e_1_2_7_22_1 doi: 10.1002/ana.410320505 – ident: e_1_2_7_23_1 doi: 10.1046/j.1471-4159.1998.70062227.x – ident: e_1_2_7_25_1 doi: 10.1002/cne.902880411 – ident: e_1_2_7_30_1 doi: 10.1523/JNEUROSCI.16-07-02179.1996 – ident: e_1_2_7_28_1 doi: 10.1212/WNL.0b013e3181dc1a55 – volume: 35 start-page: 405 year: 1994 ident: e_1_2_7_47_1 article-title: In vivo mapping of cholinergic neurons in the human brain using SPECT and IBVM publication-title: Journal of Nuclear Medicine contributor: fullname: Kuhl D. E. – ident: e_1_2_7_67_1 doi: 10.1016/S0891-0618(03)00068-1 – ident: e_1_2_7_72_1 doi: 10.1016/j.neuroscience.2016.09.013 – ident: e_1_2_7_61_1 doi: 10.1002/cne.23415 – ident: e_1_2_7_69_1 doi: 10.7554/eLife.08352 – ident: e_1_2_7_86_1 doi: 10.1016/0361-9230(86)90134-6 – ident: e_1_2_7_50_1 doi: 10.1002/cne.10759 – ident: e_1_2_7_62_1 doi: 10.1002/cne.902750205 – ident: e_1_2_7_11_1 doi: 10.1002/cne.903170303 – ident: e_1_2_7_59_1 doi: 10.1016/j.neuron.2017.02.027 – ident: e_1_2_7_90_1 doi: 10.1515/revneuro-2016-0008 – ident: e_1_2_7_60_1 doi: 10.1016/S0079-6123(03)45004-8 – ident: e_1_2_7_66_1 doi: 10.1016/0306-4522(83)90108-2 – ident: e_1_2_7_4_1 doi: 10.1523/ENEURO.0178-17.2017 – ident: e_1_2_7_51_1 doi: 10.2310/7290.2012.00043 – ident: e_1_2_7_3_1 doi: 10.1038/sj.jcbfm.9600599 – ident: e_1_2_7_46_1 doi: 10.1111/ejn.13354 – ident: e_1_2_7_85_1 doi: 10.1016/0361-9230(85)90178-9 – ident: e_1_2_7_5_1 doi: 10.1007/BF00971334 – ident: e_1_2_7_15_1 doi: 10.1038/jcbfm.2012.60 – ident: e_1_2_7_17_1 doi: 10.3389/fnana.2016.00001 – ident: e_1_2_7_68_1 doi: 10.1002/(SICI)1098-2396(199811)30:3<263::AID-SYN4>3.0.CO;2-9 – ident: e_1_2_7_81_1 doi: 10.1097/00004647-200102000-00004 – ident: e_1_2_7_80_1 doi: 10.1002/jlcr.1865 – ident: e_1_2_7_2_1 doi: 10.1038/mp.2017.183 – volume: 223 start-page: 1615 year: 2018 ident: e_1_2_7_53_1 article-title: Neuronal density and proportion of interneurons in the associative, sensorimotor and limbic human striatum publication-title: Brain Structure & Function contributor: fullname: Lecumberri A. – volume: 23 start-page: 27 year: 2002 ident: e_1_2_7_35_1 article-title: MR analysis of the substantia innominata in normal aging, Alzheimer disease, and other types of dementia publication-title: American Journal of Neuroradiology contributor: fullname: Hanyu H. – ident: e_1_2_7_88_1 doi: 10.1016/0361-9230(84)90236-3 – ident: e_1_2_7_39_1 doi: 10.1073/pnas.84.16.5976 – ident: e_1_2_7_21_1 doi: 10.1002/mds.26300 – ident: e_1_2_7_63_1 doi: 10.1002/cne.902830414 – ident: e_1_2_7_38_1 doi: 10.1016/S1474-4422(15)00389-0 – ident: e_1_2_7_45_1 doi: 10.1016/j.neuroimage.2017.02.006 – ident: e_1_2_7_55_1 doi: 10.1159/000438824 – ident: e_1_2_7_58_1 doi: 10.1523/JNEUROSCI.3460-16.2017 – ident: e_1_2_7_79_1 doi: 10.1111/bpa.12168 – ident: e_1_2_7_31_1 doi: 10.1111/nyas.12762 – ident: e_1_2_7_89_1 doi: 10.1016/j.brainres.2005.06.008 – ident: e_1_2_7_34_1 doi: 10.1002/mds.26556 – ident: e_1_2_7_43_1 doi: 10.1016/S0079-6123(08)63359-2 – ident: e_1_2_7_71_1 doi: 10.1177/1073858416682471 – ident: e_1_2_7_6_1 doi: 10.1016/S0140-6736(16)30272-0 – ident: e_1_2_7_32_1 doi: 10.1007/BF00712800 – ident: e_1_2_7_84_1 doi: 10.1016/0301-0082(91)90006-M – ident: e_1_2_7_9_1 doi: 10.1002/(SICI)1096-9861(19970224)378:4<454::AID-CNE2>3.0.CO;2-1 – ident: e_1_2_7_29_1 doi: 10.1002/(SICI)1096-9861(19990906)411:4<693::AID-CNE13>3.0.CO;2-D – ident: e_1_2_7_36_1 doi: 10.1038/npp.2010.104 – ident: e_1_2_7_8_1 doi: 10.1016/j.neuroimage.2007.05.050 – ident: e_1_2_7_19_1 doi: 10.1002/cne.903280304 – ident: e_1_2_7_78_1 doi: 10.1016/j.bbr.2010.11.058 – ident: e_1_2_7_65_1 doi: 10.1002/cne.903230209 – ident: e_1_2_7_82_1 doi: 10.1111/ejn.13638 – ident: e_1_2_7_44_1 doi: 10.1111/jnc.13910 – ident: e_1_2_7_83_1 doi: 10.1016/j.neuroscience.2015.12.055 – ident: e_1_2_7_73_1 doi: 10.1042/BJ20121662 – ident: e_1_2_7_10_1 doi: 10.1016/j.neuron.2016.09.006 – ident: e_1_2_7_27_1 doi: 10.1016/j.celrep.2017.01.060 – ident: e_1_2_7_41_1 doi: 10.1016/S0891-0618(97)00021-5 – ident: e_1_2_7_7_1 doi: 10.1523/JNEUROSCI.0490-15.2015 – ident: e_1_2_7_20_1 doi: 10.1002/cne.903450302 – ident: e_1_2_7_75_1 doi: 10.1016/S0306-4522(97)00291-1 – ident: e_1_2_7_18_1 doi: 10.1523/JNEUROSCI.5071-13.2014 – ident: e_1_2_7_77_1 doi: 10.1007/BF02736782 – ident: e_1_2_7_56_1 doi: 10.1002/cne.24087 – ident: e_1_2_7_33_1 doi: 10.1016/j.biopsych.2011.06.019 – ident: e_1_2_7_57_1 doi: 10.1016/S0306-4522(98)00380-7 – ident: e_1_2_7_26_1 doi: 10.1016/S0306-4522(00)00457-7 – ident: e_1_2_7_49_1 doi: 10.1002/ana.410400309 – ident: e_1_2_7_70_1 doi: 10.2967/jnumed.113.124792 – ident: e_1_2_7_37_1 doi: 10.1002/cne.903250107 – ident: e_1_2_7_40_1 doi: 10.1007/s00429-011-0320-2 – ident: e_1_2_7_48_1 doi: 10.1212/WNL.52.4.691 – ident: e_1_2_7_74_1 doi: 10.1016/S0304-3940(00)01244-1 – ident: e_1_2_7_13_1 doi: 10.1371/journal.pone.0001174 – ident: e_1_2_7_42_1 doi: 10.1016/S0140-6736(96)09124-6 – ident: e_1_2_7_52_1 doi: 10.1016/j.pnpbp.2010.12.005 – ident: e_1_2_7_76_1 doi: 10.1016/S0306-4522(97)00516-2 – ident: e_1_2_7_14_1 doi: 10.1038/sj.jcbfm.9600276 – ident: e_1_2_7_16_1 doi: 10.1212/WNL.0b013e3181f6128c |
SSID | ssj0009938 |
Score | 2.5159419 |
Snippet | Prior efforts to image cholinergic projections in human brain in vivo had significant technical limitations. We used the vesicular acetylcholine transporter... Prior efforts to image cholinergic projections in human brain in vivo had significant technical limitations. We used the vesicular acetylcholine transporter... |
SourceID | pubmedcentral proquest crossref pubmed wiley |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 2884 |
SubjectTerms | Acetylcholine Aging Amygdala basal forebrain Binding sites Brain Brain stem Cerebellum Cortex (cingulate) Cortex (somatosensory) Hippocampus Neostriatum pedunculopontine nucleus Positron emission tomography RRID: SCR_001847 RRID: SCR_007037 striatum Thalamus Tomography Vesicular acetylcholine transporter |
Title | Regional vesicular acetylcholine transporter distribution in human brain: A [18F]fluoroethoxybenzovesamicol positron emission tomography study |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcne.24541 https://www.ncbi.nlm.nih.gov/pubmed/30255936 https://www.proquest.com/docview/2138661418 https://search.proquest.com/docview/2112610549 https://pubmed.ncbi.nlm.nih.gov/PMC6827569 |
Volume | 526 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ba9VAEB60IPii9Z62yio--BJ7sptsNvpU6jn4VMQLiCJhb0cPtEk5l9L6I_zNzkxyUg9FEMxTYK_ZnZ39djL7DcDzSCTn0uZpsMqleeFiWpUOlaGlzVGGaRE4iO2H8uizeTMmmpzX67swHT_EYHCjlcH6mha4dYv9S9JQ38SXMi_40jqeEvj6hnp3SbhbqU4LkwtCpcs1q9BI7g8lN_eiKwDzqp_kn_iVN6DJ7f_q-jbc6nGnOOgE5Q5ci81duPGlZav6Pfj1Pn5no6A4i4sZ-6YK6-Py4pjUIzYolgML-lwEYtvtA2WJWSM40J9wFG3ilTgQXzMz-TY9XrXzluJTn1-42PxssWJ7QnIn2FFsjkUp1hxZ68SyPempswXz3d6HT5Pxx8O3aR-qIfWEOFI9ld5GHHOnw0ipQgfjKm9ySwYm7xCWZCHHJ5Y6d9ZGRWAteGmCtkGOvHoAW03bxEcgUIdYV4UC1YHPXRUtAtjcapuhJvTRuASerSetPu0YOeqOe1nWOLA1D2wCe-vprPtFuahlpgzBkcwk8HRIxi-lfyS2ie2K8mR4pkQcWyXwsJv9oRXF5y-lEyg35GLIQFTdmynN7AdTdmtDNPtY5wuWi793vD48GvPLzr9n3YWbCONM52SzB1vL-So-huuLsHrCa-I394wTVw |
link.rule.ids | 230,315,782,786,887,1408,27933,27934,46064,46488 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Zb9QwEB5BEYIX7iNQwCAeeAnd2I7jIF6qsqsiygpBkRAIRb62XalN0B6I8iP4zcw42ZRVhYREniL5jD0ef56MvwF4GojknBuZeiNsKnMb0rKwqAwNbY7cT3Ifg9h-KMaf9Ksh0eS8XN2FafkheoMbrYyor2mBk0F665Q11NXhOZc53Vq_IBUKIl3gEO9OKXdL0ephckIoVbHiFRrwrb7o-m50BmKe9ZT8E8HGLWh09f86fw2udNCTbbeych3OhfoGXPzcRMP6Tfj1PhxEuyD7HubT6J7KjAuLkyPSkNgiW_RE6DPmiXC3i5XFpjWLsf6YpYATL9g2-5Lp0dfJ0bKZNRSi-seJDfXPBis2xyR6LPqKzbAohZsjgx1bNMcdezaLlLe34ONouL-zm3bRGlJHoCNVE-5MwEG3yg-EyJXXtnRaGrIxOYvIJPMSn1AoaY0JgvCad1x7ZTwfOHEbNuqmDneBoRoxtvQ5agQnbRkMYlhplMlQGbqgbQJPVrNWfWtJOaqWfplXOLBVHNgENlfzWXXrcl7xTGhCJJlO4HGfjF9Kv0lMHZol5cnwWIlQtkzgTjv9fSsiHsGESqBYE4w-A7F1r6fU08PI2q00Me1jnc-iYPy949XOeBhf7v171kdwaXf_7V6193r85j5cRlSnW5-bTdhYzJbhAZyf--XDuEB-AzXnF38 |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Zb9QwEB5BEYgX7iNQwCAeeAnd2I7jwFPV7goEWlUcEgJVka9tV2qTag9E-RH8ZmacbMqqQkIiT5F8xh6PP0_G3wA8D0Ryzo1MvRE2lbkNaVlYVIaGNkfuJ7mPQWw_FuMvendINDmvV3dhWn6I3uBGKyPqa1rgJ36ydUYa6urwksucLq1fkgjDiThfiL0zxt1StGqYfBBKVaxohQZ8qy-6vhmdQ5jnHSX_BLBxBxpd_6--34BrHfBk262k3IQLob4Fl7820ax-G359CAfRKsi-h_k0Oqcy48Li9Ij0IzbIFj0N-ox5otvtImWxac1ipD9mKdzEK7bNvmV6tD85WjazhgJU_zi1of7ZYMXmmASPRU-xGRalYHNkrmOL5rjjzmaR8PYOfB4NP-28SbtYDakjyJGqCXcm4Jhb5QdC5MprWzotDVmYnEVcknmJTyiUtMYEQWjNO669Mp4PnLgLG3VTh_vAUIkYW_oc9YGTtgwGEaw0ymSoCl3QNoFnq0mrTlpKjqolX-YVDmwVBzaBzdV0Vt2qnFc8E5rwSKYTeNon45fSTxJTh2ZJeTI8VCKQLRO4185-34qIBzChEijW5KLPQFzd6yn19DByditNPPtY54soF3_veLUzHsaXB_-e9Qlc2dsdVe_fjt89hKsI6XTrcLMJG4vZMjyCi3O_fByXx2_PNhYl |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Regional+vesicular+acetylcholine+transporter+distribution+in+human+brain%3A+A+%5B18F%5Dfluoroethoxybenzovesamicol+positron+emission+tomography+study&rft.jtitle=Journal+of+comparative+neurology+%281911%29&rft.au=Albin%2C+Roger+L.&rft.au=Bohnen%2C+Nicolaas+I.&rft.au=Muller%2C+Martijn+L.+T.+M.&rft.au=Dauer%2C+William+T.&rft.date=2018-12-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=0021-9967&rft.eissn=1096-9861&rft.volume=526&rft.issue=17&rft.spage=2884&rft.epage=2897&rft_id=info:doi/10.1002%2Fcne.24541&rft.externalDBID=10.1002%252Fcne.24541&rft.externalDocID=CNE24541 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9967&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9967&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9967&client=summon |