Regional vesicular acetylcholine transporter distribution in human brain: A [18F]fluoroethoxybenzovesamicol positron emission tomography study

Prior efforts to image cholinergic projections in human brain in vivo had significant technical limitations. We used the vesicular acetylcholine transporter (VAChT) ligand [18F]fluoroethoxybenzovesamicol ([18F]FEOBV) and positron emission tomography to determine the regional distribution of VAChT bi...

Full description

Saved in:
Bibliographic Details
Published in:Journal of comparative neurology (1911) Vol. 526; no. 17; pp. 2884 - 2897
Main Authors: Albin, Roger L., Bohnen, Nicolaas I., Muller, Martijn L. T. M., Dauer, William T., Sarter, Martin, Frey, Kirk A., Koeppe, Robert A.
Format: Journal Article
Language:English
Published: Hoboken, USA John Wiley & Sons, Inc 01-12-2018
Wiley Subscription Services, Inc
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Prior efforts to image cholinergic projections in human brain in vivo had significant technical limitations. We used the vesicular acetylcholine transporter (VAChT) ligand [18F]fluoroethoxybenzovesamicol ([18F]FEOBV) and positron emission tomography to determine the regional distribution of VAChT binding sites in normal human brain. We studied 29 subjects (mean age 47 [range 20–81] years; 18 men; 11 women). [18F]FEOBV binding was highest in striatum, intermediate in the amygdala, hippocampal formation, thalamus, rostral brainstem, some cerebellar regions, and lower in other regions. Neocortical [18F]FEOBV binding was inhomogeneous with relatively high binding in insula, BA24, BA25, BA27, BA28, BA34, BA35, pericentral cortex, and lowest in BA17–19. Thalamic [18F]FEOBV binding was inhomogeneous with greatest binding in the lateral geniculate nuclei and relatively high binding in medial and posterior thalamus. Cerebellar cortical [18F]FEOBV binding was high in vermis and flocculus, and lower in the lateral cortices. Brainstem [18F]FEOBV binding was most prominent at the mesopontine junction, likely associated with the pedunculopontine–laterodorsal tegmental complex. Significant [18F]FEOBV binding was present throughout the brainstem. Some regions, including the striatum, primary sensorimotor cortex, and anterior cingulate cortex exhibited age‐related decreases in [18F]FEOBV binding. These results are consistent with prior studies of cholinergic projections in other species and prior postmortem human studies. There is a distinctive pattern of human neocortical VChAT expression. The patterns of thalamic and cerebellar cortical cholinergic terminal distribution are likely unique to humans. Normal aging is associated with regionally specific reductions in [18F]FEOBV binding in some cortical regions and the striatum. Using [18F]FEOBV PET, we describe the distribution of cholinergic terminals in human brain. The distribution of cholinergic terminals is similar to that found in other mammals with some distinctive features in cortex, thalamus, and cerebellum. There are regionally specific age‐related changes in cholinergic terminal density.
AbstractList Prior efforts to image cholinergic projections in human brain in vivo had significant technical limitations. We used the vesicular acetylcholine transporter (VAChT) ligand [18F]fluoroethoxybenzovesamicol ([18F]FEOBV) and positron emission tomography to determine the regional distribution of VAChT binding sites in normal human brain. We studied 29 subjects (mean age 47 [range 20–81] years; 18 men; 11 women). [18F]FEOBV binding was highest in striatum, intermediate in the amygdala, hippocampal formation, thalamus, rostral brainstem, some cerebellar regions, and lower in other regions. Neocortical [18F]FEOBV binding was inhomogeneous with relatively high binding in insula, BA24, BA25, BA27, BA28, BA34, BA35, pericentral cortex, and lowest in BA17–19. Thalamic [18F]FEOBV binding was inhomogeneous with greatest binding in the lateral geniculate nuclei and relatively high binding in medial and posterior thalamus. Cerebellar cortical [18F]FEOBV binding was high in vermis and flocculus, and lower in the lateral cortices. Brainstem [18F]FEOBV binding was most prominent at the mesopontine junction, likely associated with the pedunculopontine–laterodorsal tegmental complex. Significant [18F]FEOBV binding was present throughout the brainstem. Some regions, including the striatum, primary sensorimotor cortex, and anterior cingulate cortex exhibited age‐related decreases in [18F]FEOBV binding. These results are consistent with prior studies of cholinergic projections in other species and prior postmortem human studies. There is a distinctive pattern of human neocortical VChAT expression. The patterns of thalamic and cerebellar cortical cholinergic terminal distribution are likely unique to humans. Normal aging is associated with regionally specific reductions in [18F]FEOBV binding in some cortical regions and the striatum. Using [18F]FEOBV PET, we describe the distribution of cholinergic terminals in human brain. The distribution of cholinergic terminals is similar to that found in other mammals with some distinctive features in cortex, thalamus, and cerebellum. There are regionally specific age‐related changes in cholinergic terminal density.
Prior efforts to image cholinergic projections in human brain in vivo had significant technical limitations. We used the vesicular acetylcholine transporter (VAChT) ligand [18F]fluoroethoxybenzovesamicol ([18F]FEOBV) and positron emission tomography to determine the regional distribution of VAChT binding sites in normal human brain. We studied 29 subjects (mean age 47 [range 20–81] years; 18 men; 11 women). [18F]FEOBV binding was highest in striatum, intermediate in the amygdala, hippocampal formation, thalamus, rostral brainstem, some cerebellar regions, and lower in other regions. Neocortical [18F]FEOBV binding was inhomogeneous with relatively high binding in insula, BA24, BA25, BA27, BA28, BA34, BA35, pericentral cortex, and lowest in BA17–19. Thalamic [18F]FEOBV binding was inhomogeneous with greatest binding in the lateral geniculate nuclei and relatively high binding in medial and posterior thalamus. Cerebellar cortical [18F]FEOBV binding was high in vermis and flocculus, and lower in the lateral cortices. Brainstem [18F]FEOBV binding was most prominent at the mesopontine junction, likely associated with the pedunculopontine–laterodorsal tegmental complex. Significant [18F]FEOBV binding was present throughout the brainstem. Some regions, including the striatum, primary sensorimotor cortex, and anterior cingulate cortex exhibited age‐related decreases in [18F]FEOBV binding. These results are consistent with prior studies of cholinergic projections in other species and prior postmortem human studies. There is a distinctive pattern of human neocortical VChAT expression. The patterns of thalamic and cerebellar cortical cholinergic terminal distribution are likely unique to humans. Normal aging is associated with regionally specific reductions in [18F]FEOBV binding in some cortical regions and the striatum.
Prior efforts to image cholinergic projections in human brain in vivo had significant technical limitations. We used the vesicular acetylcholine transporter (VAChT) ligand [ 18 F]fluoroethoxybenzovesamicol ([ 18 F]FEOBV) and positron emission tomography to determine the regional distribution of VAChT binding sites in normal human brain. We studied 29 subjects (mean age 47 [range 20–81] years; 18 men; 11 women). [ 18 F]FEOBV binding was highest in striatum, intermediate in the amygdala, hippocampal formation, thalamus, rostral brainstem, some cerebellar regions, and lower in other regions. Neocortical [ 18 F]FEOBV binding was inhomogeneous with relatively high binding in insula, BA24, BA25, BA27, BA28, BA34, BA35, pericentral cortex, and lowest in BA17–19. Thalamic [ 18 F]FEOBV binding was inhomogeneous with greatest binding in the lateral geniculate nuclei and relatively high binding in medial and posterior thalamus. Cerebellar cortical [ 18 F]FEOBV binding was high in vermis and flocculus, and lower in the lateral cortices. Brainstem [ 18 F]FEOBV binding was most prominent at the mesopontine junction, likely associated with the pedunculopontine-laterodorsal tegmental complex. Significant [ 18 F]FEOBV binding was present throughout the brainstem. Some regions, including the striatum, primary sensorimotor cortex, and anterior cingulate cortex exhibited age-related decreases in [ 18 F]FEOBV binding. These results are consistent with prior studies of cholinergic projections in other species and prior post-mortem human studies. There is a distinctive pattern of human neocortical VChAT expression. The patterns of thalamic and cerebellar cortical cholinergic terminal distribution are likely unique to humans. Normal aging is associated with regionally specific reductions in [ 18 F]FEOBV binding in some cortical regions and the striatum.
Prior efforts to image cholinergic projections in human brain in vivo had significant technical limitations. We used the vesicular acetylcholine transporter (VAChT) ligand [ 18 F]fluoroethoxybenzovesamicol ([ 18 F]FEOBV) and positron emission tomography to determine the regional distribution of VAChT binding sites in normal human brain. We studied 29 subjects (mean age 47 [range 20–81] years; 18 men; 11 women). [ 18 F]FEOBV binding was highest in striatum, intermediate in the amygdala, hippocampal formation, thalamus, rostral brainstem, some cerebellar regions, and lower in other regions. Neocortical [ 18 F]FEOBV binding was inhomogeneous with relatively high binding in insula, BA24, BA25, BA27, BA28, BA34, BA35, pericentral cortex, and lowest in BA17–19. Thalamic [ 18 F]FEOBV binding was inhomogeneous with greatest binding in the lateral geniculate nuclei and relatively high binding in medial and posterior thalamus. Cerebellar cortical [ 18 F]FEOBV binding was high in vermis and flocculus, and lower in the lateral cortices. Brainstem [ 18 F]FEOBV binding was most prominent at the mesopontine junction, likely associated with the pedunculopontine–laterodorsal tegmental complex. Significant [ 18 F]FEOBV binding was present throughout the brainstem. Some regions, including the striatum, primary sensorimotor cortex, and anterior cingulate cortex exhibited age‐related decreases in [ 18 F]FEOBV binding. These results are consistent with prior studies of cholinergic projections in other species and prior postmortem human studies. There is a distinctive pattern of human neocortical VChAT expression. The patterns of thalamic and cerebellar cortical cholinergic terminal distribution are likely unique to humans. Normal aging is associated with regionally specific reductions in [ 18 F]FEOBV binding in some cortical regions and the striatum.
Prior efforts to image cholinergic projections in human brain in vivo had significant technical limitations. We used the vesicular acetylcholine transporter (VAChT) ligand [ F]fluoroethoxybenzovesamicol ([ F]FEOBV) and positron emission tomography to determine the regional distribution of VAChT binding sites in normal human brain. We studied 29 subjects (mean age 47 [range 20-81] years; 18 men; 11 women). [ F]FEOBV binding was highest in striatum, intermediate in the amygdala, hippocampal formation, thalamus, rostral brainstem, some cerebellar regions, and lower in other regions. Neocortical [ F]FEOBV binding was inhomogeneous with relatively high binding in insula, BA24, BA25, BA27, BA28, BA34, BA35, pericentral cortex, and lowest in BA17-19. Thalamic [ F]FEOBV binding was inhomogeneous with greatest binding in the lateral geniculate nuclei and relatively high binding in medial and posterior thalamus. Cerebellar cortical [ F]FEOBV binding was high in vermis and flocculus, and lower in the lateral cortices. Brainstem [ F]FEOBV binding was most prominent at the mesopontine junction, likely associated with the pedunculopontine-laterodorsal tegmental complex. Significant [ F]FEOBV binding was present throughout the brainstem. Some regions, including the striatum, primary sensorimotor cortex, and anterior cingulate cortex exhibited age-related decreases in [ F]FEOBV binding. These results are consistent with prior studies of cholinergic projections in other species and prior postmortem human studies. There is a distinctive pattern of human neocortical VChAT expression. The patterns of thalamic and cerebellar cortical cholinergic terminal distribution are likely unique to humans. Normal aging is associated with regionally specific reductions in [ F]FEOBV binding in some cortical regions and the striatum.
Author Dauer, William T.
Albin, Roger L.
Frey, Kirk A.
Sarter, Martin
Bohnen, Nicolaas I.
Koeppe, Robert A.
Muller, Martijn L. T. M.
AuthorAffiliation 4 Michigan Alzheimer Disease Center, Ann Arbor, Ml, 48105
3 University of Michigan Morris K. Udall Center of Excellence for Research in Parkinson’s Disease, Ann Arbor, Ml, 48109
5 Dept. of Radiology, University of Michigan, Ann Arbor, Ml, 48109
7 Dept. of Psychology, University of Michigan, Ann Arbor, Ml, 48109
2 Dept. of Neurology, University of Michigan, Ann Arbor, Ml, 48109
6 Dept. of Cell and Developmental Biology, University of Michigan, Ann Arbor, Ml, 48109
1 Neurology Service & GRECC, VAAAHS, Ann Arbor, Ml, 48105
AuthorAffiliation_xml – name: 7 Dept. of Psychology, University of Michigan, Ann Arbor, Ml, 48109
– name: 3 University of Michigan Morris K. Udall Center of Excellence for Research in Parkinson’s Disease, Ann Arbor, Ml, 48109
– name: 6 Dept. of Cell and Developmental Biology, University of Michigan, Ann Arbor, Ml, 48109
– name: 4 Michigan Alzheimer Disease Center, Ann Arbor, Ml, 48105
– name: 5 Dept. of Radiology, University of Michigan, Ann Arbor, Ml, 48109
– name: 2 Dept. of Neurology, University of Michigan, Ann Arbor, Ml, 48109
– name: 1 Neurology Service & GRECC, VAAAHS, Ann Arbor, Ml, 48105
Author_xml – sequence: 1
  givenname: Roger L.
  orcidid: 0000-0002-0629-608X
  surname: Albin
  fullname: Albin, Roger L.
  email: ralbin@umich.edu
  organization: Michigan Alzheimer Disease Center
– sequence: 2
  givenname: Nicolaas I.
  surname: Bohnen
  fullname: Bohnen, Nicolaas I.
  organization: University of Michigan
– sequence: 3
  givenname: Martijn L. T. M.
  surname: Muller
  fullname: Muller, Martijn L. T. M.
  organization: University of Michigan
– sequence: 4
  givenname: William T.
  surname: Dauer
  fullname: Dauer, William T.
  organization: University of Michigan
– sequence: 5
  givenname: Martin
  surname: Sarter
  fullname: Sarter, Martin
  organization: University of Michigan
– sequence: 6
  givenname: Kirk A.
  surname: Frey
  fullname: Frey, Kirk A.
  organization: University of Michigan
– sequence: 7
  givenname: Robert A.
  surname: Koeppe
  fullname: Koeppe, Robert A.
  organization: University of Michigan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30255936$$D View this record in MEDLINE/PubMed
BookMark eNp1kdFqFDEUhoNU7LZ64QtIwBu9mDbJzGQTL4SytCoUBdErkZDJnN1JySRrkqlOH6LPbNatRQVzE8j5zsc5-Y_QgQ8eEHpKyQklhJ0aDyesaRv6AC0okbySgtMDtCg1WknJl4foKKUrQoiUtXiEDmvC2lbWfIFuP8LGBq8dvoZkzeR0xNpAnp0ZgrMecI7ap22IGSLubcrRdlMuLdh6PEyj9riL2vpX-Ax_oeLi69pNIQbIQ_gxd-BvQhHr0Zrg8DYkm2NphdGmtHPkMIZN1NthxilP_fwYPVxrl-DJ3X2MPl-cf1q9rS4_vHm3OrusTEskrfiaGQ1lmY73pK5b3otOGtFoxpgw3bIltG_KgSVvOq2h7kh5MUz0XPeMmPoYvd57t1M3Qm_AlzWd2kY76jiroK36u-LtoDbhWnHBli2XRfDiThDDtwlSVmUlA85pD2FKilHKOCVts0Of_4NehSmWL99RteCcNlQU6uWeMjGkFGF9PwwlapeyKimrXykX9tmf09-Tv2MtwOke-G4dzP83qdX7873yJ7wGuB4
CitedBy_id crossref_primary_10_1007_s00213_019_05354_5
crossref_primary_10_1007_s40473_020_00221_6
crossref_primary_10_1016_j_nbas_2022_100039
crossref_primary_10_1002_ana_25430
crossref_primary_10_3390_life12030460
crossref_primary_10_1002_mds_28360
crossref_primary_10_1080_17425255_2020_1779700
crossref_primary_10_1007_s00221_022_06382_y
crossref_primary_10_1523_JNEUROSCI_1334_21_2022
crossref_primary_10_2196_59705
crossref_primary_10_1111_jnc_15990
crossref_primary_10_1016_j_nicl_2022_102992
crossref_primary_10_1186_s40658_022_00440_8
crossref_primary_10_3233_JPD_223489
crossref_primary_10_1002_ana_26596
crossref_primary_10_1002_mds_28532
crossref_primary_10_1093_gerona_glaa097
crossref_primary_10_1016_j_biopsych_2024_01_019
crossref_primary_10_1016_j_cpet_2020_12_002
crossref_primary_10_1007_s00213_021_05822_x
crossref_primary_10_1007_s11307_019_01466_8
crossref_primary_10_1111_jnc_15683
crossref_primary_10_1016_j_neuroimage_2023_119908
crossref_primary_10_2967_jnumed_121_263198
crossref_primary_10_1007_s11910_021_01140_z
crossref_primary_10_1093_braincomms_fcab109
crossref_primary_10_1093_braincomms_fcac318
crossref_primary_10_1093_brain_awaa465
crossref_primary_10_1002_mds_28883
crossref_primary_10_2967_jnumed_123_266860
crossref_primary_10_1021_acs_molpharmaceut_1c00961
crossref_primary_10_1152_jn_00402_2022
crossref_primary_10_1186_s13550_022_00889_9
crossref_primary_10_1016_j_nbas_2023_100071
crossref_primary_10_1093_cercor_bhaa387
Cites_doi 10.1016/0361-9230(89)90197-4
10.1002/cne.903170304
10.1002/cne.902570302
10.1002/cne.903360110
10.1002/cne.903180308
10.1002/ana.410320505
10.1046/j.1471-4159.1998.70062227.x
10.1002/cne.902880411
10.1523/JNEUROSCI.16-07-02179.1996
10.1212/WNL.0b013e3181dc1a55
10.1016/S0891-0618(03)00068-1
10.1016/j.neuroscience.2016.09.013
10.1002/cne.23415
10.7554/eLife.08352
10.1016/0361-9230(86)90134-6
10.1002/cne.10759
10.1002/cne.902750205
10.1002/cne.903170303
10.1016/j.neuron.2017.02.027
10.1515/revneuro-2016-0008
10.1016/S0079-6123(03)45004-8
10.1016/0306-4522(83)90108-2
10.1523/ENEURO.0178-17.2017
10.2310/7290.2012.00043
10.1038/sj.jcbfm.9600599
10.1111/ejn.13354
10.1016/0361-9230(85)90178-9
10.1007/BF00971334
10.1038/jcbfm.2012.60
10.3389/fnana.2016.00001
10.1002/(SICI)1098-2396(199811)30:3<263::AID-SYN4>3.0.CO;2-9
10.1097/00004647-200102000-00004
10.1002/jlcr.1865
10.1038/mp.2017.183
10.1016/0361-9230(84)90236-3
10.1073/pnas.84.16.5976
10.1002/mds.26300
10.1002/cne.902830414
10.1016/S1474-4422(15)00389-0
10.1016/j.neuroimage.2017.02.006
10.1159/000438824
10.1523/JNEUROSCI.3460-16.2017
10.1111/bpa.12168
10.1111/nyas.12762
10.1016/j.brainres.2005.06.008
10.1002/mds.26556
10.1016/S0079-6123(08)63359-2
10.1177/1073858416682471
10.1016/S0140-6736(16)30272-0
10.1007/BF00712800
10.1016/0301-0082(91)90006-M
10.1002/(SICI)1096-9861(19970224)378:4<454::AID-CNE2>3.0.CO;2-1
10.1002/(SICI)1096-9861(19990906)411:4<693::AID-CNE13>3.0.CO;2-D
10.1038/npp.2010.104
10.1016/j.neuroimage.2007.05.050
10.1002/cne.903280304
10.1016/j.bbr.2010.11.058
10.1002/cne.903230209
10.1111/ejn.13638
10.1111/jnc.13910
10.1016/j.neuroscience.2015.12.055
10.1042/BJ20121662
10.1016/j.neuron.2016.09.006
10.1016/j.celrep.2017.01.060
10.1016/S0891-0618(97)00021-5
10.1523/JNEUROSCI.0490-15.2015
10.1002/cne.903450302
10.1016/S0306-4522(97)00291-1
10.1523/JNEUROSCI.5071-13.2014
10.1007/BF02736782
10.1002/cne.24087
10.1016/j.biopsych.2011.06.019
10.1016/S0306-4522(98)00380-7
10.1016/S0306-4522(00)00457-7
10.1002/ana.410400309
10.2967/jnumed.113.124792
10.1002/cne.903250107
10.1007/s00429-011-0320-2
10.1212/WNL.52.4.691
10.1016/S0304-3940(00)01244-1
10.1371/journal.pone.0001174
10.1016/S0140-6736(96)09124-6
10.1016/j.pnpbp.2010.12.005
10.1016/S0306-4522(97)00516-2
10.1038/sj.jcbfm.9600276
10.1212/WNL.0b013e3181f6128c
ContentType Journal Article
Copyright 2018 Wiley Periodicals, Inc.
Copyright_xml – notice: 2018 Wiley Periodicals, Inc.
DBID NPM
AAYXX
CITATION
7QR
7TK
8FD
FR3
K9.
P64
7X8
5PM
DOI 10.1002/cne.24541
DatabaseName PubMed
CrossRef
Chemoreception Abstracts
Neurosciences Abstracts
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle PubMed
CrossRef
ProQuest Health & Medical Complete (Alumni)
Chemoreception Abstracts
Engineering Research Database
Technology Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList
ProQuest Health & Medical Complete (Alumni)

CrossRef
PubMed
DeliveryMethod fulltext_linktorsrc
Discipline Zoology
EISSN 1096-9861
EndPage 2897
ExternalDocumentID 10_1002_cne_24541
30255936
CNE24541
Genre article
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIH‐NINDS
  funderid: P01 NS015655P50 NS091856R21 NS088302
– fundername: Michael J. Fox Foundation for Parkinson's Research
– fundername: Michael J. Fox Foundation
– fundername: National Institute of Neurological Disorders and Stroke
  grantid: P50 NS091856
– fundername: National Institute of Neurological Disorders and Stroke
  grantid: P01 NS015655
– fundername: National Institute of Neurological Disorders and Stroke
  grantid: R21 NS088302
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
123
1L6
1OB
1OC
1ZS
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5RE
5VS
66C
702
79B
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABIJN
ABIVO
ABJNI
ABOCM
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACPRK
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AELAQ
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBS
EJD
EMOBN
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
L7B
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OVD
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RWD
RWI
RX1
RYL
SUPJJ
SV3
TEORI
UB1
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WJL
WNSPC
WOHZO
WQJ
WRC
WUP
WXSBR
WYISQ
XG1
XV2
YQT
ZZTAW
~IA
~WT
NPM
.55
.GJ
.Y3
31~
3O-
53G
AAMNL
AAYXX
ABEML
ACBWZ
ACSCC
ASPBG
AVWKF
AZFZN
CITATION
FEDTE
GAKWD
HF~
HVGLF
M6M
OHT
SAMSI
X7M
XJT
XOL
ZGI
ZXP
7QR
7TK
8FD
FR3
K9.
P64
7X8
5PM
ID FETCH-LOGICAL-c5091-6f2cae993b6d03356d8b9c84a2228cb7501d4444e764baae3b001dc28d6ad20c3
IEDL.DBID 33P
ISSN 0021-9967
IngestDate Tue Sep 17 21:11:30 EDT 2024
Fri Aug 16 05:51:27 EDT 2024
Thu Oct 10 19:06:21 EDT 2024
Fri Nov 22 00:39:53 EST 2024
Sat Sep 28 08:38:32 EDT 2024
Sat Aug 24 00:50:25 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 17
Keywords striatum
basal forebrain
RRID: SCR_001847
RRID: SCR_007037
pedunculopontine nucleus
acetylcholine
aging
cerebellum
thalamus
Language English
License 2018 Wiley Periodicals, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5091-6f2cae993b6d03356d8b9c84a2228cb7501d4444e764baae3b001dc28d6ad20c3
Notes Funding information
Michael J. Fox Foundation for Parkinson's Research; NIH‐NINDS, Grant/Award Number: P01 NS015655P50 NS091856R21 NS088302; Michael J. Fox Foundation
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-0629-608X
OpenAccessLink http://deepblue.lib.umich.edu/bitstream/2027.42/146604/1/cne24541.pdf
PMID 30255936
PQID 2138661418
PQPubID 1006438
PageCount 14
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6827569
proquest_miscellaneous_2112610549
proquest_journals_2138661418
crossref_primary_10_1002_cne_24541
pubmed_primary_30255936
wiley_primary_10_1002_cne_24541_CNE24541
PublicationCentury 2000
PublicationDate December 1, 2018
PublicationDateYYYYMMDD 2018-12-01
PublicationDate_xml – month: 12
  year: 2018
  text: December 1, 2018
  day: 01
PublicationDecade 2010
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: United States
– name: New York
PublicationTitle Journal of comparative neurology (1911)
PublicationTitleAlternate J Comp Neurol
PublicationYear 2018
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2015; 35
1997; 114
2001; 102
2017; 4
1993; 328
2017; 47
1991; 11
2015; 30
2015; 74
1992; 323
2017; 45
1992; 325
2016; 387
2016; 31
1999; 89
1983; 10
2013; 521
1989; 283
2011; 54
1998; 82
1998; 84
2007; 37
2012; 71
1997; 349
1994; 345
1987; 84
2017; 37
2016; 317
2013; 12
1997; 13
2008; 28
2006; 26
1984; 13
1992; 317
1994; 35
1992; 318
1999; 411
1999; 52
2007; 2
2015; 1349
2000; 288
1993; 336
2010; 74
2014; 55
2017; 525
1985; 14
2004; 145
1997; 378
2010; 75
1989; 23
2015; 4
2011; 216
1991; 37
2017; 22
2018; 223
2016; 10
1986; 16
2005; 1052
2011; 35
2016; 91
2011; 36
1992; 32
1996; 16
2016; 15
2012; 32
1995; 6
2001; 21
2017; 94
2015; 25
1989; 288
1994; 19
1987; 257
2002; 23
2003; 26
1996; 40
1998; 70
2017; 140
1988; 275
2017; 18
2013; 450
1998; 30
2016; 27
2017; 345
2014; 34
2003; 463
2017; 149
2011; 221
2016; 23
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_83_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_81_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_87_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_66_1
e_1_2_7_85_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_68_1
e_1_2_7_89_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_90_1
e_1_2_7_73_1
e_1_2_7_50_1
e_1_2_7_71_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_77_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_75_1
e_1_2_7_21_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_58_1
e_1_2_7_79_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_80_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_84_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_61_1
e_1_2_7_82_1
e_1_2_7_2_1
e_1_2_7_14_1
Hanyu H. (e_1_2_7_35_1) 2002; 23
e_1_2_7_42_1
e_1_2_7_63_1
e_1_2_7_88_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_65_1
e_1_2_7_86_1
Lecumberri A. (e_1_2_7_53_1) 2018; 223
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_67_1
e_1_2_7_48_1
e_1_2_7_69_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_72_1
e_1_2_7_51_1
e_1_2_7_70_1
e_1_2_7_30_1
e_1_2_7_76_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_74_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_78_1
e_1_2_7_38_1
Kuhl D. E. (e_1_2_7_47_1) 1994; 35
References_xml – volume: 216
  start-page: 331
  year: 2011
  end-page: 345
  article-title: Projections from the rat pedunculopontine and laterodorsal tegmental nuclei to the anterior thalamus and ventral tegmental area arise from largely separate populations of neurons
  publication-title: Brain Structure and Function
– volume: 23
  start-page: 27
  year: 2002
  end-page: 32
  article-title: MR analysis of the substantia innominata in normal aging, Alzheimer disease, and other types of dementia
  publication-title: American Journal of Neuroradiology
– volume: 257
  start-page: 317
  year: 1987
  end-page: 332
  article-title: Choline acetyltransferase immunoreactivity in the rat thalamus
  publication-title: Journal of Comparative Neurology
– volume: 323
  start-page: 252
  year: 1992
  end-page: 268
  article-title: Cholinergic innervation of the human striatum, globus pallidus, subthalamic nucleus, substantia nigra, and red nucleus
  publication-title: Journal of Comparative Neurology
– volume: 12
  start-page: 288
  year: 2013
  end-page: 299
  article-title: Improvement of in vivo quantification of [123I]‐Iodobenzovesamicol in single‐photon emission computed tomography/computed tomography using anatomic image to brain atlas nonrigid registration
  publication-title: Molecular Imaging
– volume: 94
  start-page: 7
  year: 2017
  end-page: 18
  article-title: Rethinking the Pedunculopontine nucleus: From cellular organization to function
  publication-title: Neuron
– volume: 37
  start-page: 694
  year: 2007
  end-page: 705
  article-title: Topography of cortical and subcortical connections of the human pedunculopontine and subthalamic nuclei
  publication-title: NeuroImage
– volume: 317
  start-page: 233
  year: 1992
  end-page: 249
  article-title: Cholinergic innervation of the cerebellum of rat, rabbit, cat, and monkey as revealed by choline acetyltransferase activity and immunohistochemistry
  publication-title: Journal of Comparative Neurology
– volume: 54
  start-page: 292
  year: 2011
  end-page: 307
  article-title: Highlighting the versatility of the Tracerlab synthesis modules. Part 1: Fully automated production of [F]labelled radiopharmaceuticals using a Tracerlab FX(FN)
  publication-title: Journal of Labelled Compounds & Radiopharmaceuticals
– volume: 6
  start-page: 225
  year: 1995
  end-page: 235
  article-title: Human and monkey cholinergic neurons visualized in paraffin‐embedded tissues by immunoreactivity for VAChT, the vesicular acetylcholine transporter
  publication-title: Journal of Molecular Neuroscience
– volume: 35
  start-page: 9424
  year: 2015
  end-page: 9431
  article-title: Role of striatal cholinergic interneurons in set‐shifting in the rat
  publication-title: Journal of Neuroscience
– volume: 2
  start-page: e1174
  year: 2007
  article-title: Cholinergic interneurons are differentially distributed in the human striatum
  publication-title: PLoS One
– volume: 26
  start-page: 1198
  year: 2006
  end-page: 1212
  article-title: Positron emission tomography of monoaminergic vesicular binding in aging and Parkinson disease
  publication-title: Journal of Cerebral Blood Flow and Metabolism
– volume: 32
  start-page: 1609
  year: 2012
  end-page: 1617
  article-title: Heterogeneity of cholinergic denervation in Parkinson's disease without dementia
  publication-title: Journal of Cerebral Blood Flow and Metabolism
– volume: 283
  start-page: 611
  year: 1989
  end-page: 633
  article-title: Human reticular formation: Cholinergic neurons of the pedunculopontine and laterodorsal tegmental nuclei and some cytochemical comparisons to forebrain cholinergic neurons
  publication-title: Journal of Comparative Neurology
– volume: 31
  start-page: 615
  year: 2016
  end-page: 624
  article-title: The pedunculopontine tegmental nucleus‐a functional hypothesis from the comparative literature
  publication-title: Movement Disorders
– volume: 318
  start-page: 316
  year: 1992
  end-page: 328
  article-title: Differential cholinergic innervation within functional subdivisions of the human cerebral cortex: A choline acetyltransferase study
  publication-title: Journal of Comparative Neurology
– volume: 275
  start-page: 216
  year: 1988
  end-page: 240
  article-title: Nucleus basalis (Ch4) and cortical cholinergic innervation in the human brain: Observations based on the distribution of acetylcholinesterase and choline acetyltransferase
  publication-title: Journal of Comparative Neurology
– volume: 28
  start-page: 441
  year: 2008
  end-page: 444
  article-title: Spared caudal brainstem SERT binding in early Parkinson's disease
  publication-title: Journal of Cerebral Blood Flow and Metabolism
– volume: 328
  start-page: 364
  year: 1993
  end-page: 376
  article-title: Cholinergic innervation of the human cerebellum
  publication-title: Journal of Comparative Neurology
– volume: 114
  start-page: 67
  year: 1997
  end-page: 96
  article-title: Cholinergic innervation and receptors in the cerebellum
  publication-title: Progress in Brain Research
– volume: 32
  start-page: 625
  year: 1992
  end-page: 632
  article-title: Cortical biopsy in Alzheimer's disease: Diagnostic accuracy and neurochemical, neuropathological, and cognitive correlations. Intraventricular Bethanecol Study Group
  publication-title: Annals of Neurology
– volume: 74
  start-page: 86
  year: 2015
  end-page: 91
  article-title: Impact of Rivastigmine on cognitive dysfunction and falling in Parkinson's disease patients
  publication-title: European Neurology
– volume: 23
  start-page: 415
  year: 2016
  end-page: 431
  article-title: The cellular diversity of the Pedunculopontine nucleus: Relevance to behavior in health and aspects of Parkinson's disease
  publication-title: The Neuroscientist
– volume: 13
  start-page: 23
  year: 1997
  end-page: 39
  article-title: Localization of two cholinergic markers, choline acetyltransferase and vesicular acetylcholine transporter in the central nervous system of the rat: In situ hybridization histochemistry and immunohistochemistry
  publication-title: Journal of Chemical Neuroanatomy
– volume: 84
  start-page: 331
  year: 1998
  end-page: 359
  article-title: Cholinergic neurons and terminal fields revealed by immunohistochemistry for the vesicular acetylcholine transporter. I. Central nervous system
  publication-title: Neuroscience
– volume: 36
  start-page: 52
  year: 2011
  end-page: 73
  article-title: Modes and models of forebrain cholinergic neuromodulation of cognition
  publication-title: Neuropsychopharmacology
– volume: 288
  start-page: 195
  year: 2000
  end-page: 198
  article-title: Age‐related changes of neuronal counts in the human pedunculopontine nucleus
  publication-title: Neuroscience Letters
– volume: 89
  start-page: 759
  year: 1999
  end-page: 770
  article-title: Quantification of cholinergic and select non‐cholinergic mesopontine neuronal populations in the human brain
  publication-title: Neuroscience
– volume: 10
  start-page: 1185
  year: 1983
  end-page: 1201
  article-title: Central cholinergic pathways in the rat: An overview based on an alternative nomenclature (Ch1‐Ch6)
  publication-title: Neuroscience
– volume: 35
  start-page: 405
  year: 1994
  end-page: 410
  article-title: In vivo mapping of cholinergic neurons in the human brain using SPECT and IBVM
  publication-title: Journal of Nuclear Medicine
– volume: 37
  start-page: 475
  year: 1991
  end-page: 524
  article-title: Cholinergic systems in mammalian brain and spinal cord
  publication-title: Progress in Neurobiology
– volume: 70
  start-page: 2227
  year: 1998
  end-page: 2240
  article-title: The cholinergic gene locus
  publication-title: Journal of Neurochemistry
– volume: 82
  start-page: 1195
  year: 1998
  end-page: 1212
  article-title: Distribution of the vesicular transporter for acetylcholine in the rat central nervous system
  publication-title: Neuroscience
– volume: 45
  start-page: 217
  year: 2017
  end-page: 231
  article-title: Reducing falls in Parkinson's disease: Interactions between donepezil and the 5‐HT6 receptor antagonist idalopirdine on falls in a rat model of impaired cognitive control of complex movements
  publication-title: European Journal of Neuroscience
– volume: 463
  start-page: 341
  year: 2003
  end-page: 357
  article-title: Distribution of high affinity choline transporter immunoreactivity in the primate central nervous system
  publication-title: Journal of Comparative Neurology
– volume: 91
  start-page: 1199
  year: 2016
  end-page: 1218
  article-title: Basal forebrain cholinergic circuits and signaling in cognition and cognitive decline
  publication-title: Neuron
– volume: 84
  start-page: 5976
  year: 1987
  end-page: 5980
  article-title: Neuronal loss in the pedunculopontine tegmental nucleus in Parkinson disease and in progressive supranuclear palsy
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 145
  start-page: 67
  year: 2004
  end-page: 78
  article-title: The cholinergic innervation of the human cerebral cortex
  publication-title: Progress in Brain Research
– volume: 336
  start-page: 117
  year: 1993
  end-page: 134
  article-title: Cholinergic innervation of the amygdaloid complex in the human brain and its alterations in old age and Alzheimer's disease
  publication-title: Journal of Comparative Neurology
– volume: 40
  start-page: 399
  year: 1996
  end-page: 410
  article-title: In vivo mapping of cholinergic terminals in normal aging, Alzheimer's disease, and Parkinson's disease
  publication-title: Annals of Neurolory
– volume: 140
  start-page: 787
  year: 2017
  end-page: 798
  article-title: Deletion of the vesicular acetylcholine transporter from pedunculopontine/laterodorsal tegmental neurons modifies gait
  publication-title: Journal of Neurochemistry
– volume: 71
  start-page: 805
  year: 2012
  end-page: 813
  article-title: Atrophy of the cholinergic basal forebrain over the adult age range and in early stages of Alzheimer's disease
  publication-title: Biological Psychiatry
– volume: 525
  start-page: 553
  year: 2017
  end-page: 573
  article-title: Cholinergic profiles in the Goettingen miniature pig ( ) brain
  publication-title: Journal of Comparative Neurology
– volume: 4
  start-page: 017817
  year: 2017
  article-title: Normal striatal vesicular acetylcholine transporter expression in Tourette syndrome
  publication-title: eNeuro
– volume: 149
  start-page: 295
  year: 2017
  end-page: 304
  article-title: Thalamic cholinergic innervation makes a specific bottom‐up contribution to signal detection: Evidence from Parkinson's disease patients with defined cholinergic losses
  publication-title: NeuroImage
– volume: 378
  start-page: 454
  year: 1997
  end-page: 467
  article-title: Vesicular acetylcholine transporter (VAChT) protein: A novel and unique marker for cholinergic neurons in the central and peripheral nervous systems
  publication-title: Journal of Comparative Neurology
– volume: 317
  start-page: 12
  year: 2016
  end-page: 22
  article-title: Cholinergic excitation from the pedunculopontine tegmental nucleus to the dentate nucleus in the rat
  publication-title: Neuroscience
– volume: 18
  start-page: 1817
  year: 2017
  end-page: 1830
  article-title: The input‐output relationship of the cholinergic basal forebrain
  publication-title: Cell Reports
– volume: 55
  start-page: 396
  year: 2014
  end-page: 404
  article-title: In vivo imaging of human cholinergic nerve terminals with (−)‐5‐(18)F‐fluoroethoxybenzovesamicol: Biodistribution, dosimetry, and tracer kinetic analyses
  publication-title: Journal of Nuclear Medicine
– volume: 221
  start-page: 555
  year: 2011
  end-page: 563
  article-title: The cholinergic system in aging and neuronal degeneration
  publication-title: Behavioural Brain Research
– volume: 521
  start-page: 4124
  year: 2013
  end-page: 4144
  article-title: Cholinergic circuitry of the human nucleus basalis and its fate in Alzheimer's disease
  publication-title: Journal of Comparative Neurology
– volume: 52
  start-page: 691
  year: 1999
  end-page: 699
  article-title: In vivo mapping of cerebral acetylcholinesterase activity in aging and Alzheimer's disease
  publication-title: Neurology
– volume: 4
  start-page: e08352
  year: 2015
  article-title: Forebrain deletion of the dystonia protein torsinA causes dystonic‐like movements and loss of striatal cholinergic neurons
  publication-title: eLife
– volume: 345
  start-page: 130
  year: 2017
  end-page: 141
  article-title: Cholinergic circuits in cognitive flexibility
  publication-title: Neuroscience
– volume: 35
  start-page: 501
  year: 2011
  end-page: 509
  article-title: Cholinergic depletion in the nucleus accumbens: Effects on amphetamine response and sensorimotor gating
  publication-title: Progress in Neuro‐Psychopharmacology & Biological Psychiatry
– volume: 26
  start-page: 233
  year: 2003
  end-page: 242
  article-title: Human cholinergic basal forebrain: Chemoanatomy and neurologic dysfunction
  publication-title: Journal of Chemical Neuroanatomy
– volume: 74
  start-page: 1416
  year: 2010
  end-page: 1423
  article-title: Cerebral cortical and subcortical cholinergic deficits in parkinsonian syndromes
  publication-title: Neurology
– volume: 349
  start-page: 1805
  year: 1997
  end-page: 1809
  article-title: Measurement of acetylcholinesterase by positron emission tomography in the brains of healthy controls and patients with Alzheimer's disease
  publication-title: Lancet
– volume: 102
  start-page: 159
  year: 2001
  end-page: 166
  article-title: Role of cholinergic mossy fibers in medial vestibular and prepositus hypoglossal nuclei in vestibular compensation
  publication-title: Neuroscience
– volume: 387
  start-page: 2507
  year: 2016
  end-page: 2520
  article-title: Neuropsychiatric safety and efficacy of varenicline, bupropion, and nicotine patch in smokers with and without psychiatric disorders (EAGLES): A double‐blind, randomised, placebo‐controlled clinical trial
  publication-title: Lancet
– volume: 345
  start-page: 321
  year: 1994
  end-page: 344
  article-title: Cholinergic innervation in the human hippocampal formation including the entorhinal cortex
  publication-title: Journal of Comparative Neurology
– volume: 47
  start-page: 1148
  year: 2017
  end-page: 1158
  article-title: Striatal cholinergic interneurons and Parkinson's disease
  publication-title: European Journal of Neuroscience
– volume: 75
  start-page: 1263
  year: 2010
  end-page: 1269
  article-title: Effects of a central cholinesterase inhibitor on reducing falls in Parkinson disease
  publication-title: Neurology
– volume: 450
  start-page: 265
  year: 2013
  end-page: 274
  article-title: Regulation of cholinergic activity by the vesicular acetylcholine transporter
  publication-title: Biochemical Journal
– volume: 19
  start-page: 581
  year: 1994
  end-page: 589
  article-title: Autoradiographic quantification of muscarinic cholinergic synaptic markers in bat, shrew, and rat brain
  publication-title: Neurochemical Research
– volume: 13
  start-page: 751
  year: 1984
  end-page: 784
  article-title: Cholinergic systems in the rat brain: I. projections to the limbic telencephalon
  publication-title: Brain Research Bulletin
– volume: 37
  start-page: 2849
  year: 2017
  end-page: 2858
  article-title: Compulsive social behavior emerges after selective ablation of striatal cholinergic interneurons
  publication-title: Journal of Neuroscience
– volume: 22
  start-page: 1531
  year: 2017
  end-page: 1538
  article-title: Quantification of brain cholinergic denervation in Alzheimer's disease using PET imaging with [ F]‐FEOBV
  publication-title: Molecular Psychiatry
– volume: 1052
  start-page: 47
  year: 2005
  end-page: 55
  article-title: Age‐related changes in cholinergic neurons in the laterodorsal and the pedunculo‐pontine tegmental nuclei of cats: a combined light and electron microscopic study
  publication-title: Brain Research
– volume: 34
  start-page: 4509
  year: 2014
  end-page: 4518
  article-title: A major external source of cholinergic innervation of the striatum and nucleus accumbens originates in the brainstem
  publication-title: Journal of Neuroscience
– volume: 288
  start-page: 647
  year: 1989
  end-page: 675
  article-title: Cholinergic and monoaminergic innervation of the cat's thalamus: Comparison of the lateral geniculate nucleus with other principal sensory nuclei
  publication-title: Journal of Comparative Neurology
– volume: 325
  start-page: 68
  year: 1992
  end-page: 82
  article-title: Cholinergic innervation of the human thalamus: Dual origin and differential nuclear distribution
  publication-title: Journal of Comparative Neurology
– volume: 30
  start-page: 1014
  year: 2015
  end-page: 1025
  article-title: Striatal cholinergic interneurons and cortico‐striatal synaptic plasticity in health and disease
  publication-title: Movement Disorders
– volume: 23
  start-page: 519
  year: 1989
  end-page: 540
  article-title: Cholinergic systems in the rat brain: IV. Descending projections of the pontomesencephalic tegmentum
  publication-title: Brain Research Bulletin
– volume: 16
  start-page: 2179
  year: 1996
  end-page: 2190
  article-title: Expression of the putative vesicular acetylcholine transporter in rat brain and localization in cholinergic synaptic vesicles
  publication-title: Journal of Neuroscience
– volume: 15
  start-page: 249
  year: 2016
  end-page: 258
  article-title: Rivastigmine for gait stability in patients with Parkinson's disease (ReSPonD): A randomised, double‐blind, placebo‐controlled, phase 2 trial
  publication-title: Lancet Neurology
– volume: 317
  start-page: 250
  year: 1992
  end-page: 270
  article-title: Secondary vestibular cholinergic projection to the cerebellum of rabbit and rat as revealed by choline acetyltransferase immunohistochemistry, retrograde and orthograde tracers
  publication-title: Journal of Comparative Neurology
– volume: 30
  start-page: 263
  year: 1998
  end-page: 274
  article-title: [18F]fluoroethoxy‐benzovesamicol, a PET radiotracer for the vesicular acetylcholine transporter and cholinergic synapses
  publication-title: Synapse
– volume: 25
  start-page: 121
  year: 2015
  end-page: 135
  article-title: The brainstem pathologies of Parkinson's disease and dementia with Lewy bodies
  publication-title: Brain Pathology
– volume: 16
  start-page: 603
  year: 1986
  end-page: 637
  article-title: Cholinergic systems in the rat brain: III. Projections from the pontomesencephalic tegmentum to the thalamus, tectum, basal ganglia, and basal forebrain
  publication-title: Brain Research Bulletin
– volume: 11
  start-page: 55
  year: 1991
  end-page: 77
  article-title: A noncholinergic action of acetylcholinesterase (AChE) in the brain: From neuronal secretion to the generation of movement
  publication-title: Cellular and Molecular Neurobiology
– volume: 223
  start-page: 1615
  year: 2018
  end-page: 1625
  article-title: Neuronal density and proportion of interneurons in the associative, sensorimotor and limbic human striatum
  publication-title: Brain Structure & Function
– volume: 21
  start-page: 132
  year: 2001
  end-page: 143
  article-title: Radiolabeled cholinesterase substrates: in vitro methods for determining structure‐activity relationships and identification of a positron emission tomography radiopharmaceutical for in vivo measurement of butyrylcholinesterase activity
  publication-title: Journal of Cerebral Blood Flow & Metabolism
– volume: 10
  start-page: 1
  year: 2016
  article-title: Extrinsic sources of cholinergic innervation of the striatal complex: A whole‐brain mapping analysis
  publication-title: Frontiers in Neuroanatomy
– volume: 411
  start-page: 693
  year: 1999
  end-page: 704
  article-title: Preservation of nucleus basalis neurons containing choline acetyltransferase and the vesicular acetylcholine transporter in the elderly with mild cognitive impairment and early Alzheimer's disease
  publication-title: Journal of Comparative Neurology
– volume: 1349
  start-page: 1
  year: 2015
  end-page: 45
  article-title: Cholinergic interneurons in the dorsal and ventral striatum: Anatomical and functional considerations in normal and diseased conditions
  publication-title: Annals of the New York Academy of Sciences
– volume: 27
  start-page: 769
  year: 2016
  end-page: 776
  article-title: The cholinergic system in the cerebellum: From structure to function
  publication-title: Reviews in the Neurosciences
– volume: 14
  start-page: 63
  year: 1985
  end-page: 83
  article-title: Cholinergic systems in the rat brain: II. Projections to the interpeduncular nucleus
  publication-title: Brain Research Bulletin
– ident: e_1_2_7_87_1
  doi: 10.1016/0361-9230(89)90197-4
– ident: e_1_2_7_12_1
  doi: 10.1002/cne.903170304
– ident: e_1_2_7_54_1
  doi: 10.1002/cne.902570302
– ident: e_1_2_7_24_1
  doi: 10.1002/cne.903360110
– ident: e_1_2_7_64_1
  doi: 10.1002/cne.903180308
– ident: e_1_2_7_22_1
  doi: 10.1002/ana.410320505
– ident: e_1_2_7_23_1
  doi: 10.1046/j.1471-4159.1998.70062227.x
– ident: e_1_2_7_25_1
  doi: 10.1002/cne.902880411
– ident: e_1_2_7_30_1
  doi: 10.1523/JNEUROSCI.16-07-02179.1996
– ident: e_1_2_7_28_1
  doi: 10.1212/WNL.0b013e3181dc1a55
– volume: 35
  start-page: 405
  year: 1994
  ident: e_1_2_7_47_1
  article-title: In vivo mapping of cholinergic neurons in the human brain using SPECT and IBVM
  publication-title: Journal of Nuclear Medicine
  contributor:
    fullname: Kuhl D. E.
– ident: e_1_2_7_67_1
  doi: 10.1016/S0891-0618(03)00068-1
– ident: e_1_2_7_72_1
  doi: 10.1016/j.neuroscience.2016.09.013
– ident: e_1_2_7_61_1
  doi: 10.1002/cne.23415
– ident: e_1_2_7_69_1
  doi: 10.7554/eLife.08352
– ident: e_1_2_7_86_1
  doi: 10.1016/0361-9230(86)90134-6
– ident: e_1_2_7_50_1
  doi: 10.1002/cne.10759
– ident: e_1_2_7_62_1
  doi: 10.1002/cne.902750205
– ident: e_1_2_7_11_1
  doi: 10.1002/cne.903170303
– ident: e_1_2_7_59_1
  doi: 10.1016/j.neuron.2017.02.027
– ident: e_1_2_7_90_1
  doi: 10.1515/revneuro-2016-0008
– ident: e_1_2_7_60_1
  doi: 10.1016/S0079-6123(03)45004-8
– ident: e_1_2_7_66_1
  doi: 10.1016/0306-4522(83)90108-2
– ident: e_1_2_7_4_1
  doi: 10.1523/ENEURO.0178-17.2017
– ident: e_1_2_7_51_1
  doi: 10.2310/7290.2012.00043
– ident: e_1_2_7_3_1
  doi: 10.1038/sj.jcbfm.9600599
– ident: e_1_2_7_46_1
  doi: 10.1111/ejn.13354
– ident: e_1_2_7_85_1
  doi: 10.1016/0361-9230(85)90178-9
– ident: e_1_2_7_5_1
  doi: 10.1007/BF00971334
– ident: e_1_2_7_15_1
  doi: 10.1038/jcbfm.2012.60
– ident: e_1_2_7_17_1
  doi: 10.3389/fnana.2016.00001
– ident: e_1_2_7_68_1
  doi: 10.1002/(SICI)1098-2396(199811)30:3<263::AID-SYN4>3.0.CO;2-9
– ident: e_1_2_7_81_1
  doi: 10.1097/00004647-200102000-00004
– ident: e_1_2_7_80_1
  doi: 10.1002/jlcr.1865
– ident: e_1_2_7_2_1
  doi: 10.1038/mp.2017.183
– volume: 223
  start-page: 1615
  year: 2018
  ident: e_1_2_7_53_1
  article-title: Neuronal density and proportion of interneurons in the associative, sensorimotor and limbic human striatum
  publication-title: Brain Structure & Function
  contributor:
    fullname: Lecumberri A.
– volume: 23
  start-page: 27
  year: 2002
  ident: e_1_2_7_35_1
  article-title: MR analysis of the substantia innominata in normal aging, Alzheimer disease, and other types of dementia
  publication-title: American Journal of Neuroradiology
  contributor:
    fullname: Hanyu H.
– ident: e_1_2_7_88_1
  doi: 10.1016/0361-9230(84)90236-3
– ident: e_1_2_7_39_1
  doi: 10.1073/pnas.84.16.5976
– ident: e_1_2_7_21_1
  doi: 10.1002/mds.26300
– ident: e_1_2_7_63_1
  doi: 10.1002/cne.902830414
– ident: e_1_2_7_38_1
  doi: 10.1016/S1474-4422(15)00389-0
– ident: e_1_2_7_45_1
  doi: 10.1016/j.neuroimage.2017.02.006
– ident: e_1_2_7_55_1
  doi: 10.1159/000438824
– ident: e_1_2_7_58_1
  doi: 10.1523/JNEUROSCI.3460-16.2017
– ident: e_1_2_7_79_1
  doi: 10.1111/bpa.12168
– ident: e_1_2_7_31_1
  doi: 10.1111/nyas.12762
– ident: e_1_2_7_89_1
  doi: 10.1016/j.brainres.2005.06.008
– ident: e_1_2_7_34_1
  doi: 10.1002/mds.26556
– ident: e_1_2_7_43_1
  doi: 10.1016/S0079-6123(08)63359-2
– ident: e_1_2_7_71_1
  doi: 10.1177/1073858416682471
– ident: e_1_2_7_6_1
  doi: 10.1016/S0140-6736(16)30272-0
– ident: e_1_2_7_32_1
  doi: 10.1007/BF00712800
– ident: e_1_2_7_84_1
  doi: 10.1016/0301-0082(91)90006-M
– ident: e_1_2_7_9_1
  doi: 10.1002/(SICI)1096-9861(19970224)378:4<454::AID-CNE2>3.0.CO;2-1
– ident: e_1_2_7_29_1
  doi: 10.1002/(SICI)1096-9861(19990906)411:4<693::AID-CNE13>3.0.CO;2-D
– ident: e_1_2_7_36_1
  doi: 10.1038/npp.2010.104
– ident: e_1_2_7_8_1
  doi: 10.1016/j.neuroimage.2007.05.050
– ident: e_1_2_7_19_1
  doi: 10.1002/cne.903280304
– ident: e_1_2_7_78_1
  doi: 10.1016/j.bbr.2010.11.058
– ident: e_1_2_7_65_1
  doi: 10.1002/cne.903230209
– ident: e_1_2_7_82_1
  doi: 10.1111/ejn.13638
– ident: e_1_2_7_44_1
  doi: 10.1111/jnc.13910
– ident: e_1_2_7_83_1
  doi: 10.1016/j.neuroscience.2015.12.055
– ident: e_1_2_7_73_1
  doi: 10.1042/BJ20121662
– ident: e_1_2_7_10_1
  doi: 10.1016/j.neuron.2016.09.006
– ident: e_1_2_7_27_1
  doi: 10.1016/j.celrep.2017.01.060
– ident: e_1_2_7_41_1
  doi: 10.1016/S0891-0618(97)00021-5
– ident: e_1_2_7_7_1
  doi: 10.1523/JNEUROSCI.0490-15.2015
– ident: e_1_2_7_20_1
  doi: 10.1002/cne.903450302
– ident: e_1_2_7_75_1
  doi: 10.1016/S0306-4522(97)00291-1
– ident: e_1_2_7_18_1
  doi: 10.1523/JNEUROSCI.5071-13.2014
– ident: e_1_2_7_77_1
  doi: 10.1007/BF02736782
– ident: e_1_2_7_56_1
  doi: 10.1002/cne.24087
– ident: e_1_2_7_33_1
  doi: 10.1016/j.biopsych.2011.06.019
– ident: e_1_2_7_57_1
  doi: 10.1016/S0306-4522(98)00380-7
– ident: e_1_2_7_26_1
  doi: 10.1016/S0306-4522(00)00457-7
– ident: e_1_2_7_49_1
  doi: 10.1002/ana.410400309
– ident: e_1_2_7_70_1
  doi: 10.2967/jnumed.113.124792
– ident: e_1_2_7_37_1
  doi: 10.1002/cne.903250107
– ident: e_1_2_7_40_1
  doi: 10.1007/s00429-011-0320-2
– ident: e_1_2_7_48_1
  doi: 10.1212/WNL.52.4.691
– ident: e_1_2_7_74_1
  doi: 10.1016/S0304-3940(00)01244-1
– ident: e_1_2_7_13_1
  doi: 10.1371/journal.pone.0001174
– ident: e_1_2_7_42_1
  doi: 10.1016/S0140-6736(96)09124-6
– ident: e_1_2_7_52_1
  doi: 10.1016/j.pnpbp.2010.12.005
– ident: e_1_2_7_76_1
  doi: 10.1016/S0306-4522(97)00516-2
– ident: e_1_2_7_14_1
  doi: 10.1038/sj.jcbfm.9600276
– ident: e_1_2_7_16_1
  doi: 10.1212/WNL.0b013e3181f6128c
SSID ssj0009938
Score 2.5159419
Snippet Prior efforts to image cholinergic projections in human brain in vivo had significant technical limitations. We used the vesicular acetylcholine transporter...
Prior efforts to image cholinergic projections in human brain in vivo had significant technical limitations. We used the vesicular acetylcholine transporter...
SourceID pubmedcentral
proquest
crossref
pubmed
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 2884
SubjectTerms Acetylcholine
Aging
Amygdala
basal forebrain
Binding sites
Brain
Brain stem
Cerebellum
Cortex (cingulate)
Cortex (somatosensory)
Hippocampus
Neostriatum
pedunculopontine nucleus
Positron emission tomography
RRID: SCR_001847
RRID: SCR_007037
striatum
Thalamus
Tomography
Vesicular acetylcholine transporter
Title Regional vesicular acetylcholine transporter distribution in human brain: A [18F]fluoroethoxybenzovesamicol positron emission tomography study
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcne.24541
https://www.ncbi.nlm.nih.gov/pubmed/30255936
https://www.proquest.com/docview/2138661418
https://search.proquest.com/docview/2112610549
https://pubmed.ncbi.nlm.nih.gov/PMC6827569
Volume 526
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ba9VAEB60IPii9Z62yio--BJ7sptsNvpU6jn4VMQLiCJhb0cPtEk5l9L6I_zNzkxyUg9FEMxTYK_ZnZ39djL7DcDzSCTn0uZpsMqleeFiWpUOlaGlzVGGaRE4iO2H8uizeTMmmpzX67swHT_EYHCjlcH6mha4dYv9S9JQ38SXMi_40jqeEvj6hnp3SbhbqU4LkwtCpcs1q9BI7g8lN_eiKwDzqp_kn_iVN6DJ7f_q-jbc6nGnOOgE5Q5ci81duPGlZav6Pfj1Pn5no6A4i4sZ-6YK6-Py4pjUIzYolgML-lwEYtvtA2WJWSM40J9wFG3ilTgQXzMz-TY9XrXzluJTn1-42PxssWJ7QnIn2FFsjkUp1hxZ68SyPempswXz3d6HT5Pxx8O3aR-qIfWEOFI9ld5GHHOnw0ipQgfjKm9ySwYm7xCWZCHHJ5Y6d9ZGRWAteGmCtkGOvHoAW03bxEcgUIdYV4UC1YHPXRUtAtjcapuhJvTRuASerSetPu0YOeqOe1nWOLA1D2wCe-vprPtFuahlpgzBkcwk8HRIxi-lfyS2ie2K8mR4pkQcWyXwsJv9oRXF5y-lEyg35GLIQFTdmynN7AdTdmtDNPtY5wuWi793vD48GvPLzr9n3YWbCONM52SzB1vL-So-huuLsHrCa-I394wTVw
link.rule.ids 230,315,782,786,887,1408,27933,27934,46064,46488
linkProvider Wiley-Blackwell
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Zb9QwEB5BEYIX7iNQwCAeeAnd2I7jIF6qsqsiygpBkRAIRb62XalN0B6I8iP4zcw42ZRVhYREniL5jD0ef56MvwF4GojknBuZeiNsKnMb0rKwqAwNbY7cT3Ifg9h-KMaf9Ksh0eS8XN2FafkheoMbrYyor2mBk0F665Q11NXhOZc53Vq_IBUKIl3gEO9OKXdL0ephckIoVbHiFRrwrb7o-m50BmKe9ZT8E8HGLWh09f86fw2udNCTbbeych3OhfoGXPzcRMP6Tfj1PhxEuyD7HubT6J7KjAuLkyPSkNgiW_RE6DPmiXC3i5XFpjWLsf6YpYATL9g2-5Lp0dfJ0bKZNRSi-seJDfXPBis2xyR6LPqKzbAohZsjgx1bNMcdezaLlLe34ONouL-zm3bRGlJHoCNVE-5MwEG3yg-EyJXXtnRaGrIxOYvIJPMSn1AoaY0JgvCad1x7ZTwfOHEbNuqmDneBoRoxtvQ5agQnbRkMYlhplMlQGbqgbQJPVrNWfWtJOaqWfplXOLBVHNgENlfzWXXrcl7xTGhCJJlO4HGfjF9Kv0lMHZol5cnwWIlQtkzgTjv9fSsiHsGESqBYE4w-A7F1r6fU08PI2q00Me1jnc-iYPy949XOeBhf7v171kdwaXf_7V6193r85j5cRlSnW5-bTdhYzJbhAZyf--XDuEB-AzXnF38
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Zb9QwEB5BEYgX7iNQwCAeeAnd2I7jwFPV7goEWlUcEgJVka9tV2qTag9E-RH8ZmacbMqqQkIiT5F8xh6PP0_G3wA8D0Ryzo1MvRE2lbkNaVlYVIaGNkfuJ7mPQWw_FuMvendINDmvV3dhWn6I3uBGKyPqa1rgJ36ydUYa6urwksucLq1fkgjDiThfiL0zxt1StGqYfBBKVaxohQZ8qy-6vhmdQ5jnHSX_BLBxBxpd_6--34BrHfBk262k3IQLob4Fl7820ax-G359CAfRKsi-h_k0Oqcy48Li9Ij0IzbIFj0N-ox5otvtImWxac1ipD9mKdzEK7bNvmV6tD85WjazhgJU_zi1of7ZYMXmmASPRU-xGRalYHNkrmOL5rjjzmaR8PYOfB4NP-28SbtYDakjyJGqCXcm4Jhb5QdC5MprWzotDVmYnEVcknmJTyiUtMYEQWjNO669Mp4PnLgLG3VTh_vAUIkYW_oc9YGTtgwGEaw0ymSoCl3QNoFnq0mrTlpKjqolX-YVDmwVBzaBzdV0Vt2qnFc8E5rwSKYTeNon45fSTxJTh2ZJeTI8VCKQLRO4185-34qIBzChEijW5KLPQFzd6yn19DByditNPPtY54soF3_veLUzHsaXB_-e9Qlc2dsdVe_fjt89hKsI6XTrcLMJG4vZMjyCi3O_fByXx2_PNhYl
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Regional+vesicular+acetylcholine+transporter+distribution+in+human+brain%3A+A+%5B18F%5Dfluoroethoxybenzovesamicol+positron+emission+tomography+study&rft.jtitle=Journal+of+comparative+neurology+%281911%29&rft.au=Albin%2C+Roger+L.&rft.au=Bohnen%2C+Nicolaas+I.&rft.au=Muller%2C+Martijn+L.+T.+M.&rft.au=Dauer%2C+William+T.&rft.date=2018-12-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=0021-9967&rft.eissn=1096-9861&rft.volume=526&rft.issue=17&rft.spage=2884&rft.epage=2897&rft_id=info:doi/10.1002%2Fcne.24541&rft.externalDBID=10.1002%252Fcne.24541&rft.externalDocID=CNE24541
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9967&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9967&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9967&client=summon