Automatic Speaker Recognition System Based on Gaussian Mixture Models, Cepstral Analysis, and Genetic Selection of Distinctive Features
This article presents the Automatic Speaker Recognition System (ASR System), which successfully resolves problems such as identification within an open set of speakers and the verification of speakers in difficult recording conditions similar to telephone transmission conditions. The article provide...
Saved in:
Published in: | Sensors (Basel, Switzerland) Vol. 22; no. 23; p. 9370 |
---|---|
Main Authors: | , |
Format: | Journal Article |
Language: | English |
Published: |
Switzerland
MDPI AG
01-12-2022
MDPI |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | This article presents the Automatic Speaker Recognition System (ASR System), which successfully resolves problems such as identification within an open set of speakers and the verification of speakers in difficult recording conditions similar to telephone transmission conditions. The article provides complete information on the architecture of the various internal processing modules of the ASR System. The speaker recognition system proposed in the article, has been compared very closely to other competing systems, achieving improved speaker identification and verification results, on known certified voice dataset. The ASR System owes this to the dual use of genetic algorithms both in the feature selection process and in the optimization of the system's internal parameters. This was also influenced by the proprietary feature generation and corresponding classification process using Gaussian mixture models. This allowed the development of a system that makes an important contribution to the current state of the art in speaker recognition systems for telephone transmission applications with known speech coding standards. |
---|---|
AbstractList | This article presents the Automatic Speaker Recognition System (ASR System), which successfully resolves problems such as identification within an open set of speakers and the verification of speakers in difficult recording conditions similar to telephone transmission conditions. The article provides complete information on the architecture of the various internal processing modules of the ASR System. The speaker recognition system proposed in the article, has been compared very closely to other competing systems, achieving improved speaker identification and verification results, on known certified voice dataset. The ASR System owes this to the dual use of genetic algorithms both in the feature selection process and in the optimization of the system’s internal parameters. This was also influenced by the proprietary feature generation and corresponding classification process using Gaussian mixture models. This allowed the development of a system that makes an important contribution to the current state of the art in speaker recognition systems for telephone transmission applications with known speech coding standards. |
Audience | Academic |
Author | Kamiński, Kamil A Dobrowolski, Andrzej P |
AuthorAffiliation | 2 BITRES Sp. z o.o., 9/2 Chałubiński Street, 02-004 Warsaw, Poland 1 Institute of Optoelectronics, Military University of Technology, 2 Kaliski Street, 00-908 Warsaw, Poland 3 Faculty of Electronics, Military University of Technology, 2 Kaliski Street, 00-908 Warsaw, Poland |
AuthorAffiliation_xml | – name: 2 BITRES Sp. z o.o., 9/2 Chałubiński Street, 02-004 Warsaw, Poland – name: 1 Institute of Optoelectronics, Military University of Technology, 2 Kaliski Street, 00-908 Warsaw, Poland – name: 3 Faculty of Electronics, Military University of Technology, 2 Kaliski Street, 00-908 Warsaw, Poland |
Author_xml | – sequence: 1 givenname: Kamil A orcidid: 0000-0002-3645-9337 surname: Kamiński fullname: Kamiński, Kamil A organization: BITRES Sp. z o.o., 9/2 Chałubiński Street, 02-004 Warsaw, Poland – sequence: 2 givenname: Andrzej P orcidid: 0000-0002-0593-158X surname: Dobrowolski fullname: Dobrowolski, Andrzej P organization: Faculty of Electronics, Military University of Technology, 2 Kaliski Street, 00-908 Warsaw, Poland |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36502072$$D View this record in MEDLINE/PubMed |
BookMark | eNpdkttuEzEQhleoiB7gghdAlrgBiRQf492bSiHQUKkVEoXr1ax3HBx27WDvVuQJeG2cpEQt8oU949-fZ37NaXHkg8eieMnouRAVfZ8456ISmj4pTpjkclJyTo8enI-L05RWlHIhRPmsOBZTRTnV_KT4MxuH0MPgDLldI_zESL6iCUvvBhc8ud2kAXvyARK2JMcLGFNy4MmN-z2MEclNaLFL78gc12mI0JGZh26TXE6Bb8kCPe7Y2KHZEYMlH10anM_hHZJLhC0nPS-eWugSvrjfz4rvl5--zT9Prr8sruaz64lRtBwmFhRMNTeqpNA2WlIlUSFHqihlDFWJik9NS63V1Mqp0so2Ajg1VkiJmomz4mrPbQOs6nV0PcRNHcDVu0SIyxpirrjDuhWAqpJ2ilzLptFVxRsGpkEhrQVBM-tiz1qPTY-tQb914BH08Y13P-pluKsrLUpZVhnw5h4Qw68R01D3LhnsOvAYxlRzrYRgnDGRpa__k67CGLPXW5UslaoEk1l1vlctITfgvA35X5NXi70zeWisy_mZzs4IWcqtHW_3D0wMKUW0h-oZrbezVR9mK2tfPWz3oPw3TOIvk8XMGw |
CitedBy_id | crossref_primary_10_3390_electronics12183791 crossref_primary_10_1007_s11042_024_18298_6 crossref_primary_10_3390_electronics12092012 |
Cites_doi | 10.1016/j.compeleceng.2021.107005 10.1109/ICIBA50161.2020.9277099 10.1111/j.2517-6161.1977.tb01600.x 10.1109/MSP.2004.1328092 10.21437/ICSLP.1998-408 10.1109/CIST.2018.8596585 10.1016/j.eswa.2011.04.069 10.1109/TNN.2010.2046423 10.1109/ACCESS.2021.3084299 10.1109/TASSP.1980.1163420 10.1109/CISP.2014.7003905 10.1109/HIS.2011.6122136 10.1109/ACCESS.2017.2728801 10.1109/SPCOM.2018.8724403 10.1109/ODYSSEY.2006.248087 10.1016/j.specom.2009.01.005 10.1117/12.2269338 10.1016/j.neunet.2021.03.004 10.1007/s11042-020-09353-z 10.1109/ICSIP49896.2020.9339289 10.1016/j.specom.2011.11.004 10.5604/12345865.1197999 10.1006/dspr.1999.0361 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2022 MDPI AG 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022 by the authors. 2022 |
Copyright_xml | – notice: COPYRIGHT 2022 MDPI AG – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022 by the authors. 2022 |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU COVID DWQXO FYUFA GHDGH K9. M0S M1P PIMPY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.3390/s22239370 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials ProQuest Central ProQuest One Community College Coronavirus Research Database ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni Edition) Medical Database Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Publicly Available Content Database ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Health & Medical Complete (Alumni) Coronavirus Research Database ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Central China ProQuest Hospital Collection (Alumni) ProQuest Central ProQuest Health & Medical Complete Health Research Premium Collection ProQuest Medical Library ProQuest One Academic UKI Edition Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest One Academic ProQuest Medical Library (Alumni) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: http://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: ECM name: MEDLINE url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1424-8220 |
ExternalDocumentID | oai_doaj_org_article_d3ae594f6e274bb7992b1acbe34ffa30 A746534841 10_3390_s22239370 36502072 |
Genre | Journal Article |
GeographicLocations | Poland |
GeographicLocations_xml | – name: Poland |
GroupedDBID | --- 123 2WC 3V. 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH ABDBF ABJCF ABUWG ADBBV AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS ARAPS BENPR BPHCQ BVXVI CCPQU CGR CS3 CUY CVF D1I DU5 E3Z EBD ECM EIF ESX F5P FYUFA GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE IAO ITC KB. KQ8 L6V M1P M48 M7S MODMG M~E NPM OK1 P2P P62 PDBOC PIMPY PQQKQ PROAC PSQYO RIG RNS RPM TUS UKHRP XSB ~8M AAYXX CITATION 7XB 8FK AZQEC COVID DWQXO K9. PQEST PQUKI PRINS 7X8 5PM |
ID | FETCH-LOGICAL-c508t-fa5a672c580adb74054e5e2e050011e58e526cd0ff70f46575fb3a20cf344e713 |
IEDL.DBID | RPM |
ISSN | 1424-8220 |
IngestDate | Tue Oct 22 15:15:33 EDT 2024 Tue Sep 17 21:30:57 EDT 2024 Thu Oct 24 23:24:54 EDT 2024 Thu Oct 10 19:14:19 EDT 2024 Tue Nov 12 23:17:36 EST 2024 Fri Nov 22 02:31:29 EST 2024 Sat Sep 28 08:20:36 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 23 |
Keywords | cepstral analysis system verification genetic algorithms system comparison system identification Gaussian mixture model speaker recognition |
Language | English |
License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c508t-fa5a672c580adb74054e5e2e050011e58e526cd0ff70f46575fb3a20cf344e713 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-3645-9337 0000-0002-0593-158X |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9738489/ |
PMID | 36502072 |
PQID | 2748559314 |
PQPubID | 2032333 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_d3ae594f6e274bb7992b1acbe34ffa30 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9738489 proquest_miscellaneous_2753312113 proquest_journals_2748559314 gale_infotracacademiconefile_A746534841 crossref_primary_10_3390_s22239370 pubmed_primary_36502072 |
PublicationCentury | 2000 |
PublicationDate | 2022-12-01 |
PublicationDateYYYYMMDD | 2022-12-01 |
PublicationDate_xml | – month: 12 year: 2022 text: 2022-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationTitleAlternate | Sensors (Basel) |
PublicationYear | 2022 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Bai (ref_15) 2021; 140 Dean (ref_30) 2017; 5 Charbuillet (ref_24) 2009; 51 ref_12 ref_11 ref_10 ref_32 Dobrowolski (ref_27) 2016; 65 Krishnamoorthy (ref_4) 2011; 38 ref_19 Janicki (ref_34) 2011; 84 ref_18 ref_17 ref_16 Dobrowolski (ref_37) 2015; 91 Dempster (ref_33) 1977; 39 Oppenheim (ref_20) 2004; 21 Sahidullah (ref_23) 2012; 54 Reynolds (ref_36) 2000; 10 Isa (ref_14) 2021; 90 ref_25 Dobrowolski (ref_35) 2014; 90 Arslan (ref_38) 2012; 20 Dobrowolski (ref_40) 2019; Volume 11055 ref_44 ref_21 Piotrowski (ref_31) 2012; 88 ref_43 ref_42 Ludwig (ref_29) 2010; 21 ref_41 ref_1 Davis (ref_22) 1980; 28 ref_3 Kabir (ref_13) 2021; 9 ref_2 Dobrowolski (ref_39) 2015; 91 ref_28 Bharath (ref_7) 2020; 79 ref_26 ref_9 ref_8 ref_5 ref_6 |
References_xml | – volume: 91 start-page: 206 year: 2015 ident: ref_37 article-title: Voice identification in the open set of speakers publication-title: Przegląd Elektrotechniczny contributor: fullname: Dobrowolski – volume: 90 start-page: 107005 year: 2021 ident: ref_14 article-title: A Review on Speaker Recognition: Technology and Challenges publication-title: Comput. Electr. Eng. doi: 10.1016/j.compeleceng.2021.107005 contributor: fullname: Isa – ident: ref_3 – ident: ref_11 doi: 10.1109/ICIBA50161.2020.9277099 – volume: 39 start-page: 1 year: 1977 ident: ref_33 article-title: Maximum Likelihood from Incomplete Data via the EM algorithm publication-title: J. R. Stat. Soc. doi: 10.1111/j.2517-6161.1977.tb01600.x contributor: fullname: Dempster – volume: 88 start-page: 127 year: 2012 ident: ref_31 article-title: Subscriber authentication using GMM and TMS320C6713DSP publication-title: Przegląd Elektrotechniczny contributor: fullname: Piotrowski – volume: 21 start-page: 95 year: 2004 ident: ref_20 article-title: From Frequency to Queferency A history of the cesptrum publication-title: IEEE Signal Process. Mag. doi: 10.1109/MSP.2004.1328092 contributor: fullname: Oppenheim – ident: ref_16 – ident: ref_32 doi: 10.21437/ICSLP.1998-408 – volume: Volume 11055 start-page: 165 year: 2019 ident: ref_40 article-title: Automatic The assessment of efficiency of the automatic speaker recognition system for voices registered using a throat microphone publication-title: Proceedings of the XII Conference on Reconnaissance and Electronic Warfare Systems contributor: fullname: Dobrowolski – volume: 84 start-page: 1469 year: 2011 ident: ref_34 article-title: Klasyfikacja mówców oparta na modelowaniu GMM-UBM dla mowy o różnej jakości publication-title: Przegląd Telekomunikacyjny—Wiadomości Telekomunikacyjne contributor: fullname: Janicki – ident: ref_42 – ident: ref_1 – ident: ref_18 – ident: ref_44 – ident: ref_6 doi: 10.1109/CIST.2018.8596585 – ident: ref_21 – volume: 20 start-page: 1277 year: 2012 ident: ref_38 article-title: Model selection and score normalization for text-dependent single utterance speaker verification publication-title: Turk. J. Electr. Eng. Comput. Sci. contributor: fullname: Arslan – volume: 38 start-page: 13487 year: 2011 ident: ref_4 article-title: Speaker Recognition under Limited Data Condition by Noise Addition publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2011.04.069 contributor: fullname: Krishnamoorthy – volume: 21 start-page: 972 year: 2010 ident: ref_29 article-title: Novel Maximum-Margin Training Algorithms for Supervised Neural Networks publication-title: IEEE Trans. Neural Netw. doi: 10.1109/TNN.2010.2046423 contributor: fullname: Ludwig – volume: 91 start-page: 89 year: 2015 ident: ref_39 article-title: Optimization of the automatic speaker recognition system for different acoustic paths publication-title: Przegląd Elektrotechniczny contributor: fullname: Dobrowolski – ident: ref_8 – ident: ref_25 – volume: 9 start-page: 79236 year: 2021 ident: ref_13 article-title: A Survey of Speaker Recognition: Fundamental Theories, Recognition Methods and Opportunities publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3084299 contributor: fullname: Kabir – volume: 28 start-page: 357 year: 1980 ident: ref_22 article-title: Comparison of parametric representations for monosyllabic word recognition in continuously spoken sentations publication-title: IEEE Trans. ASSP doi: 10.1109/TASSP.1980.1163420 contributor: fullname: Davis – ident: ref_5 doi: 10.1109/CISP.2014.7003905 – ident: ref_12 – ident: ref_26 doi: 10.1109/HIS.2011.6122136 – volume: 5 start-page: 15400 year: 2017 ident: ref_30 article-title: Enhanced Forensic Speaker Verification Using a Combination of DWT and MFCC Feature Warping in the Presence of Noise and Reverberation Conditions publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2728801 contributor: fullname: Dean – ident: ref_2 doi: 10.1109/SPCOM.2018.8724403 – ident: ref_10 – ident: ref_28 doi: 10.1109/ODYSSEY.2006.248087 – volume: 51 start-page: 724 year: 2009 ident: ref_24 article-title: Optimizing Feature Complementarity by Evolution Strategy Application to Automatic Speaker Verification publication-title: Speech Commun. doi: 10.1016/j.specom.2009.01.005 contributor: fullname: Charbuillet – ident: ref_41 doi: 10.1117/12.2269338 – volume: 140 start-page: 65 year: 2021 ident: ref_15 article-title: Speaker Recognition Based on Deep Learning: An Overview publication-title: Neural Netw. doi: 10.1016/j.neunet.2021.03.004 contributor: fullname: Bai – volume: 79 start-page: 28859 year: 2020 ident: ref_7 article-title: ELM Speaker Identification for Limited Dataset Using Multitaper Based MFCC and PNCC Features with Fusion Score publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-020-09353-z contributor: fullname: Bharath – ident: ref_17 – ident: ref_9 doi: 10.1109/ICSIP49896.2020.9339289 – ident: ref_19 – volume: 54 start-page: 543 year: 2012 ident: ref_23 article-title: Design, analysis and experimental evaluation of block based transformation in MFCC computation for speaker recognition publication-title: Speech Commun. doi: 10.1016/j.specom.2011.11.004 contributor: fullname: Sahidullah – volume: 90 start-page: 164 year: 2014 ident: ref_35 article-title: Evaluation of functionality speaker recognition system for downgraded voice signal quality publication-title: Przegląd Elektrotechniczny contributor: fullname: Dobrowolski – ident: ref_43 – volume: 65 start-page: 147 year: 2016 ident: ref_27 article-title: Selekcja cech osobniczych sygnału mowy z wykorzystaniem algorytmów genetycznych publication-title: Bull. Mil. Univ. Technol. doi: 10.5604/12345865.1197999 contributor: fullname: Dobrowolski – volume: 10 start-page: 19 year: 2000 ident: ref_36 article-title: Speaker Verification Using Adapted Gaussian Mixture Models publication-title: Digit. Signal Process. doi: 10.1006/dspr.1999.0361 contributor: fullname: Reynolds |
SSID | ssj0023338 |
Score | 2.4400575 |
Snippet | This article presents the Automatic Speaker Recognition System (ASR System), which successfully resolves problems such as identification within an open set of... |
SourceID | doaj pubmedcentral proquest gale crossref pubmed |
SourceType | Open Website Open Access Repository Aggregation Database Index Database |
StartPage | 9370 |
SubjectTerms | Biometric identification Biometrics Cepstral analysis Classification Datasets Discriminant analysis Gaussian mixture model Gaussian process Gaussian processes Genetic algorithms Larynx Medical supplies Mixtures Noise Pandemics Recognition, Psychology Security systems Selection, Genetic Sound speaker recognition Speech Speech Perception Speech recognition Speech Recognition Software system identification system verification Verification |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV27jtUwELVgKygQbwILMgiJZqNN_Eic8u6LbaBgQaKLHHssVouSq82NxB_w28w4D92IgoYmUuJo5HjGM3Pi8TFj772GTIcc0qIpdKqCNWnjBF688KqU3pnIM3t5VX7-bs7OiSZnOeqLasJGeuBx4I69tKArFQpA_NQ0ZVWJJreuAalCsHJE61kxg6kJaklEXiOPkERQf9xTFMRAnK2iTyTp_9sV78WidZ3kXuC5eMgeTBkj34w9fcTuQPuY3d_jEXzCfm-GXRe5V_nVFuwN3PIvc2FQ1_KRlZyfYMDyHO8_2qGnvZP80_UvWkDgdCDaz_6In8I2_vngM1XJEbet50RNHWXHM3NIYhf4GTmHNnpLTnkkyumfsm8X519PL9PphIXUYWK2S4PVtiiF0yazvikxeVOgQaD6KFUEbUCLwvkshDILitZoQiOtyFyQSgHi22fsoO1aeME4IpvCNZiNQEDn61BFGVgpjPYuNwVUCXs3j3y9HYk0agQgpJ56UU_CTkgnywvEfR0foEXUk0XU_7KIhH0gjdY0Q3HMnJ02GmA_ieuq3pTEKaeMyhN2OCu9nqZuX6NQgzBL5iphb5dmnHS0kmJb6AZ6B7NkIseTCXs-2sjSZ4k5r8hKkbByZT2rj1q3tNc_IrF3VUqjTPXyf4zCK3ZP0E6NWHlzyA52twO8Znd7P7yJU-UPls8c6g priority: 102 providerName: Directory of Open Access Journals |
Title | Automatic Speaker Recognition System Based on Gaussian Mixture Models, Cepstral Analysis, and Genetic Selection of Distinctive Features |
URI | https://www.ncbi.nlm.nih.gov/pubmed/36502072 https://www.proquest.com/docview/2748559314 https://search.proquest.com/docview/2753312113 https://pubmed.ncbi.nlm.nih.gov/PMC9738489 https://doaj.org/article/d3ae594f6e274bb7992b1acbe34ffa30 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELbYnuCAeBMolUFIXJpu4kfiHLfbll6KEAWJW-T4ASvaZLXZSP0H_dvMOMlqI25cIuU1cTK25_vi8WdCPlrpEulTF2dVJmPhtYorw2BjmRU5t0YFndnL6_zLT3V2jjI5cpwLE5L2TbU6qW9uT-rV75Bbub418zFPbP71alnkXAlVzGdkBthwpOgDy-JAunoJIQ58ft5iAIQYnEwCT9Dn_7cX3gtD0xTJvZhz8YQ8HsAiXfSFekoeuPoZebQnIfic3C-6bRNkV-n12uk_bkO_jTlBTU17QXJ6CrHKUtj_rLsWp03Sq9Udjh1QXAvtpj2mS7cOPz3oqFJyTHVtKapSB9thuRy02Hh6hv1CHTpKihAS7LQvyI-L8-_Ly3hYXCE2gMm2sddSZzkzUiXaVjngNuGkY-A5RIlOKidZZmzifZ54gcMzvuKaJcZzIRxQ25fkoG5q95pQIDWZqQCIOA_9rkm1SZzmTElrUpW5IiIfxi9frnsNjRK4B7qn3LknIqfok90FKHsdDjSbX-Xg_NJy7WQhfOaATFdVXhSsgsdVjgvvNQcjn9CjJTZO-GZGD3MMoJwoc1UucpSTE0qkETkcnV4OrbYtwagChsVTEZH3u9PQ3nAQRdeu6fAaAMioi8cj8qqvI7syc4C7LMlZRPJJ7Zm81PQMVPGg6T1U6Tf_fedb8pDhzIyQaXNIDrabzr0js9Z2R-E_w1FoJX8BKOUbkw |
link.rule.ids | 230,315,729,782,786,866,887,2106,27933,27934,53800,53802 |
linkProvider | National Library of Medicine |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF7RcgAOvB-GAgtC4lI39j7s9TFNW4JoKkSLxM1a74NGbe0oTiT-AX-bmY0dJeLWi6V4N5O1Z2Znvuzst4R8stIl0qcuzqpMxsJrFVeGwcUyK3JujQo8s-Pz_OyXOjpGmhzZ74UJRfummh7U1zcH9fQy1FbObsygrxMbfJ-MipwroYrBDrkL_pokPUjvcBYH2LUiEeKA6ActhkCIwslW6AkM_f_PwxuBaLtIciPqnDy65Xgfk4ddmkmHq-Yn5I6rn5IHG-SDz8jf4XLRBMJWej5z-srN6Y--mqip6YrKnB5ClLMUPn_RyxY3XNLJ9A-uOlA8Re263acjNwt_l9Ce32Sf6tpS5LMOssNBOyix8fQIZ5Q6TLEUk0-Q0z4nP0-OL0bjuDuWITaQzS1ir6XOcmakSrStcsj4hJOOgc4xv3RSOckyYxPv88QLXNjxFdcsMZ4L4QAUvyC7dVO7V4QCHMpMBSmM8zBjm1SbxGnOlLQmVZkrIvKx11g5W7FvlIBaUK3lWq0ROURdrjsgYXa40cx_l50aSsu1k4XwmQMYXlV5UbAKfq5yXHivOQj5jJZQolvDOzO6250A40SCrHKYIxGdUCKNyF5vLGXn720JQhVgM56KiHxYN4On4vKLrl2zxD6QWiOjHo_Iy5VtrcfMIVFmSc4ikm9Z3dZDbbeAsQU28M64Xt_6m-_JvfHF5LQ8_Xr27Q25z3B_R6jX2SO7i_nSvSU7rV2-Cz72D8aEMDY |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELfYkBB74HsQGGAQEi_LktpO4jx27coQbJoYSLxFjj9YxZZUTSPxH_Bvc-ckVSve4KVSGufi5O5894vPPxPyziQ2TtzIhmmZJqFwSoalZvBjmBEZN1p6ntnTy-z8u5yeIE3OeqsvX7Svy_lRdX1zVM2vfG3l4kZHQ51YdHE2yTMuhcyjhXHRDrkNPhuzAaj3WIsD9OqIhDig-qjBMAiRON4KP56l_--xeCMYbRdKbkSe2f3_6PMDcq9PN-m4a_KQ3LLVI7K3QUL4mPwet6vaE7fSy4VVP-2SfhmqiuqKdpTm9BiinaFw_EG1DS68pGfzXzj7QHE3tevmkE7swn82oQPPySFVlaHIa-1l-w13UGLt6BRHlsoPtRSTUJDTPCHfZidfJ6dhvz1DqCGrW4VOJSrNmE5krEyZQeYnbGIZ6B7zTJtIm7BUm9i5LHYCJ3hcyRWLteNCWADH-2S3qiv7jFCARakuIZWxDkZuPVI6toozmRg9kqnNA_J20Fqx6Fg4CkAvqNpirdqAHKM-1w2QONv_US9_FL0qCsOVTXLhUgtwvCyzPGcl3K60XDinOAh5j9ZQoHvDO9OqX6UA_USirGKcISGdkGIUkIPBYIre75sChErAaHwkAvJmfRo8FqdhVGXrFttAio3MejwgTzv7WveZQ8LM4owFJNuyvK2H2j4DBudZwXsDe_7PV74mdy6ms-Lzx_NPL8hdhss8fNnOAdldLVv7kuw0pn3l3ewPLPoytg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+Speaker+Recognition+System+Based+on+Gaussian+Mixture+Models%2C+Cepstral+Analysis%2C+and+Genetic+Selection+of+Distinctive+Features&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Kami%C5%84ski%2C+Kamil+A&rft.au=Dobrowolski%2C+Andrzej+P&rft.date=2022-12-01&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=22&rft.issue=23&rft.spage=9370&rft_id=info:doi/10.3390%2Fs22239370&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |