Transcriptome analysis of distinct mouse strains reveals kinesin light chain-1 splicing as an amyloid-β accumulation modifier

Alzheimer’s disease (AD) is characterized by the accumulation of amyloid-β (Aβ). The genes that govern this process, however, have remained elusive. To this end, we combined distinct mouse strains with transcriptomics to directly identify disease-relevant genes. We show that AD model mice (APP -Tg)...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS Vol. 111; no. 7; pp. 2638 - 2643
Main Authors: Morihara, Takashi, Hayashi, Noriyuki, Yokokoji, Mikiko, Akatsu, Hiroyasu, Silverman, Michael A., Kimura, Nobuyuki, Sato, Masahiro, Saito, Yuhki, Suzuki, Toshiharu, Yanagida, Kanta, Kodama, Takashi S., Tanaka, Toshihisa, Okochi, Masayasu, Tagami, Shinji, Kazui, Hiroaki, Kudo, Takashi, Hashimoto, Ryota, Itoh, Naohiro, Nishitomi, Kouhei, Yamaguchi-Kabata, Yumi, Tsunoda, Tatsuhiko, Takamura, Hironori, Katayama, Taiichi, Kimura, Ryo, Kamino, Kouzin, Hashizume, Yoshio, Takeda, Masatoshi
Format: Journal Article
Language:English
Published: United States National Academy of Sciences 18-02-2014
National Acad Sciences
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Alzheimer’s disease (AD) is characterized by the accumulation of amyloid-β (Aβ). The genes that govern this process, however, have remained elusive. To this end, we combined distinct mouse strains with transcriptomics to directly identify disease-relevant genes. We show that AD model mice (APP -Tg) with DBA/2 genetic backgrounds have significantly lower levels of Aβ accumulation compared with SJL and C57BL/6 mice. We then applied brain transcriptomics to reveal the genes in DBA/2 that suppress Aβ accumulation. To avoid detecting secondarily affected genes by Aβ, we used non-Tg mice in the absence of Aβ pathology and selected candidate genes differently expressed in DBA/2 mice. Additional transcriptome analysis of APP -Tg mice with mixed genetic backgrounds revealed kinesin light chain-1 (Klc1) as an Aβ modifier, indicating a role for intracellular trafficking in Aβ accumulation. Aβ levels correlated with the expression levels of Klc1 splice variant E and the genotype of Klc1 in these APP -Tg mice. In humans, the expression levels of KLC1 variant E in brain and lymphocyte were significantly higher in AD patients compared with unaffected individuals. Finally, functional analysis using neuroblastoma cells showed that overexpression or knockdown of KLC1 variant E increases or decreases the production of Aβ, respectively. The identification of KLC1 variant E suggests that the dysfunction of intracellular trafficking is a causative factor of Aβ pathology. This unique combination of distinct mouse strains and model mice with transcriptomics is expected to be useful for the study of genetic mechanisms of other complex diseases.
AbstractList Alzheimer's disease (AD) is characterized by the accumulation of amyloid-β (Aβ). The genes that govern this process, however, have remained elusive. To this end, we combined distinct mouse strains with transcriptomics to directly identify disease-relevant genes. We show that AD model mice (APP-Tg) with DBA/2 genetic backgrounds have significantly lower levels of Aβ accumulation compared with SJL and C57BL/6 mice. We then applied brain transcriptomics to reveal the genes in DBA/2 that suppress Aβ accumulation. To avoid detecting secondarily affected genes by Aβ, we used non-Tg mice in the absence of Aβ pathology and selected candidate genes differently expressed in DBA/2 mice. Additional transcriptome analysis of APP-Tg mice with mixed genetic backgrounds revealed kinesin light chain-1 (Klc1) as an Aβ modifier, indicating a role for intracellular trafficking in Aβ accumulation. Aβ levels correlated with the expression levels of Klc1 splice variant E and the genotype of Klc1 in these APP-Tg mice. In humans, the expression levels of KLC1 variant E in brain and lymphocyte were significantly higher in AD patients compared with unaffected individuals. Finally, functional analysis using neuroblastoma cells showed that overexpression or knockdown of KLC1 variant E increases or decreases the production of Aβ, respectively. The identification of KLC1 variant E suggests that the dysfunction of intracellular trafficking is a causative factor of Aβ pathology. This unique combination of distinct mouse strains and model mice with transcriptomics is expected to be useful for the study of genetic mechanisms of other complex diseases.
Alzheimer's disease (AD) is characterized by the accumulation of amyloid- beta (A beta ). The genes that govern this process, however, have remained elusive. To this end, we combined distinct mouse strains with transcriptomics to directly identify disease-relevant genes. We show that AD model mice (APP-Tg) with DBA/2 genetic backgrounds have significantly lower levels of A beta accumulation compared with SJL and C57BL/6 mice. We then applied brain transcriptomics to reveal the genes in DBA/2 that suppress A beta accumulation. To avoid detecting secondarily affected genes by A beta , we used non-Tg mice in the absence of A beta pathology and selected candidate genes differently expressed in DBA/2 mice. Additional transcriptome analysis of APP-Tg mice with mixed genetic backgrounds revealed kinesin light chain-1 (Klc1) as an A beta modifier, indicating a role for intracellular trafficking in A beta accumulation. A beta levels correlated with the expression levels of Klc1 splice variant E and the genotype of Klc1 in these APP-Tg mice. In humans, the expression levels of KLC1 variant E in brain and lymphocyte were significantly higher in AD patients compared with unaffected individuals. Finally, functional analysis using neuroblastoma cells showed that overexpression or knockdown of KLC1 variant E increases or decreases the production of A beta , respectively. The identification of KLC1 variant E suggests that the dysfunction of intracellular trafficking is a causative factor of A beta pathology. This unique combination of distinct mouse strains and model mice with transcriptomics is expected to be useful for the study of genetic mechanisms of other complex diseases.
Genetic studies of common complex human diseases, including Alzheimer's disease (AD), are extremely resource-intensive and have struggled to identify genes that are causal in disease. Combined with the costs of studies and the inability to identify the missing heritability, particularly in AD, alternate strategies warrant consideration. We devised a unique strategy that combines distinct mouse strains that vary naturally in amyloid-β production with transcriptomics to identify kinesin light chain-1 (Klc1 ) splice variant E as a modifier of amyloid-β accumulation, a causative factor of AD. In AD patients, the expression levels of KLC1 variant E in brain were significantly higher compared with levels in unaffected individuals. The identification of KLC1 variant E suggests that dysfunction of intracellular trafficking is causative in AD. Alzheimer’s disease (AD) is characterized by the accumulation of amyloid-β (Aβ). The genes that govern this process, however, have remained elusive. To this end, we combined distinct mouse strains with transcriptomics to directly identify disease-relevant genes. We show that AD model mice ( APP -Tg) with DBA/2 genetic backgrounds have significantly lower levels of Aβ accumulation compared with SJL and C57BL/6 mice. We then applied brain transcriptomics to reveal the genes in DBA/2 that suppress Aβ accumulation. To avoid detecting secondarily affected genes by Aβ, we used non-Tg mice in the absence of Aβ pathology and selected candidate genes differently expressed in DBA/2 mice. Additional transcriptome analysis of APP -Tg mice with mixed genetic backgrounds revealed kinesin light chain-1 (Klc1 ) as an Aβ modifier, indicating a role for intracellular trafficking in Aβ accumulation. Aβ levels correlated with the expression levels of Klc1 splice variant E and the genotype of Klc1 in these APP -Tg mice. In humans, the expression levels of KLC1 variant E in brain and lymphocyte were significantly higher in AD patients compared with unaffected individuals. Finally, functional analysis using neuroblastoma cells showed that overexpression or knockdown of KLC1 variant E increases or decreases the production of Aβ, respectively. The identification of KLC1 variant E suggests that the dysfunction of intracellular trafficking is a causative factor of Aβ pathology. This unique combination of distinct mouse strains and model mice with transcriptomics is expected to be useful for the study of genetic mechanisms of other complex diseases.
Author Kamino, Kouzin
Sato, Masahiro
Kudo, Takashi
Okochi, Masayasu
Kimura, Ryo
Tsunoda, Tatsuhiko
Akatsu, Hiroyasu
Takeda, Masatoshi
Itoh, Naohiro
Hashimoto, Ryota
Hashizume, Yoshio
Katayama, Taiichi
Tanaka, Toshihisa
Kazui, Hiroaki
Yanagida, Kanta
Saito, Yuhki
Kodama, Takashi S.
Yamaguchi-Kabata, Yumi
Yokokoji, Mikiko
Takamura, Hironori
Kimura, Nobuyuki
Morihara, Takashi
Silverman, Michael A.
Nishitomi, Kouhei
Suzuki, Toshiharu
Tagami, Shinji
Hayashi, Noriyuki
Author_xml – sequence: 1
  givenname: Takashi
  surname: Morihara
  fullname: Morihara, Takashi
– sequence: 2
  givenname: Noriyuki
  surname: Hayashi
  fullname: Hayashi, Noriyuki
– sequence: 3
  givenname: Mikiko
  surname: Yokokoji
  fullname: Yokokoji, Mikiko
– sequence: 4
  givenname: Hiroyasu
  surname: Akatsu
  fullname: Akatsu, Hiroyasu
– sequence: 5
  givenname: Michael A.
  surname: Silverman
  fullname: Silverman, Michael A.
– sequence: 6
  givenname: Nobuyuki
  surname: Kimura
  fullname: Kimura, Nobuyuki
– sequence: 7
  givenname: Masahiro
  surname: Sato
  fullname: Sato, Masahiro
– sequence: 8
  givenname: Yuhki
  surname: Saito
  fullname: Saito, Yuhki
– sequence: 9
  givenname: Toshiharu
  surname: Suzuki
  fullname: Suzuki, Toshiharu
– sequence: 10
  givenname: Kanta
  surname: Yanagida
  fullname: Yanagida, Kanta
– sequence: 11
  givenname: Takashi S.
  surname: Kodama
  fullname: Kodama, Takashi S.
– sequence: 12
  givenname: Toshihisa
  surname: Tanaka
  fullname: Tanaka, Toshihisa
– sequence: 13
  givenname: Masayasu
  surname: Okochi
  fullname: Okochi, Masayasu
– sequence: 14
  givenname: Shinji
  surname: Tagami
  fullname: Tagami, Shinji
– sequence: 15
  givenname: Hiroaki
  surname: Kazui
  fullname: Kazui, Hiroaki
– sequence: 16
  givenname: Takashi
  surname: Kudo
  fullname: Kudo, Takashi
– sequence: 17
  givenname: Ryota
  surname: Hashimoto
  fullname: Hashimoto, Ryota
– sequence: 18
  givenname: Naohiro
  surname: Itoh
  fullname: Itoh, Naohiro
– sequence: 19
  givenname: Kouhei
  surname: Nishitomi
  fullname: Nishitomi, Kouhei
– sequence: 20
  givenname: Yumi
  surname: Yamaguchi-Kabata
  fullname: Yamaguchi-Kabata, Yumi
– sequence: 21
  givenname: Tatsuhiko
  surname: Tsunoda
  fullname: Tsunoda, Tatsuhiko
– sequence: 22
  givenname: Hironori
  surname: Takamura
  fullname: Takamura, Hironori
– sequence: 23
  givenname: Taiichi
  surname: Katayama
  fullname: Katayama, Taiichi
– sequence: 24
  givenname: Ryo
  surname: Kimura
  fullname: Kimura, Ryo
– sequence: 25
  givenname: Kouzin
  surname: Kamino
  fullname: Kamino, Kouzin
– sequence: 26
  givenname: Yoshio
  surname: Hashizume
  fullname: Hashizume, Yoshio
– sequence: 27
  givenname: Masatoshi
  surname: Takeda
  fullname: Takeda, Masatoshi
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24497505$$D View this record in MEDLINE/PubMed
BookMark eNqNkb1uFDEURi0URDaBmgpwmWaS67-ZcYOEIgJIkShIauuux7PrMGMv9kykbXgoHoRnwqsNm9BR2dJ37pGvvxNyFGJwhLxmcM6gERebgPmciXKVijH2jCwYaFbVUsMRWQDwpmoll8fkJOc7ANCqhRfkmEupGwVqQX7eJAzZJr-Z4ugoBhy22Wcae9r5PPlgJzrGOTuap4Q-ZJrcvcMh0-8-uOwDHfxqPVG7LmHFaN4M3vqwopiLjOK4HaLvqt-_KFo7j_OAk4-hKDvfe5dekud9kblXD-cpub36eHP5ubr--unL5Yfryipop6rrZY_LnilEdB2TwEAop5ZS2lbU2nIleIkQerSy7RizoJZKNFjbTmveiVPyfu_dzMvRddaFss1gNsmPmLYmojf_JsGvzSreG6EFb2VbBGcPghR_zC5PZvTZumHA4Mr3GKakBFBN8z8oQN0q1fKCXuxRm2LOyfWHFzEwu4LNrmDzWHCZePt0kQP_t9EnwG7yoGPMNIbXYve8N3vgLk8xPQpEU7daQsnf7fMeo8FV8tncfuPAagAmtK65-AMjUsTY
CitedBy_id crossref_primary_10_1017_S1041610222001132
crossref_primary_10_18632_oncotarget_18193
crossref_primary_10_3233_JAD_170036
crossref_primary_10_1016_j_ajpath_2016_01_011
crossref_primary_10_1371_journal_ppat_1004723
crossref_primary_10_1016_j_brainresbull_2015_12_003
crossref_primary_10_1002_1873_3468_12137
crossref_primary_10_1002_bies_201400131
crossref_primary_10_1038_s41562_023_01792_6
crossref_primary_10_1091_mbc_e14_06_1111
crossref_primary_10_7554_eLife_11752
crossref_primary_10_1002_bies_201400206
crossref_primary_10_1073_pnas_1520817113
crossref_primary_10_1016_j_yexcr_2014_12_014
crossref_primary_10_1097_WNR_0000000000000486
crossref_primary_10_1242_jcs_198267
crossref_primary_10_1126_sciadv_abg6636
crossref_primary_10_1371_journal_pone_0125897
crossref_primary_10_1007_s00439_018_1906_z
crossref_primary_10_7554_eLife_38362
crossref_primary_10_1016_j_bbrc_2024_150025
crossref_primary_10_1186_s13024_017_0231_7
crossref_primary_10_1002_alz_13479
crossref_primary_10_12688_amrcopenres_12861_2
crossref_primary_10_1371_journal_pone_0186354
Cites_doi 10.1038/nrg2793
10.1111/ahg.12000
10.1056/NEJMoa1211851
10.1034/j.1600-0854.2003.00113.x
10.1093/hmg/ddp406
10.1093/hmg/ddl437
10.1001/jama.2010.609
10.1371/journal.pone.0029755
10.1093/hmg/dds109
10.1126/science.279.5350.519
10.1016/j.pneurobio.2012.03.006
10.1159/000320482
10.1038/ng.801
10.1038/nrg3335
10.1056/NEJMoa1211103
10.1093/nar/gkn778
10.1159/000332815
10.1101/gr.2825804
10.1002/ajmg.b.30272
10.1001/jama.2010.574
10.1038/ng.440
10.1126/science.1105681
10.1083/jcb.146.6.1277
10.1038/sj.emboj.7601609
10.1111/j.1471-4159.2010.07157.x
10.1038/nrg1576
10.1038/414643a
10.1093/hmg/ddl157
10.1038/nature06757
10.1038/sj.emboj.7601427
10.1038/ng.439
10.1016/j.ajhg.2009.03.011
10.1523/JNEUROSCI.4225-04.2005
10.1093/hmg/ddg322
10.1371/journal.pgen.1002998
10.1038/ng1934
10.1016/S1474-4422(12)70259-4
10.1038/nature06758
10.1038/nrn3271
10.1001/archpsyc.63.2.168
10.1038/ng.803
10.1111/j.1749-6632.2012.06733.x
10.1016/S0896-6273(00)00124-0
10.1523/JNEUROSCI.3089-04.2005
10.1016/j.neurobiolaging.2007.02.017
ContentType Journal Article
Copyright copyright © 1993–2008 National Academy of Sciences of the United States of America
Copyright_xml – notice: copyright © 1993–2008 National Academy of Sciences of the United States of America
DBID FBQ
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
7TK
5PM
DOI 10.1073/pnas.1307345111
DatabaseName AGRIS
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
MEDLINE - Academic
Neurosciences Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
Neurosciences Abstracts
DatabaseTitleList MEDLINE

Neurosciences Abstracts


CrossRef
Database_xml – sequence: 1
  dbid: ECM
  name: MEDLINE
  url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate Aβ modifier gene revealed by mouse transcriptomics
EISSN 1091-6490
EndPage 2643
ExternalDocumentID 10_1073_pnas_1307345111
24497505
111_7_2638
23768940
US201600139962
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-DZ
-~X
.55
.GJ
0R~
123
29P
2AX
2FS
2WC
3O-
4.4
53G
5RE
5VS
692
6TJ
79B
85S
AACGO
AAFWJ
AANCE
AAYJJ
ABBHK
ABOCM
ABPLY
ABPPZ
ABPTK
ABTLG
ABZEH
ACGOD
ACIWK
ACKIV
ACNCT
ACPRK
ADULT
ADZLD
AENEX
AEUPB
AEXZC
AFDAS
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
AS~
BKOMP
CS3
D0L
DCCCD
DIK
DNJUQ
DOOOF
DU5
DWIUU
E3Z
EBS
EJD
F20
F5P
FBQ
FRP
GX1
HGD
HH5
HQ3
HTVGU
HYE
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JSODD
JST
KQ8
L7B
LU7
MVM
N9A
NEJ
NHB
N~3
O9-
OK1
P-O
PNE
PQQKQ
R.V
RHF
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
VOH
VQA
W8F
WH7
WHG
WOQ
WOW
X7M
XFK
XSW
Y6R
YBH
YKV
YSK
ZA5
ZCA
ZCG
~02
~KM
ABXSQ
AQVQM
-
02
0R
1AW
55
AAPBV
ABFLS
ADACO
DZ
H13
KM
PQEST
X
XHC
ADACV
CGR
CUY
CVF
ECM
EIF
IPSME
NPM
AAYXX
CITATION
7X8
7TK
5PM
ID FETCH-LOGICAL-c508t-df4fabf15aaaed1401035e5b44c8369c2532aaaa0fac48d11c05b537a6cd992d3
IEDL.DBID RPM
ISSN 0027-8424
IngestDate Tue Sep 17 21:10:30 EDT 2024
Fri Aug 16 21:40:24 EDT 2024
Fri Aug 16 21:06:03 EDT 2024
Thu Nov 21 23:54:32 EST 2024
Sat Sep 28 07:56:51 EDT 2024
Wed Nov 11 00:30:29 EST 2020
Fri Feb 02 07:04:32 EST 2024
Wed Dec 27 19:17:39 EST 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords alternative splicing
mouse-to-human translation
Language English
License Freely available online through the PNAS open access option.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c508t-df4fabf15aaaed1401035e5b44c8369c2532aaaa0fac48d11c05b537a6cd992d3
Notes http://dx.doi.org/10.1073/pnas.1307345111
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
1T.M., N.H., and M.Y. contributed equally to this work.
Edited by Robert W. Mahley, The J. David Gladstone Institutes, San Francisco, CA, and approved December 13, 2013 (received for review May 1, 2013)
Author contributions: T.M. and M.T. designed research; T.M., N.H., M.Y., H.A., N.K., M.S., K.Y., T.S.K., T. Tanaka, S.T., H.K., T. Kudo, R.H., H.T., T. Katayama, and Y.H. performed research; T.M., N.H., M.Y., N.K., M.S., Y.S., T.S., K.Y., T.S.K., T. Tanaka, N.I., K.N., H.T., T. Katayama, R.K., and K.K. contributed new reagents/analytic tools; T.M., N.H., M.Y., H.A., N.K., M.S., Y.Y.-K., and T. Tsunoda analyzed data; and T.M., M.A.S., and M.O. wrote the paper.
OpenAccessLink https://www.pnas.org/content/pnas/111/7/2638.full.pdf
PMID 24497505
PQID 1500685582
PQPubID 23479
PageCount 6
ParticipantIDs crossref_primary_10_1073_pnas_1307345111
pnas_primary_111_7_2638
proquest_miscellaneous_1544005778
jstor_primary_23768940
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3932848
fao_agris_US201600139962
proquest_miscellaneous_1500685582
pubmed_primary_24497505
ProviderPackageCode RNA
PNE
PublicationCentury 2000
PublicationDate 2014-02-18
PublicationDateYYYYMMDD 2014-02-18
PublicationDate_xml – month: 02
  year: 2014
  text: 2014-02-18
  day: 18
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2014
Publisher National Academy of Sciences
National Acad Sciences
Publisher_xml – name: National Academy of Sciences
– name: National Acad Sciences
References 17332754 - EMBO J. 2007 Mar 21;26(6):1475-86
21175619 - J Neurochem. 2011 Mar;116(6):937-46
18344981 - Nature. 2008 Mar 27;452(7186):423-8
22272245 - PLoS One. 2012;7(1):e29755
19361613 - Am J Hum Genet. 2009 Apr;84(4):445-58
22434822 - Hum Mol Genet. 2012 Jul 1;21(13):2845-54
20395971 - Nat Rev Genet. 2010 May;11(5):380-4
17135279 - Hum Mol Genet. 2007 Jan 1;16(1):15-23
15731448 - Science. 2005 Feb 25;307(5713):1282-8
16461860 - Arch Gen Psychiatry. 2006 Feb;63(2):168-74
15745965 - J Neurosci. 2005 Mar 2;25(9):2386-95
23044826 - Nat Rev Genet. 2012 Nov;13(11):807-17
11144355 - Neuron. 2000 Nov;28(2):449-59
23050961 - Ann N Y Acad Sci. 2012 Oct;1271:33-6
10491391 - J Cell Biol. 1999 Sep 20;146(6):1277-88
19808789 - Hum Mol Genet. 2009 Oct 15;18(R2):R137-45
12839500 - Traffic. 2003 Aug;4(8):576-80
18987003 - Nucleic Acids Res. 2009 Jan;37(Database issue):D720-30
15803197 - Nat Rev Genet. 2005 Apr;6(4):271-86
22714018 - Nat Rev Neurosci. 2012 Jul;13(7):453-64
20460622 - JAMA. 2010 May 12;303(18):1832-40
20460629 - JAMA. 2010 May 12;303(18):1864-5
15342563 - Genome Res. 2004 Sep;14(9):1806-11
23150908 - N Engl J Med. 2013 Jan 10;368(2):107-16
21460841 - Nat Genet. 2011 May;43(5):436-41
14506131 - Hum Mol Genet. 2003 Nov 15;12(22):2949-56
22484448 - Prog Neurobiol. 2012 Dec;99(3):186-90
19734903 - Nat Genet. 2009 Oct;41(10):1094-9
23360175 - Ann Hum Genet. 2013 Mar;77(2):85-105
17400334 - Neurobiol Aging. 2008 Aug;29(8):1190-8
18344982 - Nature. 2008 Mar 27;452(7186):429-35
19734902 - Nat Genet. 2009 Oct;41(10):1088-93
22156573 - Neurodegener Dis. 2012;10(1-4):60-3
23237904 - Lancet Neurol. 2013 Jan;12(1):92-104
16526044 - Am J Med Genet B Neuropsychiatr Genet. 2006 Apr 5;141B(3):261-8
21460840 - Nat Genet. 2011 May;43(5):429-35
23150934 - N Engl J Med. 2013 Jan 10;368(2):117-27
15788759 - J Neurosci. 2005 Mar 23;25(12):3032-40
20881395 - Dement Geriatr Cogn Disord. 2010;30(4):302-8
16785251 - Hum Mol Genet. 2006 Aug 1;15(15):2313-23
11740561 - Nature. 2001 Dec 6;414(6864):643-8
17093494 - EMBO J. 2006 Nov 29;25(23):5457-68
23133393 - PLoS Genet. 2012;8(10):e1002998
17192785 - Nat Genet. 2007 Jan;39(1):17-23
9438838 - Science. 1998 Jan 23;279(5350):519-26
Seshadri S (e_1_3_4_4_2) 2010; 303
Emilsson V (e_1_3_4_28_2) 2008; 452
Bertram L (e_1_3_4_1_2) 2007; 39
Jonsson T (e_1_3_4_7_2) 2013; 368
Killian RL (e_1_3_4_34_2) 2012; 7
Lambert J-C (e_1_3_4_6_2) 2009; 41
Gatz M (e_1_3_4_9_2) 2006; 63
Kimura R (e_1_3_4_44_2) 2007; 16
Kamal A (e_1_3_4_35_2) 2000; 28
Flint J (e_1_3_4_14_2) 2012; 13
McCart AE (e_1_3_4_24_2) 2003; 4
Goldstein LSB (e_1_3_4_40_2) 2012; 99
Naj AC (e_1_3_4_2_2) 2011; 43
Sutherland GT (e_1_3_4_26_2) 2011; 116
Hayashi N (e_1_3_4_45_2) 2010; 30
Lazarov O (e_1_3_4_37_2) 2005; 25
Pedersen NL (e_1_3_4_13_2) 2010; 303
Sebastiani G (e_1_3_4_19_2) 2006; 15
Harold D (e_1_3_4_5_2) 2009; 41
Holton P (e_1_3_4_10_2) 2013; 77
Bertram L (e_1_3_4_11_2) 2009; 18
Bras J (e_1_3_4_17_2) 2012; 13
Guerreiro R (e_1_3_4_8_2) 2013; 368
Vagnoni A (e_1_3_4_39_2) 2012; 21
Lee Y (e_1_3_4_27_2) 2012; 8
Muresan V (e_1_3_4_41_2) 2012; 10
Lim GP (e_1_3_4_43_2) 2005; 25
Webster JA (e_1_3_4_25_2) 2009; 84
Kamal A (e_1_3_4_36_2) 2001; 414
Ryman D (e_1_3_4_18_2) 2008; 29
Antonarakis SE (e_1_3_4_12_2) 2010; 11
Flint J (e_1_3_4_15_2) 2005; 6
Stokin GB (e_1_3_4_33_2) 2005; 307
Womack JE (e_1_3_4_16_2) 2012; 1271
Rahman A (e_1_3_4_31_2) 1999; 146
Araki Y (e_1_3_4_38_2) 2007; 26
Woźniak MJ (e_1_3_4_32_2) 2006; 25
Bettens K (e_1_3_4_42_2) 2013; 12
Lehman EJH (e_1_3_4_21_2) 2003; 12
Grubb SC (e_1_3_4_22_2) 2009; 37
Sullivan PF (e_1_3_4_20_2) 2006; 141
Hollingworth P (e_1_3_4_3_2) 2011; 43
Chen Y (e_1_3_4_29_2) 2008; 452
Hirokawa N (e_1_3_4_30_2) 1998; 279
Petkov PM (e_1_3_4_23_2) 2004; 14
References_xml – volume: 11
  start-page: 380
  year: 2010
  ident: e_1_3_4_12_2
  article-title: Mendelian disorders and multifactorial traits: The big divide or one for all?
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg2793
  contributor:
    fullname: Antonarakis SE
– volume: 77
  start-page: 85
  year: 2013
  ident: e_1_3_4_10_2
  article-title: Initial assessment of the pathogenic mechanisms of the recently identified Alzheimer risk Loci
  publication-title: Ann Hum Genet
  doi: 10.1111/ahg.12000
  contributor:
    fullname: Holton P
– volume: 368
  start-page: 117
  year: 2013
  ident: e_1_3_4_8_2
  article-title: TREM2 variants in Alzheimer’s disease
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa1211851
  contributor:
    fullname: Guerreiro R
– volume: 4
  start-page: 576
  year: 2003
  ident: e_1_3_4_24_2
  article-title: Alternatively spliced products of the human kinesin light chain 1 (KNS2) gene
  publication-title: Traffic
  doi: 10.1034/j.1600-0854.2003.00113.x
  contributor:
    fullname: McCart AE
– volume: 18
  start-page: R137
  year: 2009
  ident: e_1_3_4_11_2
  article-title: Genome-wide association studies in Alzheimer’s disease
  publication-title: Hum Mol Genet
  doi: 10.1093/hmg/ddp406
  contributor:
    fullname: Bertram L
– volume: 16
  start-page: 15
  year: 2007
  ident: e_1_3_4_44_2
  article-title: The DYRK1A gene, encoded in chromosome 21 Down syndrome critical region, bridges between beta-amyloid production and tau phosphorylation in Alzheimer disease
  publication-title: Hum Mol Genet
  doi: 10.1093/hmg/ddl437
  contributor:
    fullname: Kimura R
– volume: 303
  start-page: 1864
  year: 2010
  ident: e_1_3_4_13_2
  article-title: Reaching the limits of genome-wide significance in Alzheimer disease: Back to the environment
  publication-title: JAMA
  doi: 10.1001/jama.2010.609
  contributor:
    fullname: Pedersen NL
– volume: 7
  start-page: e29755
  year: 2012
  ident: e_1_3_4_34_2
  article-title: Kinesin light chain 1 suppression impairs human embryonic stem cell neural differentiation and amyloid precursor protein metabolism
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0029755
  contributor:
    fullname: Killian RL
– volume: 21
  start-page: 2845
  year: 2012
  ident: e_1_3_4_39_2
  article-title: Calsyntenin-1 mediates axonal transport of the amyloid precursor protein and regulates Aβ production
  publication-title: Hum Mol Genet
  doi: 10.1093/hmg/dds109
  contributor:
    fullname: Vagnoni A
– volume: 279
  start-page: 519
  year: 1998
  ident: e_1_3_4_30_2
  article-title: Kinesin and dynein superfamily proteins and the mechanism of organelle transport
  publication-title: Science
  doi: 10.1126/science.279.5350.519
  contributor:
    fullname: Hirokawa N
– volume: 99
  start-page: 186
  year: 2012
  ident: e_1_3_4_40_2
  article-title: Axonal transport and neurodegenerative disease: Can we see the elephant?
  publication-title: Prog Neurobiol
  doi: 10.1016/j.pneurobio.2012.03.006
  contributor:
    fullname: Goldstein LSB
– volume: 30
  start-page: 302
  year: 2010
  ident: e_1_3_4_45_2
  article-title: KIBRA genetic polymorphism influences episodic memory in Alzheimer’s disease, but does not show association with disease in a Japanese cohort
  publication-title: Dement Geriatr Cogn Disord
  doi: 10.1159/000320482
  contributor:
    fullname: Hayashi N
– volume: 43
  start-page: 436
  year: 2011
  ident: e_1_3_4_2_2
  article-title: Common variants at MS4A4/MS4A6E, CD2AP, CD33 and EPHA1 are associated with late-onset Alzheimer’s disease
  publication-title: Nat Genet
  doi: 10.1038/ng.801
  contributor:
    fullname: Naj AC
– volume: 13
  start-page: 807
  year: 2012
  ident: e_1_3_4_14_2
  article-title: Genome-wide association studies in mice
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg3335
  contributor:
    fullname: Flint J
– volume: 368
  start-page: 107
  year: 2013
  ident: e_1_3_4_7_2
  article-title: Variant of TREM2 associated with the risk of Alzheimer’s disease
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa1211103
  contributor:
    fullname: Jonsson T
– volume: 37
  start-page: D720
  year: 2009
  ident: e_1_3_4_22_2
  article-title: Mouse phenome database
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkn778
  contributor:
    fullname: Grubb SC
– volume: 10
  start-page: 60
  year: 2012
  ident: e_1_3_4_41_2
  article-title: A persistent stress response to impeded axonal transport leads to accumulation of amyloid-β in the endoplasmic reticulum, and is a probable cause of sporadic Alzheimer’s disease
  publication-title: Neurodegener Dis
  doi: 10.1159/000332815
  contributor:
    fullname: Muresan V
– volume: 14
  start-page: 1806
  year: 2004
  ident: e_1_3_4_23_2
  article-title: An efficient SNP system for mouse genome scanning and elucidating strain relationships
  publication-title: Genome Res
  doi: 10.1101/gr.2825804
  contributor:
    fullname: Petkov PM
– volume: 141
  start-page: 261
  year: 2006
  ident: e_1_3_4_20_2
  article-title: Evaluating the comparability of gene expression in blood and brain
  publication-title: Am J Med Genet B Neuropsychiatr Genet
  doi: 10.1002/ajmg.b.30272
  contributor:
    fullname: Sullivan PF
– volume: 303
  start-page: 1832
  year: 2010
  ident: e_1_3_4_4_2
  article-title: Genome-wide analysis of genetic loci associated with Alzheimer disease
  publication-title: JAMA
  doi: 10.1001/jama.2010.574
  contributor:
    fullname: Seshadri S
– volume: 41
  start-page: 1088
  year: 2009
  ident: e_1_3_4_5_2
  article-title: Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer’s disease
  publication-title: Nat Genet
  doi: 10.1038/ng.440
  contributor:
    fullname: Harold D
– volume: 307
  start-page: 1282
  year: 2005
  ident: e_1_3_4_33_2
  article-title: Axonopathy and transport deficits early in the pathogenesis of Alzheimer’s disease
  publication-title: Science
  doi: 10.1126/science.1105681
  contributor:
    fullname: Stokin GB
– volume: 146
  start-page: 1277
  year: 1999
  ident: e_1_3_4_31_2
  article-title: Defective kinesin heavy chain behavior in mouse kinesin light chain mutants
  publication-title: J Cell Biol
  doi: 10.1083/jcb.146.6.1277
  contributor:
    fullname: Rahman A
– volume: 26
  start-page: 1475
  year: 2007
  ident: e_1_3_4_38_2
  article-title: The novel cargo Alcadein induces vesicle association of kinesin-1 motor components and activates axonal transport
  publication-title: EMBO J
  doi: 10.1038/sj.emboj.7601609
  contributor:
    fullname: Araki Y
– volume: 116
  start-page: 937
  year: 2011
  ident: e_1_3_4_26_2
  article-title: Understanding the pathogenesis of Alzheimer’s disease: Will RNA-Seq realize the promise of transcriptomics?
  publication-title: J Neurochem
  doi: 10.1111/j.1471-4159.2010.07157.x
  contributor:
    fullname: Sutherland GT
– volume: 6
  start-page: 271
  year: 2005
  ident: e_1_3_4_15_2
  article-title: Strategies for mapping and cloning quantitative trait genes in rodents
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg1576
  contributor:
    fullname: Flint J
– volume: 414
  start-page: 643
  year: 2001
  ident: e_1_3_4_36_2
  article-title: Kinesin-mediated axonal transport of a membrane compartment containing beta-secretase and presenilin-1 requires APP
  publication-title: Nature
  doi: 10.1038/414643a
  contributor:
    fullname: Kamal A
– volume: 15
  start-page: 2313
  year: 2006
  ident: e_1_3_4_19_2
  article-title: Mapping genetic modulators of amyloid plaque deposition in TgCRND8 transgenic mice
  publication-title: Hum Mol Genet
  doi: 10.1093/hmg/ddl157
  contributor:
    fullname: Sebastiani G
– volume: 452
  start-page: 429
  year: 2008
  ident: e_1_3_4_29_2
  article-title: Variations in DNA elucidate molecular networks that cause disease
  publication-title: Nature
  doi: 10.1038/nature06757
  contributor:
    fullname: Chen Y
– volume: 25
  start-page: 5457
  year: 2006
  ident: e_1_3_4_32_2
  article-title: Cargo selection by specific kinesin light chain 1 isoforms
  publication-title: EMBO J
  doi: 10.1038/sj.emboj.7601427
  contributor:
    fullname: Woźniak MJ
– volume: 41
  start-page: 1094
  year: 2009
  ident: e_1_3_4_6_2
  article-title: Genome-wide association study identifies variants at CLU and CR1 associated with Alzheimer’s disease
  publication-title: Nat Genet
  doi: 10.1038/ng.439
  contributor:
    fullname: Lambert J-C
– volume: 84
  start-page: 445
  year: 2009
  ident: e_1_3_4_25_2
  article-title: Genetic control of human brain transcript expression in Alzheimer disease
  publication-title: Am J Hum Genet
  doi: 10.1016/j.ajhg.2009.03.011
  contributor:
    fullname: Webster JA
– volume: 25
  start-page: 3032
  year: 2005
  ident: e_1_3_4_43_2
  article-title: A diet enriched with the omega-3 fatty acid docosahexaenoic acid reduces amyloid burden in an aged Alzheimer mouse model
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.4225-04.2005
  contributor:
    fullname: Lim GP
– volume: 12
  start-page: 2949
  year: 2003
  ident: e_1_3_4_21_2
  article-title: Genetic background regulates beta-amyloid precursor protein processing and beta-amyloid deposition in the mouse
  publication-title: Hum Mol Genet
  doi: 10.1093/hmg/ddg322
  contributor:
    fullname: Lehman EJH
– volume: 8
  start-page: e1002998
  year: 2012
  ident: e_1_3_4_27_2
  article-title: Variants affecting exon skipping contribute to complex traits
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1002998
  contributor:
    fullname: Lee Y
– volume: 39
  start-page: 17
  year: 2007
  ident: e_1_3_4_1_2
  article-title: Systematic meta-analyses of Alzheimer disease genetic association studies: The AlzGene database
  publication-title: Nat Genet
  doi: 10.1038/ng1934
  contributor:
    fullname: Bertram L
– volume: 12
  start-page: 92
  year: 2013
  ident: e_1_3_4_42_2
  article-title: Genetic insights in Alzheimer’s disease
  publication-title: Lancet Neurol
  doi: 10.1016/S1474-4422(12)70259-4
  contributor:
    fullname: Bettens K
– volume: 452
  start-page: 423
  year: 2008
  ident: e_1_3_4_28_2
  article-title: Genetics of gene expression and its effect on disease
  publication-title: Nature
  doi: 10.1038/nature06758
  contributor:
    fullname: Emilsson V
– volume: 13
  start-page: 453
  year: 2012
  ident: e_1_3_4_17_2
  article-title: Use of next-generation sequencing and other whole-genome strategies to dissect neurological disease
  publication-title: Nat Rev Neurosci
  doi: 10.1038/nrn3271
  contributor:
    fullname: Bras J
– volume: 63
  start-page: 168
  year: 2006
  ident: e_1_3_4_9_2
  article-title: Role of genes and environments for explaining Alzheimer disease
  publication-title: Arch Gen Psychiatry
  doi: 10.1001/archpsyc.63.2.168
  contributor:
    fullname: Gatz M
– volume: 43
  start-page: 429
  year: 2011
  ident: e_1_3_4_3_2
  article-title: Common variants at ABCA7, MS4A6A/MS4A4E, EPHA1, CD33 and CD2AP are associated with Alzheimer’s disease
  publication-title: Nat Genet
  doi: 10.1038/ng.803
  contributor:
    fullname: Hollingworth P
– volume: 1271
  start-page: 33
  year: 2012
  ident: e_1_3_4_16_2
  article-title: Genomics of complex traits
  publication-title: Ann N Y Acad Sci
  doi: 10.1111/j.1749-6632.2012.06733.x
  contributor:
    fullname: Womack JE
– volume: 28
  start-page: 449
  year: 2000
  ident: e_1_3_4_35_2
  article-title: Axonal transport of amyloid precursor protein is mediated by direct binding to the kinesin light chain subunit of kinesin-I
  publication-title: Neuron
  doi: 10.1016/S0896-6273(00)00124-0
  contributor:
    fullname: Kamal A
– volume: 25
  start-page: 2386
  year: 2005
  ident: e_1_3_4_37_2
  article-title: Axonal transport, amyloid precursor protein, kinesin-1, and the processing apparatus: Revisited
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.3089-04.2005
  contributor:
    fullname: Lazarov O
– volume: 29
  start-page: 1190
  year: 2008
  ident: e_1_3_4_18_2
  article-title: Genetic loci modulating amyloid-beta levels in a mouse model of Alzheimer’s disease
  publication-title: Neurobiol Aging
  doi: 10.1016/j.neurobiolaging.2007.02.017
  contributor:
    fullname: Ryman D
SSID ssj0009580
Score 2.304789
Snippet Alzheimer’s disease (AD) is characterized by the accumulation of amyloid-β (Aβ). The genes that govern this process, however, have remained elusive. To this...
Alzheimer's disease (AD) is characterized by the accumulation of amyloid-β (Aβ). The genes that govern this process, however, have remained elusive. To this...
Genetic studies of common complex human diseases, including Alzheimer's disease (AD), are extremely resource-intensive and have struggled to identify genes...
Alzheimer's disease (AD) is characterized by the accumulation of amyloid- beta (A beta ). The genes that govern this process, however, have remained elusive....
SourceID pubmedcentral
proquest
crossref
pubmed
pnas
jstor
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 2638
SubjectTerms Alleles
Alzheimer Disease - genetics
Alzheimer Disease - metabolism
Alzheimers disease
Amyloid beta-Peptides - metabolism
Amyloids
Animals
Biological Sciences
Brain - metabolism
Crosses, Genetic
Gene Expression Profiling
Genes
Genomes
Human genetics
Humans
Medical genetics
Mice
Microtubule-Associated Proteins - genetics
Microtubule-Associated Proteins - metabolism
Nervous system diseases
Pathology
Protein Isoforms - genetics
Protein Isoforms - metabolism
Species Specificity
Transcriptomics
SummonAdditionalLinks – databaseName: JSTOR
  dbid: JSG
  link: http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NbtQwELbYnrhAC5SGAjISSOUQNfFP7BwRtCAOXJZK3CzHP3TFblKR3UMvfag-SJ-JGW-y7SJAnG2Nk4xn5pvM-DMhr6WNijtAboAdbC4gB8mbIKrceV-5WDShXP-6mKov3_SHE6TJeTOehcG2ytQXmKr4AJCaeTjGzg1dC8jMJzpZ3-fpxzvMunp9zoSBuxVMjPw9ih9ftLbH644VRxauciv0TKLtxh5EJDaFqX8Cmb_3St4JPqcP__Oxd8mDAV3Sd-vtsEfuhfYR2Rvst6dHA8n028fkKgWp5DK6RaB24CahXaQezb51S4p_BQLt0y0SPUWuJ9ir9Ac2ys9aOse0nrpzGMxL2mMdHMIgtT0Io3ZxOe9mPr-5pta51WK4JAxE-lmESPyEnJ2efH3_KR_uYsgdQLhl7qOItomltNYGj1lZwWWQjRBO86p2THIGQ7aI1gnty9IVspFc2cr5umae75OdtmvDAaHgIxsJOId5zQG-1E3A4o-LpedKCKEycjSqyVysKTdMKpUrblBN5lajGTkANRr7HRyiOZsypMtDTFtXLCP7SSEbEaM2MvI0SdmIhgxIGQZ-KCOvRv0bMDKsnNg2wKc2gJqLSkup2b_mCIFHe5XGFdKeuV1biBqgmcyI2tpNmwlI8r090s7OE9k3B4CthX72t9c5JPfhtQU2kpf6OdlZ_lyFF2TS-9XLZCe_AHlzD2o
  priority: 102
  providerName: JSTOR
Title Transcriptome analysis of distinct mouse strains reveals kinesin light chain-1 splicing as an amyloid-β accumulation modifier
URI https://www.jstor.org/stable/23768940
http://www.pnas.org/content/111/7/2638.abstract
https://www.ncbi.nlm.nih.gov/pubmed/24497505
https://search.proquest.com/docview/1500685582
https://search.proquest.com/docview/1544005778
https://pubmed.ncbi.nlm.nih.gov/PMC3932848
Volume 111
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELbYnrggCpSmwMpIHMoh3cQ_sXNEpRUXEFKpxM1y_EMjmuyK7F55KB6EZ2LGm2xZhDhwtj2O7PHMN_H4G0JeSRsVd4DcADvYXEAMkjdBVLnzvnKxaEK5_XVxpT581m8vkCZHTm9hUtK-a9qz_rY769ublFu56txiyhNbfHx_zgF0aKEXMzIDbDiF6DumXb19d8LA_AomJj4fxRer3g5Y_lhxZOXCIjHg3GrwmXLPK82iXU7pich5CqP-hj__TKP8zS9dPiQPRkBJ32w__JDcC_0jcjge2YGejrzSrx-T78kvJSux7AK1Ix0JXUbq8aT3bk3xR0CgQyocMVCkdwL1pF8xN77t6S1G8tTdQGNe0gGvvsHzUTuAMGo7iP1bn__8Qa1zm26sCwYifRvB-T4h15cXn87f5WP5hdwBalvnPopom1hKa23wGIgVXAbZCOE0r2rHJGfQZItondC-LF0hG8mVrZyva-b5ETnol304JhTMYiMB2jCvOSCWugl43-Ni6bkSQqiMnE7Lb1Zblg2TbscVN7j85m7TMnIM22PsF7CB5vqKIUMewti6Yhk5Snu2E4EZP7oWRUaeJik70RD0KMPA9GTk5bSvBs4VXpbYPsBSGwDKRaWl1OxffYTA17xK4wxJF-7mHjUrI2pPS3YdkNd7vwXUPfF7j-p98t8jn5H7sC4Ck8tL_ZwcrL9twgsyG_xmnnJe56mwxjydm1-yBhnj
link.rule.ids 230,315,729,782,786,808,811,887,27933,27934,53800,53802,58025,58037,58258,58270
linkProvider National Library of Medicine
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZoOcAFKFAankYCqRyiJn7EzhFBqyJKL20lbpbjR7tiN6nI7oELP4ofwm9ixptsuwgQZ1vjxGPPfOMZfybklbRRcQfIDbCDzQXEIHkTRJU77ysXiyaUy6OLE3X8Wb_fR5qc1-NdGCyrTHWBKYsPAKmZhj2s3NC1gMj8ptQFV8vKvWvcunp504SBwRVMjAw-iu9dtrbHB48VRx6ucs35bETbjVWISG0KXf8EM3-vlrzmfg7u_ueH3yN3BnxJ3y4XxBa5Edr7ZGvYwT3dHWim3zwg35ObSkajmwVqB3YS2kXqceO3bk7xXCDQPr0j0VNke4LVSr9gqfykpVMM7Km7gMa8pD1mwsERUtuDMGpn36bdxOc_f1Dr3GI2PBMGIv0kgi9-SM4O9k_fHebDawy5AxA3z30U0TaxlNba4DEuK7gMshHCaV7VjknOoMkW0TqhfVm6QjaSK1s5X9fM822y2XZt2CEUrGQjAekwrzkAmLoJmP5xsfRcCSFURnZHNZnLJemGSclyxQ2qyVxpNCM7oEZjz8EkmrMThoR5iGrrimVkOylkJWLURkYeJSkr0RADKcPAEmXk5ah_A9sMcye2DTDVBnBzUWkpNftXHyHwcq_SOEJaM1djC1EDOJMZUWuradUBab7XW9rJRaL75gCxtdCP__Y7L8itw9NPR-bow_HHJ-Q2TIHAsvJSPyWb86-L8Ixs9H7xPO2ZX_1UEs0
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwELZokRAXoEBp-DUSh_YQbRLbsXNEtCsQqEIqlbhZjn_aFbvJiuweuPBQPAjPxIyTbLsIkDjbmuxmxjPfZMbfEPJKmCCZBeQG2MGkHHKQtPa8TK1zpQ1Z7fP-08WZPP2sjk-QJudovAuDbZWxLzBW8QEg1XM_Wbowwe4NVXHIzm8KkKj64QDX-HVVf9ukAKfLCz6y-Eg2WTamw6HHkiEXV74VgHaCacdORKQ3ha1_gpq_d0xeC0HTu__x4--ROwPOpK97w9gjN3xzn-wNJ7mjhwPd9NED8j2Gq-g82oWnZmApoW2gDh1AY1cUvw942sV5Eh1F1iewWvoFW-ZnDZ1jgk_tJSymOe2wIg4BkZoOhFGz-DZvZy79-YMaa9eLYVwYiHSzADH5ITmfnnx68zYdpjKkFsDcKnWBB1OHXBhjvMP8LGPCi5pzq1hZ2UKwApZMFozlyuW5zUQtmDSldVVVOLZPdpu28QeEgresBSCewikGQKaqPZaBbMgdk5xzmZDDUVV62ZNv6Fg0l0yjqvSVVhNyAKrU5gJcoz4_K5A4D9FtVRYJ2Y9K2YgYtZGQR1HKRjTkQlIX4JES8nK0AQ3HDWsopvHwqjXg56xUAkzwX3s4x0u-UuETot1cPZvzCkCaSIjcsqjNBqT73l5pZpeR9psB1FZcPf7b33lBbn08nuoP707fPyG34Q1w7C7P1VOyu_q69s_ITufWz-Ox-QW_ZhVG
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Transcriptome+analysis+of+distinct+mouse+strains+reveals+kinesin+light+chain-1+splicing+as+an+amyloid-%CE%B2+accumulation+modifier&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Morihara%2C+Takashi&rft.au=Hayashi%2C+Noriyuki&rft.au=Yokokoji%2C+Mikiko&rft.au=Akatsu%2C+Hiroyasu&rft.date=2014-02-18&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=111&rft.issue=7&rft.spage=2638&rft.epage=2643&rft_id=info:doi/10.1073%2Fpnas.1307345111&rft.externalDocID=23768940
thumbnail_m http://sdu.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F111%2F7.cover.gif
thumbnail_s http://sdu.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F111%2F7.cover.gif