Transcriptome analysis of distinct mouse strains reveals kinesin light chain-1 splicing as an amyloid-β accumulation modifier
Alzheimer’s disease (AD) is characterized by the accumulation of amyloid-β (Aβ). The genes that govern this process, however, have remained elusive. To this end, we combined distinct mouse strains with transcriptomics to directly identify disease-relevant genes. We show that AD model mice (APP -Tg)...
Saved in:
Published in: | Proceedings of the National Academy of Sciences - PNAS Vol. 111; no. 7; pp. 2638 - 2643 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
National Academy of Sciences
18-02-2014
National Acad Sciences |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Alzheimer’s disease (AD) is characterized by the accumulation of amyloid-β (Aβ). The genes that govern this process, however, have remained elusive. To this end, we combined distinct mouse strains with transcriptomics to directly identify disease-relevant genes. We show that AD model mice (APP -Tg) with DBA/2 genetic backgrounds have significantly lower levels of Aβ accumulation compared with SJL and C57BL/6 mice. We then applied brain transcriptomics to reveal the genes in DBA/2 that suppress Aβ accumulation. To avoid detecting secondarily affected genes by Aβ, we used non-Tg mice in the absence of Aβ pathology and selected candidate genes differently expressed in DBA/2 mice. Additional transcriptome analysis of APP -Tg mice with mixed genetic backgrounds revealed kinesin light chain-1 (Klc1) as an Aβ modifier, indicating a role for intracellular trafficking in Aβ accumulation. Aβ levels correlated with the expression levels of Klc1 splice variant E and the genotype of Klc1 in these APP -Tg mice. In humans, the expression levels of KLC1 variant E in brain and lymphocyte were significantly higher in AD patients compared with unaffected individuals. Finally, functional analysis using neuroblastoma cells showed that overexpression or knockdown of KLC1 variant E increases or decreases the production of Aβ, respectively. The identification of KLC1 variant E suggests that the dysfunction of intracellular trafficking is a causative factor of Aβ pathology. This unique combination of distinct mouse strains and model mice with transcriptomics is expected to be useful for the study of genetic mechanisms of other complex diseases. |
---|---|
AbstractList | Alzheimer's disease (AD) is characterized by the accumulation of amyloid-β (Aβ). The genes that govern this process, however, have remained elusive. To this end, we combined distinct mouse strains with transcriptomics to directly identify disease-relevant genes. We show that AD model mice (APP-Tg) with DBA/2 genetic backgrounds have significantly lower levels of Aβ accumulation compared with SJL and C57BL/6 mice. We then applied brain transcriptomics to reveal the genes in DBA/2 that suppress Aβ accumulation. To avoid detecting secondarily affected genes by Aβ, we used non-Tg mice in the absence of Aβ pathology and selected candidate genes differently expressed in DBA/2 mice. Additional transcriptome analysis of APP-Tg mice with mixed genetic backgrounds revealed kinesin light chain-1 (Klc1) as an Aβ modifier, indicating a role for intracellular trafficking in Aβ accumulation. Aβ levels correlated with the expression levels of Klc1 splice variant E and the genotype of Klc1 in these APP-Tg mice. In humans, the expression levels of KLC1 variant E in brain and lymphocyte were significantly higher in AD patients compared with unaffected individuals. Finally, functional analysis using neuroblastoma cells showed that overexpression or knockdown of KLC1 variant E increases or decreases the production of Aβ, respectively. The identification of KLC1 variant E suggests that the dysfunction of intracellular trafficking is a causative factor of Aβ pathology. This unique combination of distinct mouse strains and model mice with transcriptomics is expected to be useful for the study of genetic mechanisms of other complex diseases. Alzheimer's disease (AD) is characterized by the accumulation of amyloid- beta (A beta ). The genes that govern this process, however, have remained elusive. To this end, we combined distinct mouse strains with transcriptomics to directly identify disease-relevant genes. We show that AD model mice (APP-Tg) with DBA/2 genetic backgrounds have significantly lower levels of A beta accumulation compared with SJL and C57BL/6 mice. We then applied brain transcriptomics to reveal the genes in DBA/2 that suppress A beta accumulation. To avoid detecting secondarily affected genes by A beta , we used non-Tg mice in the absence of A beta pathology and selected candidate genes differently expressed in DBA/2 mice. Additional transcriptome analysis of APP-Tg mice with mixed genetic backgrounds revealed kinesin light chain-1 (Klc1) as an A beta modifier, indicating a role for intracellular trafficking in A beta accumulation. A beta levels correlated with the expression levels of Klc1 splice variant E and the genotype of Klc1 in these APP-Tg mice. In humans, the expression levels of KLC1 variant E in brain and lymphocyte were significantly higher in AD patients compared with unaffected individuals. Finally, functional analysis using neuroblastoma cells showed that overexpression or knockdown of KLC1 variant E increases or decreases the production of A beta , respectively. The identification of KLC1 variant E suggests that the dysfunction of intracellular trafficking is a causative factor of A beta pathology. This unique combination of distinct mouse strains and model mice with transcriptomics is expected to be useful for the study of genetic mechanisms of other complex diseases. Genetic studies of common complex human diseases, including Alzheimer's disease (AD), are extremely resource-intensive and have struggled to identify genes that are causal in disease. Combined with the costs of studies and the inability to identify the missing heritability, particularly in AD, alternate strategies warrant consideration. We devised a unique strategy that combines distinct mouse strains that vary naturally in amyloid-β production with transcriptomics to identify kinesin light chain-1 (Klc1 ) splice variant E as a modifier of amyloid-β accumulation, a causative factor of AD. In AD patients, the expression levels of KLC1 variant E in brain were significantly higher compared with levels in unaffected individuals. The identification of KLC1 variant E suggests that dysfunction of intracellular trafficking is causative in AD. Alzheimer’s disease (AD) is characterized by the accumulation of amyloid-β (Aβ). The genes that govern this process, however, have remained elusive. To this end, we combined distinct mouse strains with transcriptomics to directly identify disease-relevant genes. We show that AD model mice ( APP -Tg) with DBA/2 genetic backgrounds have significantly lower levels of Aβ accumulation compared with SJL and C57BL/6 mice. We then applied brain transcriptomics to reveal the genes in DBA/2 that suppress Aβ accumulation. To avoid detecting secondarily affected genes by Aβ, we used non-Tg mice in the absence of Aβ pathology and selected candidate genes differently expressed in DBA/2 mice. Additional transcriptome analysis of APP -Tg mice with mixed genetic backgrounds revealed kinesin light chain-1 (Klc1 ) as an Aβ modifier, indicating a role for intracellular trafficking in Aβ accumulation. Aβ levels correlated with the expression levels of Klc1 splice variant E and the genotype of Klc1 in these APP -Tg mice. In humans, the expression levels of KLC1 variant E in brain and lymphocyte were significantly higher in AD patients compared with unaffected individuals. Finally, functional analysis using neuroblastoma cells showed that overexpression or knockdown of KLC1 variant E increases or decreases the production of Aβ, respectively. The identification of KLC1 variant E suggests that the dysfunction of intracellular trafficking is a causative factor of Aβ pathology. This unique combination of distinct mouse strains and model mice with transcriptomics is expected to be useful for the study of genetic mechanisms of other complex diseases. |
Author | Kamino, Kouzin Sato, Masahiro Kudo, Takashi Okochi, Masayasu Kimura, Ryo Tsunoda, Tatsuhiko Akatsu, Hiroyasu Takeda, Masatoshi Itoh, Naohiro Hashimoto, Ryota Hashizume, Yoshio Katayama, Taiichi Tanaka, Toshihisa Kazui, Hiroaki Yanagida, Kanta Saito, Yuhki Kodama, Takashi S. Yamaguchi-Kabata, Yumi Yokokoji, Mikiko Takamura, Hironori Kimura, Nobuyuki Morihara, Takashi Silverman, Michael A. Nishitomi, Kouhei Suzuki, Toshiharu Tagami, Shinji Hayashi, Noriyuki |
Author_xml | – sequence: 1 givenname: Takashi surname: Morihara fullname: Morihara, Takashi – sequence: 2 givenname: Noriyuki surname: Hayashi fullname: Hayashi, Noriyuki – sequence: 3 givenname: Mikiko surname: Yokokoji fullname: Yokokoji, Mikiko – sequence: 4 givenname: Hiroyasu surname: Akatsu fullname: Akatsu, Hiroyasu – sequence: 5 givenname: Michael A. surname: Silverman fullname: Silverman, Michael A. – sequence: 6 givenname: Nobuyuki surname: Kimura fullname: Kimura, Nobuyuki – sequence: 7 givenname: Masahiro surname: Sato fullname: Sato, Masahiro – sequence: 8 givenname: Yuhki surname: Saito fullname: Saito, Yuhki – sequence: 9 givenname: Toshiharu surname: Suzuki fullname: Suzuki, Toshiharu – sequence: 10 givenname: Kanta surname: Yanagida fullname: Yanagida, Kanta – sequence: 11 givenname: Takashi S. surname: Kodama fullname: Kodama, Takashi S. – sequence: 12 givenname: Toshihisa surname: Tanaka fullname: Tanaka, Toshihisa – sequence: 13 givenname: Masayasu surname: Okochi fullname: Okochi, Masayasu – sequence: 14 givenname: Shinji surname: Tagami fullname: Tagami, Shinji – sequence: 15 givenname: Hiroaki surname: Kazui fullname: Kazui, Hiroaki – sequence: 16 givenname: Takashi surname: Kudo fullname: Kudo, Takashi – sequence: 17 givenname: Ryota surname: Hashimoto fullname: Hashimoto, Ryota – sequence: 18 givenname: Naohiro surname: Itoh fullname: Itoh, Naohiro – sequence: 19 givenname: Kouhei surname: Nishitomi fullname: Nishitomi, Kouhei – sequence: 20 givenname: Yumi surname: Yamaguchi-Kabata fullname: Yamaguchi-Kabata, Yumi – sequence: 21 givenname: Tatsuhiko surname: Tsunoda fullname: Tsunoda, Tatsuhiko – sequence: 22 givenname: Hironori surname: Takamura fullname: Takamura, Hironori – sequence: 23 givenname: Taiichi surname: Katayama fullname: Katayama, Taiichi – sequence: 24 givenname: Ryo surname: Kimura fullname: Kimura, Ryo – sequence: 25 givenname: Kouzin surname: Kamino fullname: Kamino, Kouzin – sequence: 26 givenname: Yoshio surname: Hashizume fullname: Hashizume, Yoshio – sequence: 27 givenname: Masatoshi surname: Takeda fullname: Takeda, Masatoshi |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24497505$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkb1uFDEURi0URDaBmgpwmWaS67-ZcYOEIgJIkShIauuux7PrMGMv9kykbXgoHoRnwqsNm9BR2dJ37pGvvxNyFGJwhLxmcM6gERebgPmciXKVijH2jCwYaFbVUsMRWQDwpmoll8fkJOc7ANCqhRfkmEupGwVqQX7eJAzZJr-Z4ugoBhy22Wcae9r5PPlgJzrGOTuap4Q-ZJrcvcMh0-8-uOwDHfxqPVG7LmHFaN4M3vqwopiLjOK4HaLvqt-_KFo7j_OAk4-hKDvfe5dekud9kblXD-cpub36eHP5ubr--unL5Yfryipop6rrZY_LnilEdB2TwEAop5ZS2lbU2nIleIkQerSy7RizoJZKNFjbTmveiVPyfu_dzMvRddaFss1gNsmPmLYmojf_JsGvzSreG6EFb2VbBGcPghR_zC5PZvTZumHA4Mr3GKakBFBN8z8oQN0q1fKCXuxRm2LOyfWHFzEwu4LNrmDzWHCZePt0kQP_t9EnwG7yoGPMNIbXYve8N3vgLk8xPQpEU7daQsnf7fMeo8FV8tncfuPAagAmtK65-AMjUsTY |
CitedBy_id | crossref_primary_10_1017_S1041610222001132 crossref_primary_10_18632_oncotarget_18193 crossref_primary_10_3233_JAD_170036 crossref_primary_10_1016_j_ajpath_2016_01_011 crossref_primary_10_1371_journal_ppat_1004723 crossref_primary_10_1016_j_brainresbull_2015_12_003 crossref_primary_10_1002_1873_3468_12137 crossref_primary_10_1002_bies_201400131 crossref_primary_10_1038_s41562_023_01792_6 crossref_primary_10_1091_mbc_e14_06_1111 crossref_primary_10_7554_eLife_11752 crossref_primary_10_1002_bies_201400206 crossref_primary_10_1073_pnas_1520817113 crossref_primary_10_1016_j_yexcr_2014_12_014 crossref_primary_10_1097_WNR_0000000000000486 crossref_primary_10_1242_jcs_198267 crossref_primary_10_1126_sciadv_abg6636 crossref_primary_10_1371_journal_pone_0125897 crossref_primary_10_1007_s00439_018_1906_z crossref_primary_10_7554_eLife_38362 crossref_primary_10_1016_j_bbrc_2024_150025 crossref_primary_10_1186_s13024_017_0231_7 crossref_primary_10_1002_alz_13479 crossref_primary_10_12688_amrcopenres_12861_2 crossref_primary_10_1371_journal_pone_0186354 |
Cites_doi | 10.1038/nrg2793 10.1111/ahg.12000 10.1056/NEJMoa1211851 10.1034/j.1600-0854.2003.00113.x 10.1093/hmg/ddp406 10.1093/hmg/ddl437 10.1001/jama.2010.609 10.1371/journal.pone.0029755 10.1093/hmg/dds109 10.1126/science.279.5350.519 10.1016/j.pneurobio.2012.03.006 10.1159/000320482 10.1038/ng.801 10.1038/nrg3335 10.1056/NEJMoa1211103 10.1093/nar/gkn778 10.1159/000332815 10.1101/gr.2825804 10.1002/ajmg.b.30272 10.1001/jama.2010.574 10.1038/ng.440 10.1126/science.1105681 10.1083/jcb.146.6.1277 10.1038/sj.emboj.7601609 10.1111/j.1471-4159.2010.07157.x 10.1038/nrg1576 10.1038/414643a 10.1093/hmg/ddl157 10.1038/nature06757 10.1038/sj.emboj.7601427 10.1038/ng.439 10.1016/j.ajhg.2009.03.011 10.1523/JNEUROSCI.4225-04.2005 10.1093/hmg/ddg322 10.1371/journal.pgen.1002998 10.1038/ng1934 10.1016/S1474-4422(12)70259-4 10.1038/nature06758 10.1038/nrn3271 10.1001/archpsyc.63.2.168 10.1038/ng.803 10.1111/j.1749-6632.2012.06733.x 10.1016/S0896-6273(00)00124-0 10.1523/JNEUROSCI.3089-04.2005 10.1016/j.neurobiolaging.2007.02.017 |
ContentType | Journal Article |
Copyright | copyright © 1993–2008 National Academy of Sciences of the United States of America |
Copyright_xml | – notice: copyright © 1993–2008 National Academy of Sciences of the United States of America |
DBID | FBQ CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 7TK 5PM |
DOI | 10.1073/pnas.1307345111 |
DatabaseName | AGRIS Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef MEDLINE - Academic Neurosciences Abstracts PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef MEDLINE - Academic Neurosciences Abstracts |
DatabaseTitleList | MEDLINE Neurosciences Abstracts CrossRef |
Database_xml | – sequence: 1 dbid: ECM name: MEDLINE url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
DocumentTitleAlternate | Aβ modifier gene revealed by mouse transcriptomics |
EISSN | 1091-6490 |
EndPage | 2643 |
ExternalDocumentID | 10_1073_pnas_1307345111 24497505 111_7_2638 23768940 US201600139962 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -DZ -~X .55 .GJ 0R~ 123 29P 2AX 2FS 2WC 3O- 4.4 53G 5RE 5VS 692 6TJ 79B 85S AACGO AAFWJ AANCE AAYJJ ABBHK ABOCM ABPLY ABPPZ ABPTK ABTLG ABZEH ACGOD ACIWK ACKIV ACNCT ACPRK ADULT ADZLD AENEX AEUPB AEXZC AFDAS AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS ASUFR AS~ BKOMP CS3 D0L DCCCD DIK DNJUQ DOOOF DU5 DWIUU E3Z EBS EJD F20 F5P FBQ FRP GX1 HGD HH5 HQ3 HTVGU HYE JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JSODD JST KQ8 L7B LU7 MVM N9A NEJ NHB N~3 O9- OK1 P-O PNE PQQKQ R.V RHF RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR VOH VQA W8F WH7 WHG WOQ WOW X7M XFK XSW Y6R YBH YKV YSK ZA5 ZCA ZCG ~02 ~KM ABXSQ AQVQM - 02 0R 1AW 55 AAPBV ABFLS ADACO DZ H13 KM PQEST X XHC ADACV CGR CUY CVF ECM EIF IPSME NPM AAYXX CITATION 7X8 7TK 5PM |
ID | FETCH-LOGICAL-c508t-df4fabf15aaaed1401035e5b44c8369c2532aaaa0fac48d11c05b537a6cd992d3 |
IEDL.DBID | RPM |
ISSN | 0027-8424 |
IngestDate | Tue Sep 17 21:10:30 EDT 2024 Fri Aug 16 21:40:24 EDT 2024 Fri Aug 16 21:06:03 EDT 2024 Thu Nov 21 23:54:32 EST 2024 Sat Sep 28 07:56:51 EDT 2024 Wed Nov 11 00:30:29 EST 2020 Fri Feb 02 07:04:32 EST 2024 Wed Dec 27 19:17:39 EST 2023 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | alternative splicing mouse-to-human translation |
Language | English |
License | Freely available online through the PNAS open access option. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c508t-df4fabf15aaaed1401035e5b44c8369c2532aaaa0fac48d11c05b537a6cd992d3 |
Notes | http://dx.doi.org/10.1073/pnas.1307345111 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 1T.M., N.H., and M.Y. contributed equally to this work. Edited by Robert W. Mahley, The J. David Gladstone Institutes, San Francisco, CA, and approved December 13, 2013 (received for review May 1, 2013) Author contributions: T.M. and M.T. designed research; T.M., N.H., M.Y., H.A., N.K., M.S., K.Y., T.S.K., T. Tanaka, S.T., H.K., T. Kudo, R.H., H.T., T. Katayama, and Y.H. performed research; T.M., N.H., M.Y., N.K., M.S., Y.S., T.S., K.Y., T.S.K., T. Tanaka, N.I., K.N., H.T., T. Katayama, R.K., and K.K. contributed new reagents/analytic tools; T.M., N.H., M.Y., H.A., N.K., M.S., Y.Y.-K., and T. Tsunoda analyzed data; and T.M., M.A.S., and M.O. wrote the paper. |
OpenAccessLink | https://www.pnas.org/content/pnas/111/7/2638.full.pdf |
PMID | 24497505 |
PQID | 1500685582 |
PQPubID | 23479 |
PageCount | 6 |
ParticipantIDs | crossref_primary_10_1073_pnas_1307345111 pnas_primary_111_7_2638 proquest_miscellaneous_1544005778 jstor_primary_23768940 pubmedcentral_primary_oai_pubmedcentral_nih_gov_3932848 fao_agris_US201600139962 proquest_miscellaneous_1500685582 pubmed_primary_24497505 |
ProviderPackageCode | RNA PNE |
PublicationCentury | 2000 |
PublicationDate | 2014-02-18 |
PublicationDateYYYYMMDD | 2014-02-18 |
PublicationDate_xml | – month: 02 year: 2014 text: 2014-02-18 day: 18 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2014 |
Publisher | National Academy of Sciences National Acad Sciences |
Publisher_xml | – name: National Academy of Sciences – name: National Acad Sciences |
References | 17332754 - EMBO J. 2007 Mar 21;26(6):1475-86 21175619 - J Neurochem. 2011 Mar;116(6):937-46 18344981 - Nature. 2008 Mar 27;452(7186):423-8 22272245 - PLoS One. 2012;7(1):e29755 19361613 - Am J Hum Genet. 2009 Apr;84(4):445-58 22434822 - Hum Mol Genet. 2012 Jul 1;21(13):2845-54 20395971 - Nat Rev Genet. 2010 May;11(5):380-4 17135279 - Hum Mol Genet. 2007 Jan 1;16(1):15-23 15731448 - Science. 2005 Feb 25;307(5713):1282-8 16461860 - Arch Gen Psychiatry. 2006 Feb;63(2):168-74 15745965 - J Neurosci. 2005 Mar 2;25(9):2386-95 23044826 - Nat Rev Genet. 2012 Nov;13(11):807-17 11144355 - Neuron. 2000 Nov;28(2):449-59 23050961 - Ann N Y Acad Sci. 2012 Oct;1271:33-6 10491391 - J Cell Biol. 1999 Sep 20;146(6):1277-88 19808789 - Hum Mol Genet. 2009 Oct 15;18(R2):R137-45 12839500 - Traffic. 2003 Aug;4(8):576-80 18987003 - Nucleic Acids Res. 2009 Jan;37(Database issue):D720-30 15803197 - Nat Rev Genet. 2005 Apr;6(4):271-86 22714018 - Nat Rev Neurosci. 2012 Jul;13(7):453-64 20460622 - JAMA. 2010 May 12;303(18):1832-40 20460629 - JAMA. 2010 May 12;303(18):1864-5 15342563 - Genome Res. 2004 Sep;14(9):1806-11 23150908 - N Engl J Med. 2013 Jan 10;368(2):107-16 21460841 - Nat Genet. 2011 May;43(5):436-41 14506131 - Hum Mol Genet. 2003 Nov 15;12(22):2949-56 22484448 - Prog Neurobiol. 2012 Dec;99(3):186-90 19734903 - Nat Genet. 2009 Oct;41(10):1094-9 23360175 - Ann Hum Genet. 2013 Mar;77(2):85-105 17400334 - Neurobiol Aging. 2008 Aug;29(8):1190-8 18344982 - Nature. 2008 Mar 27;452(7186):429-35 19734902 - Nat Genet. 2009 Oct;41(10):1088-93 22156573 - Neurodegener Dis. 2012;10(1-4):60-3 23237904 - Lancet Neurol. 2013 Jan;12(1):92-104 16526044 - Am J Med Genet B Neuropsychiatr Genet. 2006 Apr 5;141B(3):261-8 21460840 - Nat Genet. 2011 May;43(5):429-35 23150934 - N Engl J Med. 2013 Jan 10;368(2):117-27 15788759 - J Neurosci. 2005 Mar 23;25(12):3032-40 20881395 - Dement Geriatr Cogn Disord. 2010;30(4):302-8 16785251 - Hum Mol Genet. 2006 Aug 1;15(15):2313-23 11740561 - Nature. 2001 Dec 6;414(6864):643-8 17093494 - EMBO J. 2006 Nov 29;25(23):5457-68 23133393 - PLoS Genet. 2012;8(10):e1002998 17192785 - Nat Genet. 2007 Jan;39(1):17-23 9438838 - Science. 1998 Jan 23;279(5350):519-26 Seshadri S (e_1_3_4_4_2) 2010; 303 Emilsson V (e_1_3_4_28_2) 2008; 452 Bertram L (e_1_3_4_1_2) 2007; 39 Jonsson T (e_1_3_4_7_2) 2013; 368 Killian RL (e_1_3_4_34_2) 2012; 7 Lambert J-C (e_1_3_4_6_2) 2009; 41 Gatz M (e_1_3_4_9_2) 2006; 63 Kimura R (e_1_3_4_44_2) 2007; 16 Kamal A (e_1_3_4_35_2) 2000; 28 Flint J (e_1_3_4_14_2) 2012; 13 McCart AE (e_1_3_4_24_2) 2003; 4 Goldstein LSB (e_1_3_4_40_2) 2012; 99 Naj AC (e_1_3_4_2_2) 2011; 43 Sutherland GT (e_1_3_4_26_2) 2011; 116 Hayashi N (e_1_3_4_45_2) 2010; 30 Lazarov O (e_1_3_4_37_2) 2005; 25 Pedersen NL (e_1_3_4_13_2) 2010; 303 Sebastiani G (e_1_3_4_19_2) 2006; 15 Harold D (e_1_3_4_5_2) 2009; 41 Holton P (e_1_3_4_10_2) 2013; 77 Bertram L (e_1_3_4_11_2) 2009; 18 Bras J (e_1_3_4_17_2) 2012; 13 Guerreiro R (e_1_3_4_8_2) 2013; 368 Vagnoni A (e_1_3_4_39_2) 2012; 21 Lee Y (e_1_3_4_27_2) 2012; 8 Muresan V (e_1_3_4_41_2) 2012; 10 Lim GP (e_1_3_4_43_2) 2005; 25 Webster JA (e_1_3_4_25_2) 2009; 84 Kamal A (e_1_3_4_36_2) 2001; 414 Ryman D (e_1_3_4_18_2) 2008; 29 Antonarakis SE (e_1_3_4_12_2) 2010; 11 Flint J (e_1_3_4_15_2) 2005; 6 Stokin GB (e_1_3_4_33_2) 2005; 307 Womack JE (e_1_3_4_16_2) 2012; 1271 Rahman A (e_1_3_4_31_2) 1999; 146 Araki Y (e_1_3_4_38_2) 2007; 26 Woźniak MJ (e_1_3_4_32_2) 2006; 25 Bettens K (e_1_3_4_42_2) 2013; 12 Lehman EJH (e_1_3_4_21_2) 2003; 12 Grubb SC (e_1_3_4_22_2) 2009; 37 Sullivan PF (e_1_3_4_20_2) 2006; 141 Hollingworth P (e_1_3_4_3_2) 2011; 43 Chen Y (e_1_3_4_29_2) 2008; 452 Hirokawa N (e_1_3_4_30_2) 1998; 279 Petkov PM (e_1_3_4_23_2) 2004; 14 |
References_xml | – volume: 11 start-page: 380 year: 2010 ident: e_1_3_4_12_2 article-title: Mendelian disorders and multifactorial traits: The big divide or one for all? publication-title: Nat Rev Genet doi: 10.1038/nrg2793 contributor: fullname: Antonarakis SE – volume: 77 start-page: 85 year: 2013 ident: e_1_3_4_10_2 article-title: Initial assessment of the pathogenic mechanisms of the recently identified Alzheimer risk Loci publication-title: Ann Hum Genet doi: 10.1111/ahg.12000 contributor: fullname: Holton P – volume: 368 start-page: 117 year: 2013 ident: e_1_3_4_8_2 article-title: TREM2 variants in Alzheimer’s disease publication-title: N Engl J Med doi: 10.1056/NEJMoa1211851 contributor: fullname: Guerreiro R – volume: 4 start-page: 576 year: 2003 ident: e_1_3_4_24_2 article-title: Alternatively spliced products of the human kinesin light chain 1 (KNS2) gene publication-title: Traffic doi: 10.1034/j.1600-0854.2003.00113.x contributor: fullname: McCart AE – volume: 18 start-page: R137 year: 2009 ident: e_1_3_4_11_2 article-title: Genome-wide association studies in Alzheimer’s disease publication-title: Hum Mol Genet doi: 10.1093/hmg/ddp406 contributor: fullname: Bertram L – volume: 16 start-page: 15 year: 2007 ident: e_1_3_4_44_2 article-title: The DYRK1A gene, encoded in chromosome 21 Down syndrome critical region, bridges between beta-amyloid production and tau phosphorylation in Alzheimer disease publication-title: Hum Mol Genet doi: 10.1093/hmg/ddl437 contributor: fullname: Kimura R – volume: 303 start-page: 1864 year: 2010 ident: e_1_3_4_13_2 article-title: Reaching the limits of genome-wide significance in Alzheimer disease: Back to the environment publication-title: JAMA doi: 10.1001/jama.2010.609 contributor: fullname: Pedersen NL – volume: 7 start-page: e29755 year: 2012 ident: e_1_3_4_34_2 article-title: Kinesin light chain 1 suppression impairs human embryonic stem cell neural differentiation and amyloid precursor protein metabolism publication-title: PLoS One doi: 10.1371/journal.pone.0029755 contributor: fullname: Killian RL – volume: 21 start-page: 2845 year: 2012 ident: e_1_3_4_39_2 article-title: Calsyntenin-1 mediates axonal transport of the amyloid precursor protein and regulates Aβ production publication-title: Hum Mol Genet doi: 10.1093/hmg/dds109 contributor: fullname: Vagnoni A – volume: 279 start-page: 519 year: 1998 ident: e_1_3_4_30_2 article-title: Kinesin and dynein superfamily proteins and the mechanism of organelle transport publication-title: Science doi: 10.1126/science.279.5350.519 contributor: fullname: Hirokawa N – volume: 99 start-page: 186 year: 2012 ident: e_1_3_4_40_2 article-title: Axonal transport and neurodegenerative disease: Can we see the elephant? publication-title: Prog Neurobiol doi: 10.1016/j.pneurobio.2012.03.006 contributor: fullname: Goldstein LSB – volume: 30 start-page: 302 year: 2010 ident: e_1_3_4_45_2 article-title: KIBRA genetic polymorphism influences episodic memory in Alzheimer’s disease, but does not show association with disease in a Japanese cohort publication-title: Dement Geriatr Cogn Disord doi: 10.1159/000320482 contributor: fullname: Hayashi N – volume: 43 start-page: 436 year: 2011 ident: e_1_3_4_2_2 article-title: Common variants at MS4A4/MS4A6E, CD2AP, CD33 and EPHA1 are associated with late-onset Alzheimer’s disease publication-title: Nat Genet doi: 10.1038/ng.801 contributor: fullname: Naj AC – volume: 13 start-page: 807 year: 2012 ident: e_1_3_4_14_2 article-title: Genome-wide association studies in mice publication-title: Nat Rev Genet doi: 10.1038/nrg3335 contributor: fullname: Flint J – volume: 368 start-page: 107 year: 2013 ident: e_1_3_4_7_2 article-title: Variant of TREM2 associated with the risk of Alzheimer’s disease publication-title: N Engl J Med doi: 10.1056/NEJMoa1211103 contributor: fullname: Jonsson T – volume: 37 start-page: D720 year: 2009 ident: e_1_3_4_22_2 article-title: Mouse phenome database publication-title: Nucleic Acids Res doi: 10.1093/nar/gkn778 contributor: fullname: Grubb SC – volume: 10 start-page: 60 year: 2012 ident: e_1_3_4_41_2 article-title: A persistent stress response to impeded axonal transport leads to accumulation of amyloid-β in the endoplasmic reticulum, and is a probable cause of sporadic Alzheimer’s disease publication-title: Neurodegener Dis doi: 10.1159/000332815 contributor: fullname: Muresan V – volume: 14 start-page: 1806 year: 2004 ident: e_1_3_4_23_2 article-title: An efficient SNP system for mouse genome scanning and elucidating strain relationships publication-title: Genome Res doi: 10.1101/gr.2825804 contributor: fullname: Petkov PM – volume: 141 start-page: 261 year: 2006 ident: e_1_3_4_20_2 article-title: Evaluating the comparability of gene expression in blood and brain publication-title: Am J Med Genet B Neuropsychiatr Genet doi: 10.1002/ajmg.b.30272 contributor: fullname: Sullivan PF – volume: 303 start-page: 1832 year: 2010 ident: e_1_3_4_4_2 article-title: Genome-wide analysis of genetic loci associated with Alzheimer disease publication-title: JAMA doi: 10.1001/jama.2010.574 contributor: fullname: Seshadri S – volume: 41 start-page: 1088 year: 2009 ident: e_1_3_4_5_2 article-title: Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer’s disease publication-title: Nat Genet doi: 10.1038/ng.440 contributor: fullname: Harold D – volume: 307 start-page: 1282 year: 2005 ident: e_1_3_4_33_2 article-title: Axonopathy and transport deficits early in the pathogenesis of Alzheimer’s disease publication-title: Science doi: 10.1126/science.1105681 contributor: fullname: Stokin GB – volume: 146 start-page: 1277 year: 1999 ident: e_1_3_4_31_2 article-title: Defective kinesin heavy chain behavior in mouse kinesin light chain mutants publication-title: J Cell Biol doi: 10.1083/jcb.146.6.1277 contributor: fullname: Rahman A – volume: 26 start-page: 1475 year: 2007 ident: e_1_3_4_38_2 article-title: The novel cargo Alcadein induces vesicle association of kinesin-1 motor components and activates axonal transport publication-title: EMBO J doi: 10.1038/sj.emboj.7601609 contributor: fullname: Araki Y – volume: 116 start-page: 937 year: 2011 ident: e_1_3_4_26_2 article-title: Understanding the pathogenesis of Alzheimer’s disease: Will RNA-Seq realize the promise of transcriptomics? publication-title: J Neurochem doi: 10.1111/j.1471-4159.2010.07157.x contributor: fullname: Sutherland GT – volume: 6 start-page: 271 year: 2005 ident: e_1_3_4_15_2 article-title: Strategies for mapping and cloning quantitative trait genes in rodents publication-title: Nat Rev Genet doi: 10.1038/nrg1576 contributor: fullname: Flint J – volume: 414 start-page: 643 year: 2001 ident: e_1_3_4_36_2 article-title: Kinesin-mediated axonal transport of a membrane compartment containing beta-secretase and presenilin-1 requires APP publication-title: Nature doi: 10.1038/414643a contributor: fullname: Kamal A – volume: 15 start-page: 2313 year: 2006 ident: e_1_3_4_19_2 article-title: Mapping genetic modulators of amyloid plaque deposition in TgCRND8 transgenic mice publication-title: Hum Mol Genet doi: 10.1093/hmg/ddl157 contributor: fullname: Sebastiani G – volume: 452 start-page: 429 year: 2008 ident: e_1_3_4_29_2 article-title: Variations in DNA elucidate molecular networks that cause disease publication-title: Nature doi: 10.1038/nature06757 contributor: fullname: Chen Y – volume: 25 start-page: 5457 year: 2006 ident: e_1_3_4_32_2 article-title: Cargo selection by specific kinesin light chain 1 isoforms publication-title: EMBO J doi: 10.1038/sj.emboj.7601427 contributor: fullname: Woźniak MJ – volume: 41 start-page: 1094 year: 2009 ident: e_1_3_4_6_2 article-title: Genome-wide association study identifies variants at CLU and CR1 associated with Alzheimer’s disease publication-title: Nat Genet doi: 10.1038/ng.439 contributor: fullname: Lambert J-C – volume: 84 start-page: 445 year: 2009 ident: e_1_3_4_25_2 article-title: Genetic control of human brain transcript expression in Alzheimer disease publication-title: Am J Hum Genet doi: 10.1016/j.ajhg.2009.03.011 contributor: fullname: Webster JA – volume: 25 start-page: 3032 year: 2005 ident: e_1_3_4_43_2 article-title: A diet enriched with the omega-3 fatty acid docosahexaenoic acid reduces amyloid burden in an aged Alzheimer mouse model publication-title: J Neurosci doi: 10.1523/JNEUROSCI.4225-04.2005 contributor: fullname: Lim GP – volume: 12 start-page: 2949 year: 2003 ident: e_1_3_4_21_2 article-title: Genetic background regulates beta-amyloid precursor protein processing and beta-amyloid deposition in the mouse publication-title: Hum Mol Genet doi: 10.1093/hmg/ddg322 contributor: fullname: Lehman EJH – volume: 8 start-page: e1002998 year: 2012 ident: e_1_3_4_27_2 article-title: Variants affecting exon skipping contribute to complex traits publication-title: PLoS Genet doi: 10.1371/journal.pgen.1002998 contributor: fullname: Lee Y – volume: 39 start-page: 17 year: 2007 ident: e_1_3_4_1_2 article-title: Systematic meta-analyses of Alzheimer disease genetic association studies: The AlzGene database publication-title: Nat Genet doi: 10.1038/ng1934 contributor: fullname: Bertram L – volume: 12 start-page: 92 year: 2013 ident: e_1_3_4_42_2 article-title: Genetic insights in Alzheimer’s disease publication-title: Lancet Neurol doi: 10.1016/S1474-4422(12)70259-4 contributor: fullname: Bettens K – volume: 452 start-page: 423 year: 2008 ident: e_1_3_4_28_2 article-title: Genetics of gene expression and its effect on disease publication-title: Nature doi: 10.1038/nature06758 contributor: fullname: Emilsson V – volume: 13 start-page: 453 year: 2012 ident: e_1_3_4_17_2 article-title: Use of next-generation sequencing and other whole-genome strategies to dissect neurological disease publication-title: Nat Rev Neurosci doi: 10.1038/nrn3271 contributor: fullname: Bras J – volume: 63 start-page: 168 year: 2006 ident: e_1_3_4_9_2 article-title: Role of genes and environments for explaining Alzheimer disease publication-title: Arch Gen Psychiatry doi: 10.1001/archpsyc.63.2.168 contributor: fullname: Gatz M – volume: 43 start-page: 429 year: 2011 ident: e_1_3_4_3_2 article-title: Common variants at ABCA7, MS4A6A/MS4A4E, EPHA1, CD33 and CD2AP are associated with Alzheimer’s disease publication-title: Nat Genet doi: 10.1038/ng.803 contributor: fullname: Hollingworth P – volume: 1271 start-page: 33 year: 2012 ident: e_1_3_4_16_2 article-title: Genomics of complex traits publication-title: Ann N Y Acad Sci doi: 10.1111/j.1749-6632.2012.06733.x contributor: fullname: Womack JE – volume: 28 start-page: 449 year: 2000 ident: e_1_3_4_35_2 article-title: Axonal transport of amyloid precursor protein is mediated by direct binding to the kinesin light chain subunit of kinesin-I publication-title: Neuron doi: 10.1016/S0896-6273(00)00124-0 contributor: fullname: Kamal A – volume: 25 start-page: 2386 year: 2005 ident: e_1_3_4_37_2 article-title: Axonal transport, amyloid precursor protein, kinesin-1, and the processing apparatus: Revisited publication-title: J Neurosci doi: 10.1523/JNEUROSCI.3089-04.2005 contributor: fullname: Lazarov O – volume: 29 start-page: 1190 year: 2008 ident: e_1_3_4_18_2 article-title: Genetic loci modulating amyloid-beta levels in a mouse model of Alzheimer’s disease publication-title: Neurobiol Aging doi: 10.1016/j.neurobiolaging.2007.02.017 contributor: fullname: Ryman D |
SSID | ssj0009580 |
Score | 2.304789 |
Snippet | Alzheimer’s disease (AD) is characterized by the accumulation of amyloid-β (Aβ). The genes that govern this process, however, have remained elusive. To this... Alzheimer's disease (AD) is characterized by the accumulation of amyloid-β (Aβ). The genes that govern this process, however, have remained elusive. To this... Genetic studies of common complex human diseases, including Alzheimer's disease (AD), are extremely resource-intensive and have struggled to identify genes... Alzheimer's disease (AD) is characterized by the accumulation of amyloid- beta (A beta ). The genes that govern this process, however, have remained elusive.... |
SourceID | pubmedcentral proquest crossref pubmed pnas jstor fao |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 2638 |
SubjectTerms | Alleles Alzheimer Disease - genetics Alzheimer Disease - metabolism Alzheimers disease Amyloid beta-Peptides - metabolism Amyloids Animals Biological Sciences Brain - metabolism Crosses, Genetic Gene Expression Profiling Genes Genomes Human genetics Humans Medical genetics Mice Microtubule-Associated Proteins - genetics Microtubule-Associated Proteins - metabolism Nervous system diseases Pathology Protein Isoforms - genetics Protein Isoforms - metabolism Species Specificity Transcriptomics |
SummonAdditionalLinks | – databaseName: JSTOR dbid: JSG link: http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NbtQwELbYnrhAC5SGAjISSOUQNfFP7BwRtCAOXJZK3CzHP3TFblKR3UMvfag-SJ-JGW-y7SJAnG2Nk4xn5pvM-DMhr6WNijtAboAdbC4gB8mbIKrceV-5WDShXP-6mKov3_SHE6TJeTOehcG2ytQXmKr4AJCaeTjGzg1dC8jMJzpZ3-fpxzvMunp9zoSBuxVMjPw9ih9ftLbH644VRxauciv0TKLtxh5EJDaFqX8Cmb_3St4JPqcP__Oxd8mDAV3Sd-vtsEfuhfYR2Rvst6dHA8n028fkKgWp5DK6RaB24CahXaQezb51S4p_BQLt0y0SPUWuJ9ir9Ac2ys9aOse0nrpzGMxL2mMdHMIgtT0Io3ZxOe9mPr-5pta51WK4JAxE-lmESPyEnJ2efH3_KR_uYsgdQLhl7qOItomltNYGj1lZwWWQjRBO86p2THIGQ7aI1gnty9IVspFc2cr5umae75OdtmvDAaHgIxsJOId5zQG-1E3A4o-LpedKCKEycjSqyVysKTdMKpUrblBN5lajGTkANRr7HRyiOZsypMtDTFtXLCP7SSEbEaM2MvI0SdmIhgxIGQZ-KCOvRv0bMDKsnNg2wKc2gJqLSkup2b_mCIFHe5XGFdKeuV1biBqgmcyI2tpNmwlI8r090s7OE9k3B4CthX72t9c5JPfhtQU2kpf6OdlZ_lyFF2TS-9XLZCe_AHlzD2o priority: 102 providerName: JSTOR |
Title | Transcriptome analysis of distinct mouse strains reveals kinesin light chain-1 splicing as an amyloid-β accumulation modifier |
URI | https://www.jstor.org/stable/23768940 http://www.pnas.org/content/111/7/2638.abstract https://www.ncbi.nlm.nih.gov/pubmed/24497505 https://search.proquest.com/docview/1500685582 https://search.proquest.com/docview/1544005778 https://pubmed.ncbi.nlm.nih.gov/PMC3932848 |
Volume | 111 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELbYnrggCpSmwMpIHMoh3cQ_sXNEpRUXEFKpxM1y_EMjmuyK7F55KB6EZ2LGm2xZhDhwtj2O7PHMN_H4G0JeSRsVd4DcADvYXEAMkjdBVLnzvnKxaEK5_XVxpT581m8vkCZHTm9hUtK-a9qz_rY769ublFu56txiyhNbfHx_zgF0aKEXMzIDbDiF6DumXb19d8LA_AomJj4fxRer3g5Y_lhxZOXCIjHg3GrwmXLPK82iXU7pich5CqP-hj__TKP8zS9dPiQPRkBJ32w__JDcC_0jcjge2YGejrzSrx-T78kvJSux7AK1Ix0JXUbq8aT3bk3xR0CgQyocMVCkdwL1pF8xN77t6S1G8tTdQGNe0gGvvsHzUTuAMGo7iP1bn__8Qa1zm26sCwYifRvB-T4h15cXn87f5WP5hdwBalvnPopom1hKa23wGIgVXAbZCOE0r2rHJGfQZItondC-LF0hG8mVrZyva-b5ETnol304JhTMYiMB2jCvOSCWugl43-Ni6bkSQqiMnE7Lb1Zblg2TbscVN7j85m7TMnIM22PsF7CB5vqKIUMewti6Yhk5Snu2E4EZP7oWRUaeJik70RD0KMPA9GTk5bSvBs4VXpbYPsBSGwDKRaWl1OxffYTA17xK4wxJF-7mHjUrI2pPS3YdkNd7vwXUPfF7j-p98t8jn5H7sC4Ck8tL_ZwcrL9twgsyG_xmnnJe56mwxjydm1-yBhnj |
link.rule.ids | 230,315,729,782,786,808,811,887,27933,27934,53800,53802,58025,58037,58258,58270 |
linkProvider | National Library of Medicine |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZoOcAFKFAankYCqRyiJn7EzhFBqyJKL20lbpbjR7tiN6nI7oELP4ofwm9ixptsuwgQZ1vjxGPPfOMZfybklbRRcQfIDbCDzQXEIHkTRJU77ysXiyaUy6OLE3X8Wb_fR5qc1-NdGCyrTHWBKYsPAKmZhj2s3NC1gMj8ptQFV8vKvWvcunp504SBwRVMjAw-iu9dtrbHB48VRx6ucs35bETbjVWISG0KXf8EM3-vlrzmfg7u_ueH3yN3BnxJ3y4XxBa5Edr7ZGvYwT3dHWim3zwg35ObSkajmwVqB3YS2kXqceO3bk7xXCDQPr0j0VNke4LVSr9gqfykpVMM7Km7gMa8pD1mwsERUtuDMGpn36bdxOc_f1Dr3GI2PBMGIv0kgi9-SM4O9k_fHebDawy5AxA3z30U0TaxlNba4DEuK7gMshHCaV7VjknOoMkW0TqhfVm6QjaSK1s5X9fM822y2XZt2CEUrGQjAekwrzkAmLoJmP5xsfRcCSFURnZHNZnLJemGSclyxQ2qyVxpNCM7oEZjz8EkmrMThoR5iGrrimVkOylkJWLURkYeJSkr0RADKcPAEmXk5ah_A9sMcye2DTDVBnBzUWkpNftXHyHwcq_SOEJaM1djC1EDOJMZUWuradUBab7XW9rJRaL75gCxtdCP__Y7L8itw9NPR-bow_HHJ-Q2TIHAsvJSPyWb86-L8Ixs9H7xPO2ZX_1UEs0 |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwELZokRAXoEBp-DUSh_YQbRLbsXNEtCsQqEIqlbhZjn_aFbvJiuweuPBQPAjPxIyTbLsIkDjbmuxmxjPfZMbfEPJKmCCZBeQG2MGkHHKQtPa8TK1zpQ1Z7fP-08WZPP2sjk-QJudovAuDbZWxLzBW8QEg1XM_Wbowwe4NVXHIzm8KkKj64QDX-HVVf9ukAKfLCz6y-Eg2WTamw6HHkiEXV74VgHaCacdORKQ3ha1_gpq_d0xeC0HTu__x4--ROwPOpK97w9gjN3xzn-wNJ7mjhwPd9NED8j2Gq-g82oWnZmApoW2gDh1AY1cUvw942sV5Eh1F1iewWvoFW-ZnDZ1jgk_tJSymOe2wIg4BkZoOhFGz-DZvZy79-YMaa9eLYVwYiHSzADH5ITmfnnx68zYdpjKkFsDcKnWBB1OHXBhjvMP8LGPCi5pzq1hZ2UKwApZMFozlyuW5zUQtmDSldVVVOLZPdpu28QeEgresBSCewikGQKaqPZaBbMgdk5xzmZDDUVV62ZNv6Fg0l0yjqvSVVhNyAKrU5gJcoz4_K5A4D9FtVRYJ2Y9K2YgYtZGQR1HKRjTkQlIX4JES8nK0AQ3HDWsopvHwqjXg56xUAkzwX3s4x0u-UuETot1cPZvzCkCaSIjcsqjNBqT73l5pZpeR9psB1FZcPf7b33lBbn08nuoP707fPyG34Q1w7C7P1VOyu_q69s_ITufWz-Ox-QW_ZhVG |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Transcriptome+analysis+of+distinct+mouse+strains+reveals+kinesin+light+chain-1+splicing+as+an+amyloid-%CE%B2+accumulation+modifier&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Morihara%2C+Takashi&rft.au=Hayashi%2C+Noriyuki&rft.au=Yokokoji%2C+Mikiko&rft.au=Akatsu%2C+Hiroyasu&rft.date=2014-02-18&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=111&rft.issue=7&rft.spage=2638&rft.epage=2643&rft_id=info:doi/10.1073%2Fpnas.1307345111&rft.externalDocID=23768940 |
thumbnail_m | http://sdu.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F111%2F7.cover.gif |
thumbnail_s | http://sdu.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F111%2F7.cover.gif |