Expression of bacterial phosphite dehydrogenase confers phosphite availability in a unicellular red alga Cyanidioschyzon merolae
Microalgae are promising cell factories for producing value-added products. Large-scale microalgal cultivation suffers from invasion by contaminating microorganisms. Since most contaminating organisms cannot utilize phosphite as a unique phosphorus source, phosphite-utilizing ability may provide a g...
Saved in:
Published in: | Journal of general and applied microbiology Vol. 69; no. 5; pp. 287 - 291 |
---|---|
Main Authors: | , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Japan
Applied Microbiology, Molecular and Cellular Biosciences Research Foundation
01-01-2023
Japan Science and Technology Agency |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Microalgae are promising cell factories for producing value-added products. Large-scale microalgal cultivation suffers from invasion by contaminating microorganisms. Since most contaminating organisms cannot utilize phosphite as a unique phosphorus source, phosphite-utilizing ability may provide a growth advantage against contaminating organisms and solve this problem. Studies showed that microorganisms, typically unable to metabolize phosphite, can utilize phosphite by expressing exogenous phosphite dehydrogenase. Here, we constructed Cyanidioschyzon merolae strains introduced with the phosphite dehydrogenase gene, ptxD, from Ralstonia sp. 4506. The ptxD-introduced strains grew in a phosphite-dependent manner, with the phosphite-related growth rate almost matching that with phosphate as sole phosphorus source. |
---|---|
AbstractList | Microalgae are promising cell factories for producing value-added products. Large-scale microalgal cultivation suffers from invasion by contaminating microorganisms. Since most contaminating organisms cannot utilize phosphite as a unique phosphorus source, phosphite-utilizing ability may provide a growth advantage against contaminating organisms and solve this problem. Studies showed that microorganisms, typically unable to metabolize phosphite, can utilize phosphite by expressing exogenous phosphite dehydrogenase. Here, we constructed Cyanidioschyzon merolae strains introduced with the phosphite dehydrogenase gene, ptxD, from Ralstoniasp. 4506. The ptxD-introduced strains grew in a phosphite-dependent manner, with the phosphite-related growth rate almost matching that with phosphate as sole phosphorus source. Microalgae are promising cell factories for producing value-added products. Large-scale microalgal cultivation suffers from invasion by contaminating microorganisms. Since most contaminating organisms cannot utilize phosphite as a unique phosphorus source, phosphite-utilizing ability may provide a growth advantage against contaminating organisms and solve this problem. Studies showed that microorganisms, typically unable to metabolize phosphite, can utilize phosphite by expressing exogenous phosphite dehydrogenase. Here, we constructed Cyanidioschyzon merolae strains introduced with the phosphite dehydrogenase gene, ptxD, from Ralstonia sp. 4506. The ptxD-introduced strains grew in a phosphite-dependent manner, with the phosphite-related growth rate almost matching that with phosphate as sole phosphorus source. |
ArticleNumber | 2023.08.002 |
Author | Kuroda, Akio Tanaka, Kan Hirota, Ryuichi Kobayashi, Ikki Imamura, Sousuke |
Author_xml | – sequence: 1 fullname: Kobayashi, Ikki organization: Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology – sequence: 2 fullname: Imamura, Sousuke organization: Space Environment and Energy Laboratories, Nippon Telegraph and Telephone Corporation – sequence: 3 fullname: Hirota, Ryuichi organization: Unit of Biotechnology, Graduate School of Integrated Sciences for Life, Hiroshima University – sequence: 4 fullname: Kuroda, Akio organization: Unit of Biotechnology, Graduate School of Integrated Sciences for Life, Hiroshima University – sequence: 5 fullname: Tanaka, Kan organization: Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37587047$$D View this record in MEDLINE/PubMed |
BookMark | eNpNkEFr3DAQRkVJaTZp7z0VQc_ejiXbso9lSdpAoJf2LMbSeK3FK7mSXeqc-tPrZZMllxmYefMNvBt25YMnxj7msBVSyC-HPR63AoTcQr0FEG_YJpdFk9Ug1RXbrBOR5aKCa3aT0gFAVqIu3rFrqcpaQaE27N_d3zFSSi54HjreopkoOhz42Ic09m4ibqlfbAx78piIm-A7iunVHv-gG7B1g5sW7jxHPntnaBjmASOPZDkOe-S7Bb2zLiTTL0_rtyPFMCC9Z287HBJ9eO637Nf93c_d9-zxx7eH3dfHzJRQT5lta1lRJ7rOtFYJW2Ihi0pVBo01YKCxlVHUSiqbUilZ5Ji31rQlCAKV14W8ZZ_PuWMMv2dKkz6EOfr1pZZQFkqUTQErBWfKxJBSpE6P0R0xLjoHfVKuT8r1SbmGWq-C15NPz8FzeyR7OXhxvAL3Z-CQJtzTBcA4OTPQObFqdHkqr5IvgOkxavLyP8aem2Q |
Cites_doi | 10.1128/AEM.71.1.290-296.2005 10.1073/pnas.0400664101 10.1016/j.biortech.2011.05.033 10.1073/pnas.0708205105 10.1093/pcp/pcab052 10.2323/jgam.2021.11.001 10.2323/jgam.61.211 10.1093/pcp/pcq043 10.1016/j.bbrep.2017.01.010 10.1186/1471-2164-14-753 10.1016/j.febslet.2013.08.031 10.1021/es0401038 10.1111/tpj.14473 10.1126/science.aaf6159 10.1093/pcp/pch087 10.1007/s00253-019-10258-7 10.1146/annurev.micro.61.080706.093357 10.1016/j.rser.2009.07.020 10.2323/jgam.2017.02.002 10.1104/pp.104.053991 10.1038/nature02398 10.1093/pcp/pcy156 10.1007/s00203-002-0402-x 10.1007/s11356-023-27644-4 10.1128/jb.80.2.237-241.1960 10.1111/pbi.12564 10.1016/j.jbiosc.2011.11.027 10.1016/j.biortech.2012.10.158 10.1021/acssynbio.8b00199 10.1080/21655979.2017.1377867 10.1128/JB.180.21.5547-5558.1998 10.1105/tpc.106.045427 10.3389/fbioe.2021.647176 10.1038/srep44748 10.1002/bit.25357 10.1186/1741-7007-5-28 |
ContentType | Journal Article |
Copyright | 2023 Applied Microbiology, Molecular and Cellular Biosciences Research Foundation Copyright Japan Science and Technology Agency 2023 |
Copyright_xml | – notice: 2023 Applied Microbiology, Molecular and Cellular Biosciences Research Foundation – notice: Copyright Japan Science and Technology Agency 2023 |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QL 7T7 7U7 8FD C1K FR3 M7N P64 RC3 |
DOI | 10.2323/jgam.2023.08.002 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Bacteriology Abstracts (Microbiology B) Industrial and Applied Microbiology Abstracts (Microbiology A) Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Genetics Abstracts Technology Research Database Toxicology Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Genetics Abstracts MEDLINE |
Database_xml | – sequence: 1 dbid: ECM name: MEDLINE url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1349-8037 |
EndPage | 291 |
ExternalDocumentID | 10_2323_jgam_2023_08_002 37587047 article_jgam_69_5_69_2023_08_002_article_char_en |
Genre | Journal Article |
GroupedDBID | --- -~X .GJ 123 2WC 53G ACPRK ADBBV AENEX AFRAH AI. ALMA_UNASSIGNED_HOLDINGS BAWUL CS3 DIK DU5 EBS EJD F5P JSF JSH KQ8 OK1 P2P RJT RZJ TKC TR2 VH1 ~02 ~KM CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QL 7T7 7U7 8FD C1K FR3 M7N P64 RC3 |
ID | FETCH-LOGICAL-c508t-db836ef2ffcbd72d5a434676cacdc0c09d6c7eb3e59577341a1bdcb502e071843 |
ISSN | 0022-1260 |
IngestDate | Sun Nov 17 04:31:28 EST 2024 Fri Aug 23 01:42:50 EDT 2024 Sat Nov 02 12:19:36 EDT 2024 Fri Apr 12 19:05:33 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Cyanidioschyzon merolae Microalgae Phosphorus metabolism Phosphite dehydrogenase Microalgal cultivation Phosphite |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c508t-db836ef2ffcbd72d5a434676cacdc0c09d6c7eb3e59577341a1bdcb502e071843 |
OpenAccessLink | https://www.jstage.jst.go.jp/article/jgam/69/5/69_2023.08.002/_article/-char/en |
PMID | 37587047 |
PQID | 3054725940 |
PQPubID | 2029108 |
PageCount | 5 |
ParticipantIDs | proquest_journals_3054725940 crossref_primary_10_2323_jgam_2023_08_002 pubmed_primary_37587047 jstage_primary_article_jgam_69_5_69_2023_08_002_article_char_en |
PublicationCentury | 2000 |
PublicationDate | 2023-01-01 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Japan |
PublicationPlace_xml | – name: Japan – name: Tokyo |
PublicationTitle | Journal of general and applied microbiology |
PublicationTitleAlternate | J. Gen. Appl. Microbiol. |
PublicationYear | 2023 |
Publisher | Applied Microbiology, Molecular and Cellular Biosciences Research Foundation Japan Science and Technology Agency |
Publisher_xml | – name: Applied Microbiology, Molecular and Cellular Biosciences Research Foundation – name: Japan Science and Technology Agency |
References | Mata, T. M., Martins, A. A., and Caetano, N. S. (2010) Microalgae for biodiesel production and other applications: A review, Renew. Sust. Energ. Rev., 14, 217- 232. Yehudai-Resheff, S., Zimmer, S. L., Komine, Y., and Stern, D. B. (2007) Integration of chloroplast nucleic acid metabolism into the phosphate deprivation response in Chlamydomonas reinhardtii. Plant Cell, 3, 1023–1038. Matsuzaki, M., Misumi, O., Shin-I, T., Maruyama, S., Takahara, M. et al. (2004) Genome sequence of the ultrasmall unicellular red alga Cyanidioschyzon merolae 10D. Nature, 6983, 653– 657. Misumi, O., Matsuzaki, M., Nozaki, H., Miyagishima, S. Y., Mori, T. et al. (2005) Cyanidioschyzon merolae genome. A tool for facilitating comparable studies on organelle biogenesis in photosynthetic eukaryotes. Plant Physiol., 2, 567–585. Hirota, R., Abe, K., Katsuura, Z. I., Noguchi, R., Moribe, S. et al. (2017) A novel biocontainment strategy makes bacterial growth and survival dependent on phosphite. Scientific Rep., 7, 44748. Taunt, H. N., Stoffels, L., and Purton, S. (2018) Green biologics: The algal chloroplast as a platform for making biopharmaceuticals. Bioengineered, 1, 48–54. Day, J. G., Slocombe, S. P., and Stanley, M. S. (2012) Overcoming biological constraints to enable the exploitation of microalgae for biofuels. Bioresour. Technol., 109, 245–251. Changko, S., Rajakumar, P. D., Young, R. E. B., and Purton, S. (2020) The phosphite oxidoreductase gene, ptxD as a bio-contained chloroplast marker and crop-protection tool for algal biotechnology using Chlamydomonas. Appl. Microbiol. Biotechnol., 2, 675–686. Pasek, M. A. (2008) Rethinking early earth phosphorus geochemistry. Proc. Natl. Acad. Sci. USA., 105, 853–858. Rezvani, F. and Rostami, K. (2023) Photobioreactors for utility-scale applications: effect of gas-liquid mass transfer coefficient and other critical parameters. Environ. Sci. Pollut. Res. Int., 30, 76263–76282. Taki, K., Sone, T., Kobayashi, Y., Watanabe, S., Imamura, S. et al. (2015) Construction of a URA5.3 deletion strain of the unicellular red alga Cyanidioschyzon merolae: A backgroundless host strain for transformation experiments. J. Gen. Appl. Microbiol., 5, 211–214. Wang, H., Zhang, W., Chen, L., Wang, J., and Liu, T. (2013) The contamination and control of biological pollutants in mass cultivation of microalgae. Bioresour. Technol., 128, 745–750. Hirota, R., Yamane, S. T., Fujibuchi, T., Motomura, K., Ishida, T. et al. (2012) Isolation and characterization of a soluble and thermostable phosphite dehydrogenase from Ralstonia sp. strain 4506. J. Biosci. Bioengi., 4, 445–450. Takemura, T., Imamura, S., Kobayashi, Y., and Tanaka, K. (2018) Construction of a selectable Marker recycling system and the use in epitope tagging of multiple nuclear genes in the Unicellular red alga Cyanidioschyzon merolae. Plant Cell Physiol., 11, 2308–2316. Abdel-Hady, G. N., Ikeda, T., Ishida, T., Funabashi, H., Kuroda, A. et al. (2021) Engineering cofactor specificity of a thermostable phosphite dehydrogenase for a highly efficient and robust NADPH regeneration system. Front. Bioeng. Biotechnol., 9, 647176. Gimpel, J. A., Hyun, J. S., Schoepp, N. G., and Mayfield, S. P. (2015) Production of recombinant proteins in microalgae at pilot greenhouse scale. Biotechnol. Bioeng., 2, 339–345. Minoda, A., Sakagami, R., Yagisawa, F., Kuroiwa, T., and Tanaka, K. (2004) Improvement of culture conditions and evidence for nuclear transformation by homologous recombination in a red alga, Cyanidioschyzon merolae 10D. Plant Cell Physiol., 6, 667–671. Motohashi, K. (2017) Evaluation of the efficiency and utility of recombinant enzyme-free seamless DNA cloning methods. Biochem. Biophys. Rep., 9, 310–315. Inoue, H., Tajima, K., Mitsumori, C., Inoue-Kashino, N., Miura, T. et al. (2022) Biodiversity risk assessment of genetically modified Chaetoceros gracilis for outdoor cultivation. J. Gen. Appl. Microbiol., 3, 151–162. Casida, L. E. Jr. (1960) Microbial oxidation and utilization of orthophosphite during growth. J. Bacteriol., 80, 237–241. Metcalf, W. W. and Wolfe, R. S. (1998) Molecular genetic analysis of phosphite and hypophosphite oxidation by Pseudomonas stutzeri WM88. J. Bacteriol., 21, 5547–5558. Imamura, S., Taki, K., and Tanaka, K. (2017) Construction of a rapamycin-susceptible strain of the unicellular red alga Cyanidioschyzon merolae for analysis of the target of rapamycin (TOR) function. J. Gen. Appl. Microbiol., 5, 305–309. Ruthbaum H.P. and Baille W.J.H. (1964) The use of red phosphorus as a fertilizer. Part 4. Phosphite and phosphate retention in soil. New Zealand J. Sci., 7, 446–451. Miyagishima, S. and Tanaka, K. (2021) The unicellular red alga Cyanidioschyzon merolae-The simplest model of a photosynthetic eukaryote. Plant Cell Physiol., 6, 926–941. Poehlein, A., Daniel, R., Schink, B., and Simeonova, D. D. (2013) Life based on phosphite: a genome-guided analysis of Desulfotignum phosphitoxidans. BMC Genomics., 1, 753. Shaw, A. J., Lam, F. H., Hamilton, M., Consiglio, A., MacEwen, K. et al. (2016) Metabolic engineering of microbial competitive advantage for industrial fermentation processes. Science, 6299, 583–586. Wilson, M. M. and Metcalf, W. W. (2005) Genetic diversity and horizontal transfer of genes involved in oxidation of reduced phosphorus compounds by Alcaligenes faecalis WM2072. Appl. Environ. Microbiol., 1, 290–296. Fujii, G., Imamura, S., Hanaoka, M., and Tanaka, K. (2013) Nuclear-encoded chloroplast RNA polymerase sigma factor SIG2 activates chloroplast-encoded phycobilisome genes in a red alga, Cyanidioschyzon merolae. FEBS lett., 20, 3354–3359. Imamura, S., Terashita, M., Ohnuma, M., Maruyama, S., Minoda, A. et al. (2010) Nitrate assimilatory genes and their transcriptional regulation in a unicellular red alga Cyanidioschyzon merolae: genetic evidence for nitrite reduction by a sulfite reductase-like enzyme. Plant Cell Physiol., 5, 707–717. Yang, K. and Metcalf, W. W. (2004) A new activity for an old enzyme: Escherichia coli bacterial alkaline phosphatase is a phosphite-dependent hydrogenase. Proc. Natl. Acad. Sci. USA., 21, 7919– 7924. Morton, S. C., Glindemann, D., Wang, X., Niu, X., and Edwards, M. (2005) Analysis of reduced phosphorus in samples of environmental interest. Environ. Sci. Technol., 12, 4369–4376. Schink, B., Thiemann, V., Laue, H., and Friedrich, M. W. (2002) Desulfotignum phosphitoxidans sp. nov., a new marine sulfate reducer that oxidizes phosphite to phosphate. Arch. Microbiol., 5, 381–391. White, A. K. and Metcalf, W. W. (2007) Microbial metabolism of reduced phosphorus compounds. Ann. Rev. Microbiology., 61, 379–400. Nozaki, H., Takano, H., Misumi, O., Terasawa, K., Matsuzaki, M. et al. (2007) A 100%-complete sequence reveals unusually simple genomic features in the hot-spring red alga Cyanidioschyzon merolae. BMC Biol., 5, 28. Hidayati, N. A., Yamada-Oshima, Y., Iwai, M., Yamano, T., Kajikawa, M. et al. (2019) Lipid remodeling regulator 1 (LRL1) is differently involved in the phosphorus-depletion response from PSR1 in Chlamydomonas reinhardtii. Plant J., 3, 610–626. Loera-Quezada, M. M., Leyva-González, M. A., Velázquez-Juárez, G., Sanchez-Calderón, L., Do Nascimento, M. et al. (2016) A novel genetic engineering platform for the effective management of biological contaminants for the production of microalgae. Plant Biotechnol. J., 10, 2066–2076. Motomura, K., Sano, K., Watanabe, S., Kanbara, A., Gamal Nasser, A. H. et al. (2018) Synthetic phosphorus metabolic pathway for biosafety and contamination management of cyanobacterial cultivation. ACS Synth. Biol., 9, 2189–2198. 22 23 24 25 26 27 28 29 30 31 10 32 11 33 12 34 13 35 14 36 15 37 16 17 18 19 1 2 3 4 5 6 7 8 9 20 21 |
References_xml | – ident: 35 doi: 10.1128/AEM.71.1.290-296.2005 – ident: 36 doi: 10.1073/pnas.0400664101 – ident: 4 doi: 10.1016/j.biortech.2011.05.033 – ident: 24 doi: 10.1073/pnas.0708205105 – ident: 19 doi: 10.1093/pcp/pcab052 – ident: 12 doi: 10.2323/jgam.2021.11.001 – ident: 31 doi: 10.2323/jgam.61.211 – ident: 10 doi: 10.1093/pcp/pcq043 – ident: 21 doi: 10.1016/j.bbrep.2017.01.010 – ident: 25 doi: 10.1186/1471-2164-14-753 – ident: 5 doi: 10.1016/j.febslet.2013.08.031 – ident: 20 doi: 10.1021/es0401038 – ident: 7 doi: 10.1111/tpj.14473 – ident: 29 doi: 10.1126/science.aaf6159 – ident: 17 doi: 10.1093/pcp/pch087 – ident: 3 doi: 10.1007/s00253-019-10258-7 – ident: 34 doi: 10.1146/annurev.micro.61.080706.093357 – ident: 14 doi: 10.1016/j.rser.2009.07.020 – ident: 11 doi: 10.2323/jgam.2017.02.002 – ident: 18 doi: 10.1104/pp.104.053991 – ident: 15 doi: 10.1038/nature02398 – ident: 30 doi: 10.1093/pcp/pcy156 – ident: 28 doi: 10.1007/s00203-002-0402-x – ident: 26 doi: 10.1007/s11356-023-27644-4 – ident: 2 doi: 10.1128/jb.80.2.237-241.1960 – ident: 13 doi: 10.1111/pbi.12564 – ident: 8 doi: 10.1016/j.jbiosc.2011.11.027 – ident: 33 doi: 10.1016/j.biortech.2012.10.158 – ident: 22 doi: 10.1021/acssynbio.8b00199 – ident: 32 doi: 10.1080/21655979.2017.1377867 – ident: 16 doi: 10.1128/JB.180.21.5547-5558.1998 – ident: 37 doi: 10.1105/tpc.106.045427 – ident: 1 doi: 10.3389/fbioe.2021.647176 – ident: 9 doi: 10.1038/srep44748 – ident: 6 doi: 10.1002/bit.25357 – ident: 27 – ident: 23 doi: 10.1186/1741-7007-5-28 |
SSID | ssj0036284 |
Score | 2.351208 |
Snippet | Microalgae are promising cell factories for producing value-added products. Large-scale microalgal cultivation suffers from invasion by contaminating... |
SourceID | proquest crossref pubmed jstage |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 287 |
SubjectTerms | Algae Aquatic microorganisms Contamination Cyanidioschyzon merolae Dehydrogenase Microalgae Microalgal cultivation Microorganisms NADH, NADPH Oxidoreductases - genetics Phosphite Phosphite dehydrogenase Phosphites - metabolism Phosphorus Phosphorus metabolism Rhodophyta - genetics Strains (organisms) |
Title | Expression of bacterial phosphite dehydrogenase confers phosphite availability in a unicellular red alga Cyanidioschyzon merolae |
URI | https://www.jstage.jst.go.jp/article/jgam/69/5/69_2023.08.002/_article/-char/en https://www.ncbi.nlm.nih.gov/pubmed/37587047 https://www.proquest.com/docview/3054725940 |
Volume | 69 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | The Journal of General and Applied Microbiology, 2023, Vol.69(5), pp.287-291 |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6lBSQuiGcJFLQHLihKcdZrb3xCVXBVaCmHplJv1np3nbh5uEpqhDnx05nx-pFUgODAZWWtvbbl-TzzjT0PQt4wjw2lcJK-ksoDB8X3-0GiYZDMAJkDE64wOfn4XJxdDj-EPOx06lKJ7dx_lTTMgawxc_YfpN2cFCZgG2QOI0gdxr-Se_itCm0teWBsizFjutU0W1_jP4OeNtNCrzI4g7Sx6gkm8bb75VeZzm357jIpUPYwg8TM52XEKsarY_5Hb1TIZarTDNzj4jtcbWFW4CZvRxa1bHdiy1vb2rAV812kbRWoRvGDfimwwVOpvGaztMHuQi7ysilS7zzL1_msRWS6yioOXOSpmjZLTnKwDva78cyGm9XfN5h76_vGJ-AMraLDm2z_OfQOy_zUTf3OsFWL7VBwYKxKd3kAdtiWlql1vm0PU2Hb-5UpAZhiSYuricR6Bcw9sEG3rdmsQwXOvkRHF6en0Ti8HO-QOwwUXunafzypGQFwhCGvq9bj3dnf5XiFd7fPv0WP7l6BhzAxv3d-ShI0fkgeVPKkhxZ2j0jHLB-Te7afafGE_GjBR7OENuCjDbjoFvhoBb6N_Zvgo-mSSroBPgrgowg-egt8tALfU3JxFI5Hx_2qxUdfgWdw09fx0PVNwpJExVow7Unugun2QXNo5Sgn0L4SJnaNF3hCAOOSg1ir2HOYAW485O4zsrvMluY5oXyghB8HSgQDzT0TB9K4Wifcj02MJL1L3tZPNrq2lVwi8IBRChFKIUIpRNiT1WFd8t4--ubI6n22R_pB5OGwsaI5AJMlQQ91yX4ts6jSDusIbCsXzAu40yV7Vo7NBVxw3IXDxYs_L3xJ7rcvyT7ZvVnl5hXZWev8dYk5GMPR55-zFMUb |
link.rule.ids | 315,782,786,27933,27934 |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Expression+of+bacterial+phosphite+dehydrogenase+confers+phosphite+availability+in+a+unicellular+red+alga+Cyanidioschyzon+merolae&rft.jtitle=Journal+of+general+and+applied+microbiology&rft.au=Kobayashi%2C+Ikki&rft.au=Imamura%2C+Sousuke&rft.au=Hirota%2C+Ryuichi&rft.au=Kuroda%2C+Akio&rft.date=2023-01-01&rft.pub=Japan+Science+and+Technology+Agency&rft.issn=0022-1260&rft.eissn=1349-8037&rft.volume=69&rft.issue=5&rft_id=info:doi/10.2323%2Fjgam.2023.08.002&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1260&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1260&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1260&client=summon |