Expression of bacterial phosphite dehydrogenase confers phosphite availability in a unicellular red alga Cyanidioschyzon merolae

Microalgae are promising cell factories for producing value-added products. Large-scale microalgal cultivation suffers from invasion by contaminating microorganisms. Since most contaminating organisms cannot utilize phosphite as a unique phosphorus source, phosphite-utilizing ability may provide a g...

Full description

Saved in:
Bibliographic Details
Published in:Journal of general and applied microbiology Vol. 69; no. 5; pp. 287 - 291
Main Authors: Kobayashi, Ikki, Imamura, Sousuke, Hirota, Ryuichi, Kuroda, Akio, Tanaka, Kan
Format: Journal Article
Language:English
Published: Japan Applied Microbiology, Molecular and Cellular Biosciences Research Foundation 01-01-2023
Japan Science and Technology Agency
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Microalgae are promising cell factories for producing value-added products. Large-scale microalgal cultivation suffers from invasion by contaminating microorganisms. Since most contaminating organisms cannot utilize phosphite as a unique phosphorus source, phosphite-utilizing ability may provide a growth advantage against contaminating organisms and solve this problem. Studies showed that microorganisms, typically unable to metabolize phosphite, can utilize phosphite by expressing exogenous phosphite dehydrogenase. Here, we constructed Cyanidioschyzon merolae strains introduced with the phosphite dehydrogenase gene, ptxD, from Ralstonia sp. 4506. The ptxD-introduced strains grew in a phosphite-dependent manner, with the phosphite-related growth rate almost matching that with phosphate as sole phosphorus source.
AbstractList Microalgae are promising cell factories for producing value-added products. Large-scale microalgal cultivation suffers from invasion by contaminating microorganisms. Since most contaminating organisms cannot utilize phosphite as a unique phosphorus source, phosphite-utilizing ability may provide a growth advantage against contaminating organisms and solve this problem. Studies showed that microorganisms, typically unable to metabolize phosphite, can utilize phosphite by expressing exogenous phosphite dehydrogenase. Here, we constructed Cyanidioschyzon merolae strains introduced with the phosphite dehydrogenase gene, ptxD, from Ralstoniasp. 4506. The ptxD-introduced strains grew in a phosphite-dependent manner, with the phosphite-related growth rate almost matching that with phosphate as sole phosphorus source.
Microalgae are promising cell factories for producing value-added products. Large-scale microalgal cultivation suffers from invasion by contaminating microorganisms. Since most contaminating organisms cannot utilize phosphite as a unique phosphorus source, phosphite-utilizing ability may provide a growth advantage against contaminating organisms and solve this problem. Studies showed that microorganisms, typically unable to metabolize phosphite, can utilize phosphite by expressing exogenous phosphite dehydrogenase. Here, we constructed Cyanidioschyzon merolae strains introduced with the phosphite dehydrogenase gene, ptxD, from Ralstonia sp. 4506. The ptxD-introduced strains grew in a phosphite-dependent manner, with the phosphite-related growth rate almost matching that with phosphate as sole phosphorus source.
ArticleNumber 2023.08.002
Author Kuroda, Akio
Tanaka, Kan
Hirota, Ryuichi
Kobayashi, Ikki
Imamura, Sousuke
Author_xml – sequence: 1
  fullname: Kobayashi, Ikki
  organization: Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology
– sequence: 2
  fullname: Imamura, Sousuke
  organization: Space Environment and Energy Laboratories, Nippon Telegraph and Telephone Corporation
– sequence: 3
  fullname: Hirota, Ryuichi
  organization: Unit of Biotechnology, Graduate School of Integrated Sciences for Life, Hiroshima University
– sequence: 4
  fullname: Kuroda, Akio
  organization: Unit of Biotechnology, Graduate School of Integrated Sciences for Life, Hiroshima University
– sequence: 5
  fullname: Tanaka, Kan
  organization: Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37587047$$D View this record in MEDLINE/PubMed
BookMark eNpNkEFr3DAQRkVJaTZp7z0VQc_ejiXbso9lSdpAoJf2LMbSeK3FK7mSXeqc-tPrZZMllxmYefMNvBt25YMnxj7msBVSyC-HPR63AoTcQr0FEG_YJpdFk9Ug1RXbrBOR5aKCa3aT0gFAVqIu3rFrqcpaQaE27N_d3zFSSi54HjreopkoOhz42Ic09m4ibqlfbAx78piIm-A7iunVHv-gG7B1g5sW7jxHPntnaBjmASOPZDkOe-S7Bb2zLiTTL0_rtyPFMCC9Z287HBJ9eO637Nf93c_d9-zxx7eH3dfHzJRQT5lta1lRJ7rOtFYJW2Ihi0pVBo01YKCxlVHUSiqbUilZ5Ji31rQlCAKV14W8ZZ_PuWMMv2dKkz6EOfr1pZZQFkqUTQErBWfKxJBSpE6P0R0xLjoHfVKuT8r1SbmGWq-C15NPz8FzeyR7OXhxvAL3Z-CQJtzTBcA4OTPQObFqdHkqr5IvgOkxavLyP8aem2Q
Cites_doi 10.1128/AEM.71.1.290-296.2005
10.1073/pnas.0400664101
10.1016/j.biortech.2011.05.033
10.1073/pnas.0708205105
10.1093/pcp/pcab052
10.2323/jgam.2021.11.001
10.2323/jgam.61.211
10.1093/pcp/pcq043
10.1016/j.bbrep.2017.01.010
10.1186/1471-2164-14-753
10.1016/j.febslet.2013.08.031
10.1021/es0401038
10.1111/tpj.14473
10.1126/science.aaf6159
10.1093/pcp/pch087
10.1007/s00253-019-10258-7
10.1146/annurev.micro.61.080706.093357
10.1016/j.rser.2009.07.020
10.2323/jgam.2017.02.002
10.1104/pp.104.053991
10.1038/nature02398
10.1093/pcp/pcy156
10.1007/s00203-002-0402-x
10.1007/s11356-023-27644-4
10.1128/jb.80.2.237-241.1960
10.1111/pbi.12564
10.1016/j.jbiosc.2011.11.027
10.1016/j.biortech.2012.10.158
10.1021/acssynbio.8b00199
10.1080/21655979.2017.1377867
10.1128/JB.180.21.5547-5558.1998
10.1105/tpc.106.045427
10.3389/fbioe.2021.647176
10.1038/srep44748
10.1002/bit.25357
10.1186/1741-7007-5-28
ContentType Journal Article
Copyright 2023 Applied Microbiology, Molecular and Cellular Biosciences Research Foundation
Copyright Japan Science and Technology Agency 2023
Copyright_xml – notice: 2023 Applied Microbiology, Molecular and Cellular Biosciences Research Foundation
– notice: Copyright Japan Science and Technology Agency 2023
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QL
7T7
7U7
8FD
C1K
FR3
M7N
P64
RC3
DOI 10.2323/jgam.2023.08.002
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Bacteriology Abstracts (Microbiology B)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Genetics Abstracts
Technology Research Database
Toxicology Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Genetics Abstracts
MEDLINE

Database_xml – sequence: 1
  dbid: ECM
  name: MEDLINE
  url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1349-8037
EndPage 291
ExternalDocumentID 10_2323_jgam_2023_08_002
37587047
article_jgam_69_5_69_2023_08_002_article_char_en
Genre Journal Article
GroupedDBID ---
-~X
.GJ
123
2WC
53G
ACPRK
ADBBV
AENEX
AFRAH
AI.
ALMA_UNASSIGNED_HOLDINGS
BAWUL
CS3
DIK
DU5
EBS
EJD
F5P
JSF
JSH
KQ8
OK1
P2P
RJT
RZJ
TKC
TR2
VH1
~02
~KM
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QL
7T7
7U7
8FD
C1K
FR3
M7N
P64
RC3
ID FETCH-LOGICAL-c508t-db836ef2ffcbd72d5a434676cacdc0c09d6c7eb3e59577341a1bdcb502e071843
ISSN 0022-1260
IngestDate Sun Nov 17 04:31:28 EST 2024
Fri Aug 23 01:42:50 EDT 2024
Sat Nov 02 12:19:36 EDT 2024
Fri Apr 12 19:05:33 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Cyanidioschyzon merolae
Microalgae
Phosphorus metabolism
Phosphite dehydrogenase
Microalgal cultivation
Phosphite
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c508t-db836ef2ffcbd72d5a434676cacdc0c09d6c7eb3e59577341a1bdcb502e071843
OpenAccessLink https://www.jstage.jst.go.jp/article/jgam/69/5/69_2023.08.002/_article/-char/en
PMID 37587047
PQID 3054725940
PQPubID 2029108
PageCount 5
ParticipantIDs proquest_journals_3054725940
crossref_primary_10_2323_jgam_2023_08_002
pubmed_primary_37587047
jstage_primary_article_jgam_69_5_69_2023_08_002_article_char_en
PublicationCentury 2000
PublicationDate 2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Japan
PublicationPlace_xml – name: Japan
– name: Tokyo
PublicationTitle Journal of general and applied microbiology
PublicationTitleAlternate J. Gen. Appl. Microbiol.
PublicationYear 2023
Publisher Applied Microbiology, Molecular and Cellular Biosciences Research Foundation
Japan Science and Technology Agency
Publisher_xml – name: Applied Microbiology, Molecular and Cellular Biosciences Research Foundation
– name: Japan Science and Technology Agency
References Mata, T. M., Martins, A. A., and Caetano, N. S. (2010) Microalgae for biodiesel production and other applications: A review, Renew. Sust. Energ. Rev., 14, 217- 232.
Yehudai-Resheff, S., Zimmer, S. L., Komine, Y., and Stern, D. B. (2007) Integration of chloroplast nucleic acid metabolism into the phosphate deprivation response in Chlamydomonas reinhardtii. Plant Cell, 3, 1023–1038.
Matsuzaki, M., Misumi, O., Shin-I, T., Maruyama, S., Takahara, M. et al. (2004) Genome sequence of the ultrasmall unicellular red alga Cyanidioschyzon merolae 10D. Nature, 6983, 653– 657.
Misumi, O., Matsuzaki, M., Nozaki, H., Miyagishima, S. Y., Mori, T. et al. (2005) Cyanidioschyzon merolae genome. A tool for facilitating comparable studies on organelle biogenesis in photosynthetic eukaryotes. Plant Physiol., 2, 567–585.
Hirota, R., Abe, K., Katsuura, Z. I., Noguchi, R., Moribe, S. et al. (2017) A novel biocontainment strategy makes bacterial growth and survival dependent on phosphite. Scientific Rep., 7, 44748.
Taunt, H. N., Stoffels, L., and Purton, S. (2018) Green biologics: The algal chloroplast as a platform for making biopharmaceuticals. Bioengineered, 1, 48–54.
Day, J. G., Slocombe, S. P., and Stanley, M. S. (2012) Overcoming biological constraints to enable the exploitation of microalgae for biofuels. Bioresour. Technol., 109, 245–251.
Changko, S., Rajakumar, P. D., Young, R. E. B., and Purton, S. (2020) The phosphite oxidoreductase gene, ptxD as a bio-contained chloroplast marker and crop-protection tool for algal biotechnology using Chlamydomonas. Appl. Microbiol. Biotechnol., 2, 675–686.
Pasek, M. A. (2008) Rethinking early earth phosphorus geochemistry. Proc. Natl. Acad. Sci. USA., 105, 853–858.
Rezvani, F. and Rostami, K. (2023) Photobioreactors for utility-scale applications: effect of gas-liquid mass transfer coefficient and other critical parameters. Environ. Sci. Pollut. Res. Int., 30, 76263–76282.
Taki, K., Sone, T., Kobayashi, Y., Watanabe, S., Imamura, S. et al. (2015) Construction of a URA5.3 deletion strain of the unicellular red alga Cyanidioschyzon merolae: A backgroundless host strain for transformation experiments. J. Gen. Appl. Microbiol., 5, 211–214.
Wang, H., Zhang, W., Chen, L., Wang, J., and Liu, T. (2013) The contamination and control of biological pollutants in mass cultivation of microalgae. Bioresour. Technol., 128, 745–750.
Hirota, R., Yamane, S. T., Fujibuchi, T., Motomura, K., Ishida, T. et al. (2012) Isolation and characterization of a soluble and thermostable phosphite dehydrogenase from Ralstonia sp. strain 4506. J. Biosci. Bioengi., 4, 445–450.
Takemura, T., Imamura, S., Kobayashi, Y., and Tanaka, K. (2018) Construction of a selectable Marker recycling system and the use in epitope tagging of multiple nuclear genes in the Unicellular red alga Cyanidioschyzon merolae. Plant Cell Physiol., 11, 2308–2316.
Abdel-Hady, G. N., Ikeda, T., Ishida, T., Funabashi, H., Kuroda, A. et al. (2021) Engineering cofactor specificity of a thermostable phosphite dehydrogenase for a highly efficient and robust NADPH regeneration system. Front. Bioeng. Biotechnol., 9, 647176.
Gimpel, J. A., Hyun, J. S., Schoepp, N. G., and Mayfield, S. P. (2015) Production of recombinant proteins in microalgae at pilot greenhouse scale. Biotechnol. Bioeng., 2, 339–345.
Minoda, A., Sakagami, R., Yagisawa, F., Kuroiwa, T., and Tanaka, K. (2004) Improvement of culture conditions and evidence for nuclear transformation by homologous recombination in a red alga, Cyanidioschyzon merolae 10D. Plant Cell Physiol., 6, 667–671.
Motohashi, K. (2017) Evaluation of the efficiency and utility of recombinant enzyme-free seamless DNA cloning methods. Biochem. Biophys. Rep., 9, 310–315.
Inoue, H., Tajima, K., Mitsumori, C., Inoue-Kashino, N., Miura, T. et al. (2022) Biodiversity risk assessment of genetically modified Chaetoceros gracilis for outdoor cultivation. J. Gen. Appl. Microbiol., 3, 151–162.
Casida, L. E. Jr. (1960) Microbial oxidation and utilization of orthophosphite during growth. J. Bacteriol., 80, 237–241.
Metcalf, W. W. and Wolfe, R. S. (1998) Molecular genetic analysis of phosphite and hypophosphite oxidation by Pseudomonas stutzeri WM88. J. Bacteriol., 21, 5547–5558.
Imamura, S., Taki, K., and Tanaka, K. (2017) Construction of a rapamycin-susceptible strain of the unicellular red alga Cyanidioschyzon merolae for analysis of the target of rapamycin (TOR) function. J. Gen. Appl. Microbiol., 5, 305–309.
Ruthbaum H.P. and Baille W.J.H. (1964) The use of red phosphorus as a fertilizer. Part 4. Phosphite and phosphate retention in soil. New Zealand J. Sci., 7, 446–451.
Miyagishima, S. and Tanaka, K. (2021) The unicellular red alga Cyanidioschyzon merolae-The simplest model of a photosynthetic eukaryote. Plant Cell Physiol., 6, 926–941.
Poehlein, A., Daniel, R., Schink, B., and Simeonova, D. D. (2013) Life based on phosphite: a genome-guided analysis of Desulfotignum phosphitoxidans. BMC Genomics., 1, 753.
Shaw, A. J., Lam, F. H., Hamilton, M., Consiglio, A., MacEwen, K. et al. (2016) Metabolic engineering of microbial competitive advantage for industrial fermentation processes. Science, 6299, 583–586.
Wilson, M. M. and Metcalf, W. W. (2005) Genetic diversity and horizontal transfer of genes involved in oxidation of reduced phosphorus compounds by Alcaligenes faecalis WM2072. Appl. Environ. Microbiol., 1, 290–296.
Fujii, G., Imamura, S., Hanaoka, M., and Tanaka, K. (2013) Nuclear-encoded chloroplast RNA polymerase sigma factor SIG2 activates chloroplast-encoded phycobilisome genes in a red alga, Cyanidioschyzon merolae. FEBS lett., 20, 3354–3359.
Imamura, S., Terashita, M., Ohnuma, M., Maruyama, S., Minoda, A. et al. (2010) Nitrate assimilatory genes and their transcriptional regulation in a unicellular red alga Cyanidioschyzon merolae: genetic evidence for nitrite reduction by a sulfite reductase-like enzyme. Plant Cell Physiol., 5, 707–717.
Yang, K. and Metcalf, W. W. (2004) A new activity for an old enzyme: Escherichia coli bacterial alkaline phosphatase is a phosphite-dependent hydrogenase. Proc. Natl. Acad. Sci. USA., 21, 7919– 7924.
Morton, S. C., Glindemann, D., Wang, X., Niu, X., and Edwards, M. (2005) Analysis of reduced phosphorus in samples of environmental interest. Environ. Sci. Technol., 12, 4369–4376.
Schink, B., Thiemann, V., Laue, H., and Friedrich, M. W. (2002) Desulfotignum phosphitoxidans sp. nov., a new marine sulfate reducer that oxidizes phosphite to phosphate. Arch. Microbiol., 5, 381–391.
White, A. K. and Metcalf, W. W. (2007) Microbial metabolism of reduced phosphorus compounds. Ann. Rev. Microbiology., 61, 379–400.
Nozaki, H., Takano, H., Misumi, O., Terasawa, K., Matsuzaki, M. et al. (2007) A 100%-complete sequence reveals unusually simple genomic features in the hot-spring red alga Cyanidioschyzon merolae. BMC Biol., 5, 28.
Hidayati, N. A., Yamada-Oshima, Y., Iwai, M., Yamano, T., Kajikawa, M. et al. (2019) Lipid remodeling regulator 1 (LRL1) is differently involved in the phosphorus-depletion response from PSR1 in Chlamydomonas reinhardtii. Plant J., 3, 610–626.
Loera-Quezada, M. M., Leyva-González, M. A., Velázquez-Juárez, G., Sanchez-Calderón, L., Do Nascimento, M. et al. (2016) A novel genetic engineering platform for the effective management of biological contaminants for the production of microalgae. Plant Biotechnol. J., 10, 2066–2076.
Motomura, K., Sano, K., Watanabe, S., Kanbara, A., Gamal Nasser, A. H. et al. (2018) Synthetic phosphorus metabolic pathway for biosafety and contamination management of cyanobacterial cultivation. ACS Synth. Biol., 9, 2189–2198.
22
23
24
25
26
27
28
29
30
31
10
32
11
33
12
34
13
35
14
36
15
37
16
17
18
19
1
2
3
4
5
6
7
8
9
20
21
References_xml – ident: 35
  doi: 10.1128/AEM.71.1.290-296.2005
– ident: 36
  doi: 10.1073/pnas.0400664101
– ident: 4
  doi: 10.1016/j.biortech.2011.05.033
– ident: 24
  doi: 10.1073/pnas.0708205105
– ident: 19
  doi: 10.1093/pcp/pcab052
– ident: 12
  doi: 10.2323/jgam.2021.11.001
– ident: 31
  doi: 10.2323/jgam.61.211
– ident: 10
  doi: 10.1093/pcp/pcq043
– ident: 21
  doi: 10.1016/j.bbrep.2017.01.010
– ident: 25
  doi: 10.1186/1471-2164-14-753
– ident: 5
  doi: 10.1016/j.febslet.2013.08.031
– ident: 20
  doi: 10.1021/es0401038
– ident: 7
  doi: 10.1111/tpj.14473
– ident: 29
  doi: 10.1126/science.aaf6159
– ident: 17
  doi: 10.1093/pcp/pch087
– ident: 3
  doi: 10.1007/s00253-019-10258-7
– ident: 34
  doi: 10.1146/annurev.micro.61.080706.093357
– ident: 14
  doi: 10.1016/j.rser.2009.07.020
– ident: 11
  doi: 10.2323/jgam.2017.02.002
– ident: 18
  doi: 10.1104/pp.104.053991
– ident: 15
  doi: 10.1038/nature02398
– ident: 30
  doi: 10.1093/pcp/pcy156
– ident: 28
  doi: 10.1007/s00203-002-0402-x
– ident: 26
  doi: 10.1007/s11356-023-27644-4
– ident: 2
  doi: 10.1128/jb.80.2.237-241.1960
– ident: 13
  doi: 10.1111/pbi.12564
– ident: 8
  doi: 10.1016/j.jbiosc.2011.11.027
– ident: 33
  doi: 10.1016/j.biortech.2012.10.158
– ident: 22
  doi: 10.1021/acssynbio.8b00199
– ident: 32
  doi: 10.1080/21655979.2017.1377867
– ident: 16
  doi: 10.1128/JB.180.21.5547-5558.1998
– ident: 37
  doi: 10.1105/tpc.106.045427
– ident: 1
  doi: 10.3389/fbioe.2021.647176
– ident: 9
  doi: 10.1038/srep44748
– ident: 6
  doi: 10.1002/bit.25357
– ident: 27
– ident: 23
  doi: 10.1186/1741-7007-5-28
SSID ssj0036284
Score 2.351208
Snippet Microalgae are promising cell factories for producing value-added products. Large-scale microalgal cultivation suffers from invasion by contaminating...
SourceID proquest
crossref
pubmed
jstage
SourceType Aggregation Database
Index Database
Publisher
StartPage 287
SubjectTerms Algae
Aquatic microorganisms
Contamination
Cyanidioschyzon merolae
Dehydrogenase
Microalgae
Microalgal cultivation
Microorganisms
NADH, NADPH Oxidoreductases - genetics
Phosphite
Phosphite dehydrogenase
Phosphites - metabolism
Phosphorus
Phosphorus metabolism
Rhodophyta - genetics
Strains (organisms)
Title Expression of bacterial phosphite dehydrogenase confers phosphite availability in a unicellular red alga Cyanidioschyzon merolae
URI https://www.jstage.jst.go.jp/article/jgam/69/5/69_2023.08.002/_article/-char/en
https://www.ncbi.nlm.nih.gov/pubmed/37587047
https://www.proquest.com/docview/3054725940
Volume 69
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX The Journal of General and Applied Microbiology, 2023, Vol.69(5), pp.287-291
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6lBSQuiGcJFLQHLihKcdZrb3xCVXBVaCmHplJv1np3nbh5uEpqhDnx05nx-pFUgODAZWWtvbbl-TzzjT0PQt4wjw2lcJK-ksoDB8X3-0GiYZDMAJkDE64wOfn4XJxdDj-EPOx06lKJ7dx_lTTMgawxc_YfpN2cFCZgG2QOI0gdxr-Se_itCm0teWBsizFjutU0W1_jP4OeNtNCrzI4g7Sx6gkm8bb75VeZzm357jIpUPYwg8TM52XEKsarY_5Hb1TIZarTDNzj4jtcbWFW4CZvRxa1bHdiy1vb2rAV812kbRWoRvGDfimwwVOpvGaztMHuQi7ysilS7zzL1_msRWS6yioOXOSpmjZLTnKwDva78cyGm9XfN5h76_vGJ-AMraLDm2z_OfQOy_zUTf3OsFWL7VBwYKxKd3kAdtiWlql1vm0PU2Hb-5UpAZhiSYuricR6Bcw9sEG3rdmsQwXOvkRHF6en0Ti8HO-QOwwUXunafzypGQFwhCGvq9bj3dnf5XiFd7fPv0WP7l6BhzAxv3d-ShI0fkgeVPKkhxZ2j0jHLB-Te7afafGE_GjBR7OENuCjDbjoFvhoBb6N_Zvgo-mSSroBPgrgowg-egt8tALfU3JxFI5Hx_2qxUdfgWdw09fx0PVNwpJExVow7Unugun2QXNo5Sgn0L4SJnaNF3hCAOOSg1ir2HOYAW485O4zsrvMluY5oXyghB8HSgQDzT0TB9K4Wifcj02MJL1L3tZPNrq2lVwi8IBRChFKIUIpRNiT1WFd8t4--ubI6n22R_pB5OGwsaI5AJMlQQ91yX4ts6jSDusIbCsXzAu40yV7Vo7NBVxw3IXDxYs_L3xJ7rcvyT7ZvVnl5hXZWev8dYk5GMPR55-zFMUb
link.rule.ids 315,782,786,27933,27934
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Expression+of+bacterial+phosphite+dehydrogenase+confers+phosphite+availability+in+a+unicellular+red+alga+Cyanidioschyzon+merolae&rft.jtitle=Journal+of+general+and+applied+microbiology&rft.au=Kobayashi%2C+Ikki&rft.au=Imamura%2C+Sousuke&rft.au=Hirota%2C+Ryuichi&rft.au=Kuroda%2C+Akio&rft.date=2023-01-01&rft.pub=Japan+Science+and+Technology+Agency&rft.issn=0022-1260&rft.eissn=1349-8037&rft.volume=69&rft.issue=5&rft_id=info:doi/10.2323%2Fjgam.2023.08.002&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1260&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1260&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1260&client=summon