Telomeric G-quadruplexes are a substrate and site of localization for human telomerase
It has been hypothesized that G-quadruplexes can sequester the 3′ end of the telomere and prevent it from being extended by telomerase. Here we purify and characterize stable, conformationally homogenous human telomeric G-quadruplexes, and demonstrate that human telomerase is able to extend parallel...
Saved in:
Published in: | Nature communications Vol. 6; no. 1; p. 7643 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
London
Nature Publishing Group UK
09-07-2015
Nature Publishing Group Nature Pub. Group |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | It has been hypothesized that G-quadruplexes can sequester the 3′ end of the telomere and prevent it from being extended by telomerase. Here we purify and characterize stable, conformationally homogenous human telomeric G-quadruplexes, and demonstrate that human telomerase is able to extend parallel, intermolecular conformations
in vitro
. These G-quadruplexes align correctly with the RNA template of telomerase, demonstrating that at least partial G-quadruplex resolution is required. A highly purified preparation of human telomerase retains this extension ability, establishing that the core telomerase enzyme complex is sufficient for partial G-quadruplex resolution and extension. The parallel-specific G-quadruplex ligand
N
-methyl mesoporphyrin IX (NMM) causes an increase in telomeric G-quadruplexes, and we show that telomerase colocalizes with a subset of telomeric G-quadruplexes
in vivo
. The ability of telomerase to partially unwind, extend and localize to these structures implies that parallel telomeric G-quadruplexes may play an important biological role.
G-quadruplexes formed by four guanine bases in a square planar arrangement in telomeres may prevent extension of this region by telomerase. Here, the authors show that telomerase can localize to and partially unwind and extend G-quadruplexes, suggesting an important biological role for G-quadruplexes. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 These authors contributed equally to this work |
ISSN: | 2041-1723 2041-1723 |
DOI: | 10.1038/ncomms8643 |