Separating NADH and NADPH fluorescence in live cells and tissues using FLIM

NAD is a key determinant of cellular energy metabolism. In contrast, its phosphorylated form, NADP, plays a central role in biosynthetic pathways and antioxidant defence. The reduced forms of both pyridine nucleotides are fluorescent in living cells but they cannot be distinguished, as they are spec...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications Vol. 5; no. 1; p. 3936
Main Authors: Blacker, Thomas S., Mann, Zoe F., Gale, Jonathan E., Ziegler, Mathias, Bain, Angus J., Szabadkai, Gyorgy, Duchen, Michael R.
Format: Journal Article
Language:English
Published: London Nature Publishing Group UK 29-05-2014
Nature Publishing Group
Nature Pub. Group
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:NAD is a key determinant of cellular energy metabolism. In contrast, its phosphorylated form, NADP, plays a central role in biosynthetic pathways and antioxidant defence. The reduced forms of both pyridine nucleotides are fluorescent in living cells but they cannot be distinguished, as they are spectrally identical. Here, using genetic and pharmacological approaches to perturb NAD(P)H metabolism, we find that fluorescence lifetime imaging (FLIM) differentiates quantitatively between the two cofactors. Systematic manipulations to change the balance between oxidative and glycolytic metabolism suggest that these states do not directly impact NAD(P)H fluorescence decay rates. The lifetime changes observed in cancers thus likely reflect shifts in the NADPH/NADH balance. Using a mathematical model, we use these experimental data to quantify the relative levels of NADH and NADPH in different cell types of a complex tissue, the mammalian cochlea. This reveals NADPH-enriched populations of cells, raising questions about their distinct metabolic roles. NAD and NADP play fundamentally different roles in cellular metabolism, and yet these pyridine nucleotides cannot be distinguished spectroscopically in living cells. Blacker et al. demonstrate that fluorescence lifetime imaging can be used to quantify NADPH/NADH balance in cultured cells and in the mammalian cochlea.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2041-1723
2041-1723
DOI:10.1038/ncomms4936