Proton irradiation: a key to the challenge of N-glycosidic bond formation in a prebiotic context
The formation of nucleosides in abiotic conditions is a major hurdle in origin-of-life studies. We have determined the pathway of a general reaction leading to the one-pot synthesis of ribo- and 2′-deoxy-ribonucleosides from sugars and purine nucleobases under proton irradiation in the presence of a...
Saved in:
Published in: | Scientific reports Vol. 7; no. 1; pp. 14709 - 8 |
---|---|
Main Authors: | , , , , , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
London
Nature Publishing Group UK
07-11-2017
Nature Publishing Group |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The formation of nucleosides in abiotic conditions is a major hurdle in origin-of-life studies. We have determined the pathway of a general reaction leading to the one-pot synthesis of ribo- and 2′-deoxy-ribonucleosides from sugars and purine nucleobases under proton irradiation in the presence of a chondrite meteorite. These conditions simulate the presumptive conditions in space or on an early Earth fluxed by slow protons from the solar wind, potentially mimicking a plausible prebiotic scenario. The reaction (i) requires neither pre-activated precursors nor intermediate purification/concentration steps, (ii) is based on a defined radical mechanism, and (iii) is characterized by stereoselectivity, regioselectivity and (poly)glycosylation. The yield is enhanced by formamide and meteorite relative to the control reaction. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 PMCID: PMC5677017 |
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-017-15392-8 |