Long-term PGC1β overexpression leads to apoptosis, autophagy and muscle wasting
Skeletal muscle wasting is prevalent in many chronic diseases, necessitating inquiries into molecular regulation of muscle mass. Nuclear receptor co-activator peroxisome proliferator-activated receptor co-activator 1 alpha (PGC1α) and its splice variant PGC1α4 increase skeletal muscle mass. However,...
Saved in:
Published in: | Scientific reports Vol. 7; no. 1; p. 10237 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
London
Nature Publishing Group UK
31-08-2017
Nature Publishing Group |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Skeletal muscle wasting is prevalent in many chronic diseases, necessitating inquiries into molecular regulation of muscle mass. Nuclear receptor co-activator peroxisome proliferator-activated receptor co-activator 1 alpha (PGC1α) and its splice variant PGC1α4 increase skeletal muscle mass. However, the effect of the other PGC1 sub-type, PGC1β, on muscle size is unclear. In transgenic mice selectively over-expressing PGC1β in the skeletal muscle, we have found that PGC1β progressively decreases skeletal muscle mass predominantly associated with loss of type 2b fast-twitch myofibers. Paradoxically, PGC1β represses the ubiquitin-proteolysis degradation pathway genes resulting in ubiquitinated protein accumulation in muscle. However, PGC1β overexpression triggers up-regulation of apoptosis and autophagy genes, resulting in robust activation of these cell degenerative processes, and a concomitant increase in muscle protein oxidation. Concurrently, PGC1β up-regulates apoptosis and/or autophagy transcriptional factors such as E2f1, Atf3, Stat1, and Stat3, which may be facilitating myopathy. Therefore, PGC1β activation negatively affects muscle mass over time, particularly fast-twitch muscles, which should be taken into consideration along with its known aerobic effects in the skeletal muscle. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-017-10238-9 |