An Algorithm with Iteration Uncertainty Eliminate Based on Geomagnetic Fingerprint under Mobile Edge Computing for Indoor Localization
Indoor localization problems are difficult due to that the information, such as WLAN and GPS, cannot achieve enough precision for indoor issues. This paper presents a novel indoor localization algorithm, GeoLoc, with uncertainty eliminate based on fusion of acceleration, angular rate, and magnetic f...
Saved in:
Published in: | Sensors (Basel, Switzerland) Vol. 22; no. 23; p. 9032 |
---|---|
Main Authors: | , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Switzerland
MDPI AG
22-11-2022
MDPI |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Indoor localization problems are difficult due to that the information, such as WLAN and GPS, cannot achieve enough precision for indoor issues. This paper presents a novel indoor localization algorithm, GeoLoc, with uncertainty eliminate based on fusion of acceleration, angular rate, and magnetic field sensor data. The algorithm can be deployed in edge devices to overcome the problems of insufficient computing resources and long delay caused by high complexity of location calculation. Firstly, the magnetic map is built and magnetic values are matched. Secondly, orientation updating and position selection are iteratively executed using the fusion data, which gradually reduce uncertainty of orientation. Then, we filter the trajectory from a path set. By gradually reducing uncertainty, GeoLoc can bring a high positioning precision and a smooth trajectory. In addition, this method has an advantage in that it does not rely on any infrastructure such as base stations and beacons. It solves the common problems regarding the non-uniqueness of the geomagnetic fingerprint and the deviation of the sensor measurement. The experimental results show that our algorithm achieves an accuracy of less than 2.5 m in indoor environment, and the positioning results are relatively stable. It meets the basic requirements of indoor location-based services (LBSs). |
---|---|
AbstractList | Indoor localization problems are difficult due to that the information, such as WLAN and GPS, cannot achieve enough precision for indoor issues. This paper presents a novel indoor localization algorithm, GeoLoc, with uncertainty eliminate based on fusion of acceleration, angular rate, and magnetic field sensor data. The algorithm can be deployed in edge devices to overcome the problems of insufficient computing resources and long delay caused by high complexity of location calculation. Firstly, the magnetic map is built and magnetic values are matched. Secondly, orientation updating and position selection are iteratively executed using the fusion data, which gradually reduce uncertainty of orientation. Then, we filter the trajectory from a path set. By gradually reducing uncertainty, GeoLoc can bring a high positioning precision and a smooth trajectory. In addition, this method has an advantage in that it does not rely on any infrastructure such as base stations and beacons. It solves the common problems regarding the non-uniqueness of the geomagnetic fingerprint and the deviation of the sensor measurement. The experimental results show that our algorithm achieves an accuracy of less than 2.5 m in indoor environment, and the positioning results are relatively stable. It meets the basic requirements of indoor location-based services (LBSs). Indoor localization problems are difficult due to that the information, such as WLAN and GPS, cannot achieve enough precision for indoor issues. This paper presents a novel indoor localization algorithm, GeoLoc, with uncertainty eliminate based on fusion of acceleration, angular rate, and magnetic field sensor data. The algorithm can be deployed in edge devices to overcome the problems of insufficient computing resources and long delay caused by high complexity of location calculation. Firstly, the magnetic map is built and magnetic values are matched. Secondly, orientation updating and position selection are iteratively executed using the fusion data, which gradually reduce uncertainty of orientation. Then, we filter the trajectory from a path set. By gradually reducing uncertainty, GeoLoc can bring a high positioning precision and a smooth trajectory. In addition, this method has an advantage in that it does not rely on any infrastructure such as base stations and beacons. It solves the common problems regarding the non-uniqueness of the geomagnetic fingerprint and the deviation of the sensor measurement. The experimental results show that our algorithm achieves an accuracy of less than 2.5 m in indoor environment, and the positioning results are relatively stable. It meets the basic requirements of indoor location-based services (LBSs).Indoor localization problems are difficult due to that the information, such as WLAN and GPS, cannot achieve enough precision for indoor issues. This paper presents a novel indoor localization algorithm, GeoLoc, with uncertainty eliminate based on fusion of acceleration, angular rate, and magnetic field sensor data. The algorithm can be deployed in edge devices to overcome the problems of insufficient computing resources and long delay caused by high complexity of location calculation. Firstly, the magnetic map is built and magnetic values are matched. Secondly, orientation updating and position selection are iteratively executed using the fusion data, which gradually reduce uncertainty of orientation. Then, we filter the trajectory from a path set. By gradually reducing uncertainty, GeoLoc can bring a high positioning precision and a smooth trajectory. In addition, this method has an advantage in that it does not rely on any infrastructure such as base stations and beacons. It solves the common problems regarding the non-uniqueness of the geomagnetic fingerprint and the deviation of the sensor measurement. The experimental results show that our algorithm achieves an accuracy of less than 2.5 m in indoor environment, and the positioning results are relatively stable. It meets the basic requirements of indoor location-based services (LBSs). |
Audience | Academic |
Author | Liu, Dongpeng Wang, Xingwei Yu, Ruiyun Sun, Liming Li, Jie |
AuthorAffiliation | 1 School of Computer Science and Engineering, Northeastern University, Shenyang 110169, China 3 Software College, Northeastern University, Shenyang 110169, China 2 University of Texas at Dallas, Richardson, TX 75080, USA |
AuthorAffiliation_xml | – name: 1 School of Computer Science and Engineering, Northeastern University, Shenyang 110169, China – name: 2 University of Texas at Dallas, Richardson, TX 75080, USA – name: 3 Software College, Northeastern University, Shenyang 110169, China |
Author_xml | – sequence: 1 givenname: Jie surname: Li fullname: Li, Jie organization: School of Computer Science and Engineering, Northeastern University, Shenyang 110169, China – sequence: 2 givenname: Liming surname: Sun fullname: Sun, Liming organization: School of Computer Science and Engineering, Northeastern University, Shenyang 110169, China – sequence: 3 givenname: Dongpeng surname: Liu fullname: Liu, Dongpeng organization: University of Texas at Dallas, Richardson, TX 75080, USA – sequence: 4 givenname: Ruiyun surname: Yu fullname: Yu, Ruiyun organization: Software College, Northeastern University, Shenyang 110169, China – sequence: 5 givenname: Xingwei surname: Wang fullname: Wang, Xingwei organization: School of Computer Science and Engineering, Northeastern University, Shenyang 110169, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36501734$$D View this record in MEDLINE/PubMed |
BookMark | eNpdkstuEzEUhkeoiF5gwQsgS2xgkeLbzNgbpBClJVIQG7q2PPbx1NGMHTxOUXkAnhunKVGLLPlY9uf_nGP_59VJiAGq6i3Bl4xJ_GmilJbI6IvqjHDKZ4JSfPJkfVqdT9MGY8oYE6-qU9bUmLSMn1V_5gHNhz4mn29H9KvMaJUh6exjQDfBQMrah3yPloMffdAZ0Bc9gUXl-BriqPsA2Rt05UMPaZsKi3bBQkLfYucHQEvbA1rEcbvLBUEuJrQKNpawjkYP_vdDqtfVS6eHCd48xovq5mr5Y_F1tv5-vVrM1zNTY5Fn3EioBcWyEVx3XMuWNLUQtuk6SZhw2BGou6blTnbASWFwR1jnamKtxa5jF9XqoGuj3qhS7qjTvYraq4eNmHqlU-lnACWZ5sAa2Uhhee245JRqJlstnaRgZNH6fNDa7roRrIGQkx6eiT4_Cf5W9fFOyZZJKVgR-PAokOLPHUxZjX4yMAw6QNxNirY1Y4Tido--_w_dxF0K5akKxUVdCylpoS4PVK9LAz64WPKaMiyM3hTPuPIjat7ypggLupf9eLhgUpymBO5YPcFqby11tFZh3z1t90j-8xL7C-JJy6o |
CitedBy_id | crossref_primary_10_3390_s24051703 |
Cites_doi | 10.1007/978-981-10-4591-2_46 10.1109/TIM.2016.2566759 10.1109/TMM.2016.2636750 10.1109/TNSM.2021.3107718 10.1109/ACCESS.2021.3115157 10.1109/IPIN.2019.8911787 10.1145/3322241 10.4236/jcc.2017.53011 10.1109/CCDC.2016.7531469 10.1109/IPIN.2015.7346761 10.1109/JPROC.2008.2008853 10.1109/ICCIC.2016.7919537 10.1109/INFCOM.2010.5462058 10.1002/navi.70 10.3390/s130404781 10.1109/IPIN.2010.5646739 10.1109/JSEN.2019.2909195 10.1016/j.comnet.2022.109041 10.1109/TMC.2007.1025 10.1109/IPIN.2013.6817887 10.1109/WPMC.2014.7014819 10.1016/j.pmcj.2007.07.004 10.1109/WPNC.2007.353604 10.3390/s17030651 10.1109/21.44033 10.3390/s150100715 10.1109/WCNC.2013.6554893 10.1109/JIOT.2018.2871831 10.1109/COMST.2019.2911558 10.1109/JSEN.2014.2382568 10.1109/JIOT.2020.2989501 10.3390/s150924595 10.1109/98.626982 10.1109/JSEN.2020.3003404 10.1109/ACCESS.2019.2891942 10.1145/128756.128759 10.1109/TMC.2015.2480064 10.1109/TMC.2010.67 10.1109/JIOT.2020.2992651 10.3390/s22093307 10.3390/s140611001 10.1109/TELFOR.2015.7377543 10.1109/19.746618 10.1109/IPIN.2010.5646861 10.1007/s12206-011-0805-1 10.1007/978-3-642-04385-7_16 10.1109/ICC40277.2020.9148721 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2022 MDPI AG 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022 by the authors. 2022 |
Copyright_xml | – notice: COPYRIGHT 2022 MDPI AG – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022 by the authors. 2022 |
DBID | NPM AAYXX CITATION 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU COVID DWQXO FYUFA GHDGH K9. M0S M1P PIMPY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.3390/s22239032 |
DatabaseName | PubMed CrossRef ProQuest Central (Corporate) Health Medical collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials AUTh Library subscriptions: ProQuest Central ProQuest One Community College Coronavirus Research Database ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) ProQuest - Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) Directory of Open Access Journals |
DatabaseTitle | PubMed CrossRef Publicly Available Content Database ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Health & Medical Complete (Alumni) Coronavirus Research Database ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Central China ProQuest Hospital Collection (Alumni) ProQuest Central ProQuest Health & Medical Complete Health Research Premium Collection ProQuest Medical Library ProQuest One Academic UKI Edition Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest One Academic ProQuest Medical Library (Alumni) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef Publicly Available Content Database PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: http://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1424-8220 |
ExternalDocumentID | oai_doaj_org_article_93a4e369698d45f49422a397a9f92ec9 A746533823 10_3390_s22239032 36501734 |
Genre | Journal Article |
GrantInformation_xml | – fundername: National Key Research and Development Projects grantid: 2019YFB1802602 – fundername: Shenyang Science and Technology Plan Project grantid: 2064240 – fundername: Liaoning Province Science and Technology Fund Project grantid: 2020MS086 – fundername: the Fundamental Research Funds for the Central Universities grantid: N2116014, N180101028 – fundername: the National Natural Science Foundation of China grantid: 62072094, 61872073 – fundername: the Fundamental Research Funds for the Central Universities grantid: N2116014; N180101028 – fundername: the National Natural Science Foundation of China grantid: 62072094; 61872073 |
GroupedDBID | --- 123 2WC 3V. 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH ABDBF ABJCF ABUWG ADBBV AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS ARAPS BENPR BPHCQ BVXVI CCPQU CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE IAO ITC KB. KQ8 L6V M1P M48 M7S MODMG M~E NPM OK1 P2P P62 PDBOC PIMPY PQQKQ PROAC PSQYO RIG RNS RPM TUS UKHRP XSB ~8M AAYXX CITATION 7XB 8FK AZQEC COVID DWQXO K9. PQEST PQUKI PRINS 7X8 5PM |
ID | FETCH-LOGICAL-c508t-4c9e58209684ab4a9716588d6bb9138f0f1e5b674f9be414ab0b13bf51ddd0fb3 |
IEDL.DBID | RPM |
ISSN | 1424-8220 |
IngestDate | Tue Oct 22 15:16:05 EDT 2024 Tue Sep 17 21:30:59 EDT 2024 Sat Oct 26 04:10:13 EDT 2024 Thu Nov 21 13:28:38 EST 2024 Tue Nov 12 23:17:33 EST 2024 Thu Sep 26 21:10:12 EDT 2024 Sat Nov 02 12:27:43 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 23 |
Keywords | multisensor fusion magnetic fields sensors Kalman filter edge computing indoor localization PDR |
Language | English |
License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c508t-4c9e58209684ab4a9716588d6bb9138f0f1e5b674f9be414ab0b13bf51ddd0fb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9739983/ |
PMID | 36501734 |
PQID | 2748558992 |
PQPubID | 2032333 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_93a4e369698d45f49422a397a9f92ec9 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9739983 proquest_miscellaneous_2753312073 proquest_journals_2748558992 gale_infotracacademiconefile_A746533823 crossref_primary_10_3390_s22239032 pubmed_primary_36501734 |
PublicationCentury | 2000 |
PublicationDate | 20221122 |
PublicationDateYYYYMMDD | 2022-11-22 |
PublicationDate_xml | – month: 11 year: 2022 text: 20221122 day: 22 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationTitleAlternate | Sensors (Basel) |
PublicationYear | 2022 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Varshavsky (ref_37) 2007; 3 Sadowski (ref_2) 2020; 7 An (ref_31) 2021; 18 ref_14 ref_58 ref_57 Borenstein (ref_39) 2013; 19 ref_55 ref_10 ref_53 ref_51 ref_17 ref_16 Tsai (ref_15) 1998; 47 ref_59 Kuo (ref_19) 2011; 10 Zafari (ref_8) 2019; 21 ref_60 Asaad (ref_6) 2022; 212 Zamzam (ref_5) 2021; 9 Liu (ref_46) 2017; 19 Kim (ref_54) 2016; 65 ref_21 ref_20 Poulose (ref_49) 2019; 7 Chai (ref_22) 2007; 6 ref_29 ref_28 Guo (ref_7) 2019; 6 ref_27 Chen (ref_24) 2015; 15 Sugano (ref_26) 2006; 538 Want (ref_35) 1992; 10 Pei (ref_11) 2016; 2016 Xie (ref_52) 2016; 15 Gu (ref_13) 2020; 7 Cho (ref_18) 2011; 25 Chiang (ref_41) 2020; 20 ref_34 Gu (ref_12) 2019; 52 Lan (ref_25) 2013; 13 ref_32 Gasvik (ref_56) 1994; 33 ref_30 ref_38 Wymeersch (ref_23) 2009; 97 Wang (ref_50) 2019; 19 Brena (ref_42) 2014; 14 ref_47 ref_45 Ming (ref_33) 2011; 47 ref_44 ref_43 ref_40 Kang (ref_61) 2014; 15 ref_3 Wang (ref_1) 2017; 5 ref_9 Shockley (ref_48) 2014; 61 ref_4 Ward (ref_36) 1997; 4 |
References_xml | – ident: ref_53 doi: 10.1007/978-981-10-4591-2_46 – volume: 65 start-page: 2035 year: 2016 ident: ref_54 article-title: A novel indoor positioning technique using magnetic fingerprint difference publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2016.2566759 contributor: fullname: Kim – volume: 19 start-page: 874 year: 2017 ident: ref_46 article-title: Fusion of magnetic and visual sensors for indoor localization: Infrastructure-free and more effective publication-title: IEEE Trans. Multimed. doi: 10.1109/TMM.2016.2636750 contributor: fullname: Liu – volume: 18 start-page: 4875 year: 2021 ident: ref_31 article-title: Know where you are: A practical privacy-preserving semi-supervised indoor positioning via edge-crowdsensing publication-title: IEEE Trans. Netw. Serv. Manag. doi: 10.1109/TNSM.2021.3107718 contributor: fullname: An – volume: 9 start-page: 133861 year: 2021 ident: ref_5 article-title: A minimized latency collaborative computation offloading game under mobile edge computing for indoor localization publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3115157 contributor: fullname: Zamzam – ident: ref_51 – ident: ref_45 doi: 10.1109/IPIN.2019.8911787 – volume: 52 start-page: 1 year: 2019 ident: ref_12 article-title: Indoor localization improved by spatial context-a survey publication-title: ACM Comput. Surv. (CSUR) doi: 10.1145/3322241 contributor: fullname: Gu – volume: 5 start-page: 91 year: 2017 ident: ref_1 article-title: A Study of WiFi-Aided Magnetic Matching Indoor Positioning Algorithm publication-title: J. Comput. Commun. doi: 10.4236/jcc.2017.53011 contributor: fullname: Wang – ident: ref_16 – ident: ref_59 doi: 10.1109/CCDC.2016.7531469 – ident: ref_55 doi: 10.1109/IPIN.2015.7346761 – volume: 97 start-page: 427 year: 2009 ident: ref_23 article-title: Cooperative localization in wireless networks publication-title: Proc. IEEE doi: 10.1109/JPROC.2008.2008853 contributor: fullname: Wymeersch – ident: ref_10 doi: 10.1109/ICCIC.2016.7919537 – ident: ref_30 doi: 10.1109/INFCOM.2010.5462058 – ident: ref_58 – volume: 61 start-page: 237 year: 2014 ident: ref_48 article-title: Navigation of ground vehicles using magnetic field variations publication-title: Navigation doi: 10.1002/navi.70 contributor: fullname: Shockley – volume: 13 start-page: 4781 year: 2013 ident: ref_25 article-title: On Calibrating the Sensor Errors of a PDR-Based Indoor Localization System publication-title: Sensors doi: 10.3390/s130404781 contributor: fullname: Lan – ident: ref_27 – ident: ref_40 doi: 10.1109/IPIN.2010.5646739 – volume: 33 start-page: 188 year: 1994 ident: ref_56 article-title: Error analysis of a zero-crossing algorithm for fringe location publication-title: Opt. Eng. contributor: fullname: Gasvik – volume: 19 start-page: 6477 year: 2019 ident: ref_50 article-title: Magnetic-based indoor localization using smartphone via a fusion algorithm publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2019.2909195 contributor: fullname: Wang – ident: ref_17 – volume: 212 start-page: 109041 year: 2022 ident: ref_6 article-title: A comprehensive review of indoor/outdoor localization solutions in iot era: Research challenges and future perspectives publication-title: Comput. Netw. doi: 10.1016/j.comnet.2022.109041 contributor: fullname: Asaad – ident: ref_20 – volume: 6 start-page: 649 year: 2007 ident: ref_22 article-title: Reducing the Calibration Effort for Probabilistic Indoor Location Estimation publication-title: IEEE Trans. Mob. Comput. doi: 10.1109/TMC.2007.1025 contributor: fullname: Chai – ident: ref_57 doi: 10.1109/IPIN.2013.6817887 – ident: ref_43 doi: 10.1109/WPMC.2014.7014819 – volume: 3 start-page: 698 year: 2007 ident: ref_37 article-title: Gsm indoor localization publication-title: Pervasive Mob. Comput. doi: 10.1016/j.pmcj.2007.07.004 contributor: fullname: Varshavsky – ident: ref_32 doi: 10.1109/WPNC.2007.353604 – ident: ref_4 doi: 10.3390/s17030651 – volume: 19 start-page: 1179 year: 2013 ident: ref_39 article-title: Real-time obstacle avoidance for fast mobile robots publication-title: IEEE Trans. Syst. Man Cybern. doi: 10.1109/21.44033 contributor: fullname: Borenstein – volume: 47 start-page: 13 year: 2011 ident: ref_33 article-title: System modeling of slam-based geomagnetic aided inertial navigation publication-title: Aviat. Precis. Manuf. Technol. contributor: fullname: Ming – ident: ref_34 – ident: ref_9 doi: 10.3390/s150100715 – ident: ref_21 doi: 10.1109/WCNC.2013.6554893 – volume: 6 start-page: 2573 year: 2019 ident: ref_7 article-title: Expectation maximization indoor localization utilizing supporting set for internet of things publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2018.2871831 contributor: fullname: Guo – volume: 2016 start-page: 4041291 year: 2016 ident: ref_11 article-title: A survey of crowd sensing opportunistic signals for indoor localization publication-title: Mobile Inform. Syst. contributor: fullname: Pei – volume: 21 start-page: 2568 year: 2019 ident: ref_8 article-title: A survey of indoor localization systems and technologies publication-title: IEEE Commun. Surv. Tutorials doi: 10.1109/COMST.2019.2911558 contributor: fullname: Zafari – volume: 538 start-page: 1 year: 2006 ident: ref_26 article-title: Indoor localization system using rssi measurement of wireless sensor network based on zigbee standard publication-title: Wirel. Opt. Commun. contributor: fullname: Sugano – ident: ref_14 – volume: 15 start-page: 2906 year: 2014 ident: ref_61 article-title: SmartPDR: Smartphone-based pedestrian dead reckoning for indoor localization publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2014.2382568 contributor: fullname: Kang – volume: 7 start-page: 8343 year: 2020 ident: ref_13 article-title: Landmark graph-based indoor localization publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2020.2989501 contributor: fullname: Gu – volume: 15 start-page: 24595 year: 2015 ident: ref_24 article-title: Integrated WiFi/PDR/Smartphone Using an Unscented Kalman Filter Algorithm for 3d Indoor Localization publication-title: Sensors doi: 10.3390/s150924595 contributor: fullname: Chen – volume: 4 start-page: 42 year: 1997 ident: ref_36 article-title: A new location technique for the active office publication-title: IEEE Pers. Commun. doi: 10.1109/98.626982 contributor: fullname: Ward – volume: 20 start-page: 13110 year: 2020 ident: ref_41 article-title: Magnetic field-based localization in factories using neural network with robotic sampling publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2020.3003404 contributor: fullname: Chiang – volume: 7 start-page: 11165 year: 2019 ident: ref_49 article-title: An indoor position-estimation algorithm using smartphone imu sensor data publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2891942 contributor: fullname: Poulose – volume: 10 start-page: 91 year: 1992 ident: ref_35 article-title: The active badge location system publication-title: ACM Trans. Inf. Syst. doi: 10.1145/128756.128759 contributor: fullname: Want – volume: 15 start-page: 1877 year: 2016 ident: ref_52 article-title: A reliability-augmented particle filter for magnetic fingerprinting based indoor localization on smartphone publication-title: IEEE Trans. Mob. Comput. doi: 10.1109/TMC.2015.2480064 contributor: fullname: Xie – volume: 10 start-page: 291 year: 2011 ident: ref_19 article-title: Discriminant Minimization Search for Large-Scale RF-Based Localization Systems publication-title: IEEE Trans. Mob. Comput. doi: 10.1109/TMC.2010.67 contributor: fullname: Kuo – ident: ref_29 – volume: 7 start-page: 10996 year: 2020 ident: ref_2 article-title: Memoryless techniques and wireless technologies for indoor localization with the internet of things publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2020.2992651 contributor: fullname: Sadowski – ident: ref_3 doi: 10.3390/s22093307 – volume: 14 start-page: 11001 year: 2014 ident: ref_42 article-title: Magnetic Field Feature Extraction and Selection for Indoor Location Estimation publication-title: Sensors doi: 10.3390/s140611001 contributor: fullname: Brena – ident: ref_38 doi: 10.1109/TELFOR.2015.7377543 – volume: 47 start-page: 1399 year: 1998 ident: ref_15 article-title: A localization system of a mobile robot by fusing dead-reckoning and ultrasonic measurements publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/19.746618 contributor: fullname: Tsai – ident: ref_28 doi: 10.1109/IPIN.2010.5646861 – ident: ref_60 – volume: 25 start-page: 2907 year: 2011 ident: ref_18 article-title: A dead reckoning localization system for mobile robots using inertial sensors and wheel revolution encoding publication-title: J. Mech. Sci. Technol. doi: 10.1007/s12206-011-0805-1 contributor: fullname: Cho – ident: ref_47 doi: 10.1007/978-3-642-04385-7_16 – ident: ref_44 doi: 10.1109/ICC40277.2020.9148721 |
SSID | ssj0023338 |
Score | 2.427846 |
Snippet | Indoor localization problems are difficult due to that the information, such as WLAN and GPS, cannot achieve enough precision for indoor issues. This paper... |
SourceID | doaj pubmedcentral proquest gale crossref pubmed |
SourceType | Open Website Open Access Repository Aggregation Database Index Database |
StartPage | 9032 |
SubjectTerms | Accuracy Algorithms Cold Fingerprints Geomagnetism Global positioning systems GPS Indoor environments indoor localization Infrastructure Internet of Things Kalman filter Localization Location based services Magnetic fields Measuring instruments Methods multisensor fusion Navigation systems PDR Radio frequency identification Sensors Technology Uncertainty Walking Wireless access points Wireless local area networks (Computer networks) |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagJzggKK9AqVyExClq_Igfxy3s0krABSpxi-LY3lZqE9TNHvgD_G5m4my0EQcunCLFo8jxzHhmPJ5vCHnnHLjxNbe5wfygVCbkJoI-Kl9GhfGISK0TvumvP8zHJcLkTK2-8E5YggdOC3dqRS0DNp2zxssySis5r8GI1jZaHppUuleoXTA1hloCIq-EIyQgqD_doBW0heAz6zOA9P-9Fe_Zovk9yT3Ds3pMHo0eI12kmT4h90J7SB7u4Qg-Jb8XLV3crDsI9K9uKR6t0osBLRkWnV4CW4e0f_-LLm-GJl59oGdgvTyF4U-hu63XLdYy0tVwxodHfT3F4rI7-qVzsG3QpV8HmhpAAAkFR5detL6Dx2e0hWMt5zNyuVp-_3Cejw0W8gb8sj6XjQ0luABWGVk7WSOcVGmMV85ZJkwsIgulU1pG64JkQFM4Jlwsmfe-iE48Jwdt14aXhGogL0XDdRO09FZaFwUPmDk2jVIxZOTtbuGrnwlHo4L4A7lTTdzJyBmyZCJA6OvhBQhENQpE9S-ByMh7ZGiFCgpca-qxzgDmiVBX1UIjpBymPzNytON5NWrupoIo3ZQlRKEwm5NpGHQOEyl1G7ot0sAHGIfdMSMvkohMcxbg8jItZEb0THhmPzUfaa-vBlxvq8FbNOLV_1iF1-QBx0INxnLOj8hBf7cNb8j9jd8eD5ryBwI8GUI priority: 102 providerName: Directory of Open Access Journals |
Title | An Algorithm with Iteration Uncertainty Eliminate Based on Geomagnetic Fingerprint under Mobile Edge Computing for Indoor Localization |
URI | https://www.ncbi.nlm.nih.gov/pubmed/36501734 https://www.proquest.com/docview/2748558992 https://www.proquest.com/docview/2753312073 https://pubmed.ncbi.nlm.nih.gov/PMC9739983 https://doaj.org/article/93a4e369698d45f49422a397a9f92ec9 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDBaWnrbD0L3ddoU2DNjJTayHLR3TLukKrMOArcBuhmVJaYHELhLn0D_Q3z1StoMYu_UUIGIC2RRFfqL4kZAvxkAYXzAdK8wPilS5WHmwx9RKnyIe4W3rhN_Zz7_q2wxpcmRfCxMu7Zfm7qxars6qu9twt_J-VY77e2LjX9cXOgO3qvh4REYQG_YQvUNZHEBXSyHEAc-PN-gA9YSzgeMJ_Pz_78J7bmh4RXLP58wPycsuWKTTdlKvyDNXvSYv9igE35DHaUWny0UNGP92RfFUlV4FomR43_QGNBoy_s0DnS1D_67G0XNwXJbC8KWrV8WiwjJGOg_He3jK11CsK1vT69rAjkFnduFo2_sBRCjEuPSqsjV8_EA32JVxviU389mfi-9x11shLiEka2JRaifB--tUicKIApmkpFI2NUYnXPmJT5w0aSa8Nk4kIDMxCTdeJtbaiTf8HTmo6sp9IDQDcclLlpUuE1YLbTxnDpPGqkxT7yLyuX_x-X1LoZED9EDt5DvtROQcVbITQNbr8EW9XuSd7nPNC-GwAaFWVkgvtGCsgICq0F4zV-qIfEWF5miboLWy6EoMYJ7IcpVPM2STw8xnRE56need0W5yAOhKSgCgMJtPu2EwN8yhFJWrtygDf5Aw2Bgj8r5dIrs5c4h2k4yLiGSDxTN4qOEIrPBA6d2t6KMn__KYPGdYmJEkMWMn5KBZb91HMtrY7Wk4ZjgNRvIPDMAZ3w |
link.rule.ids | 230,315,729,782,786,866,887,2106,27933,27934,53800,53802 |
linkProvider | National Library of Medicine |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDBbW7rDtsPfDW7dpw4Cd3Nh62NIx7ZI1WFIMWAvsZliWlAZI7CJxDvsD-90jbSeIsVtPBiLGkEFSJEXyIyFfjAE3Pmc6VJgfFIlyofKgj4mVPsF4hLejE36ll7_VtxHC5MhdL0xTtF-YxWm5XJ2Wi5umtvJ2VQx2dWKDn7NznYJZVXxwRO6DvkbRLkjv4iwOYVcLIsQhoh9s0ATqiLOe6WkQ-v8_hw8MUb9I8sDqjJ_ccb9PyePOzaTDdvkZuefK5-TRAfjgC_J3WNLhcl6tF_XNiuJ9LJ00EMvAKXoNstDUCtR_6GjZTP6qHT0Dk2cpLH931Sqfl9gAScfNxSDeD9YUO9LWdFYZOGvoyM4dbadGAAkF75hOSlvBY4oGtGsAfUmux6Or84uwm8oQFuDM1aEotJPgN-hEidyIHDGopFI2MUbHXPnIx06aJBVeGydioIlMzI2XsbU28oa_IsdlVbo3hKZALnnB0sKlwmqhjefMYbpZFUniXUA-7xiW3bbgGxkELcjVbM_VgJwhK_cEiJfd_FCt51nHhUzzXDgcXaiVFdILLRjLwRXLtdfMFTogX1EQMtRq4HaRd80JsE_Ex8qGKeLQYc40ICc7Wck6dd9kENorKSF0hd182i-DomL2JS9dtUUaeEHM4EgNyOtWtPZ75uAnxykXAUl7Qtf7qP4KyFoDBt7J1ts7__MjeXBxNZtm08nlj3fkIcP2jjgOGTshx_V6696To43dfmhU7B9ImC6C |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fb9MwELfYkBA8jP8QGGAQEk9ZEttJ7Mdua6FimybBJN6iOLa7Sm1StenDvgCfm7skjRrxBk-R6mvk6O58d7673xHyWWtw43OmfIn5QZFI60sH-piY2CUYj_B2dMKP9OqXPB8jTE4_6qsp2i_0_KRcLE_K-W1TW7laFsGuTiy4vjxTKZhVyYOVccEBuQ86G7JdoN7FWhxCrxZIiENUH2zQDKqQs4H5aVD6_z6L94zRsFByz_JMHv_Hnp-Qo87dpKOW5Cm5Z8tn5NEeCOFz8ntU0tFiVq3n9e2S4r0snTZQy8AxegMy0dQM1Hd0vGgmgNWWnoLpMxSWv9pqmc9KbISkk-aCEO8Ja4qdaWt6WWk4c-jYzCxtp0cACQUvmU5LU8HjAg1p1wj6gtxMxj_PvvnddAa_AKeu9kWhbAz-g0qkyLXIEYsqltIkWquISxe6yMY6SYVT2ooIaEIdce3iyBgTOs1fksOyKu1rQlMgj3nB0sKmwiihtOPMYtpZFknirEc-7ZiWrVoQjgyCF-Rs1nPWI6fIzp4AcbObH6r1LOs4kSmeC4sjDJU0InZCCcZycMly5RSzhfLIFxSGDLUbOF7kXZMC7BNxsrJRinh0mDv1yPFOXrJO7TcZhPgyjiGEhd187JdBYTELk5e22iINvCBicLR65FUrXv2eOfjLUcqFR9KB4A0-argC8taAgnfy9eaf__mBPLg-n2QX06vvb8lDhl0eUeQzdkwO6_XWviMHG7N932jZH6RtMQI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Algorithm+with+Iteration+Uncertainty+Eliminate+Based+on+Geomagnetic+Fingerprint+under+Mobile+Edge+Computing+for+Indoor+Localization&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Li%2C+Jie&rft.au=Sun%2C+Liming&rft.au=Liu%2C+Dongpeng&rft.au=Yu%2C+Ruiyun&rft.date=2022-11-22&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=22&rft.issue=23&rft.spage=9032&rft_id=info:doi/10.3390%2Fs22239032&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |