An Algorithm with Iteration Uncertainty Eliminate Based on Geomagnetic Fingerprint under Mobile Edge Computing for Indoor Localization

Indoor localization problems are difficult due to that the information, such as WLAN and GPS, cannot achieve enough precision for indoor issues. This paper presents a novel indoor localization algorithm, GeoLoc, with uncertainty eliminate based on fusion of acceleration, angular rate, and magnetic f...

Full description

Saved in:
Bibliographic Details
Published in:Sensors (Basel, Switzerland) Vol. 22; no. 23; p. 9032
Main Authors: Li, Jie, Sun, Liming, Liu, Dongpeng, Yu, Ruiyun, Wang, Xingwei
Format: Journal Article
Language:English
Published: Switzerland MDPI AG 22-11-2022
MDPI
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Indoor localization problems are difficult due to that the information, such as WLAN and GPS, cannot achieve enough precision for indoor issues. This paper presents a novel indoor localization algorithm, GeoLoc, with uncertainty eliminate based on fusion of acceleration, angular rate, and magnetic field sensor data. The algorithm can be deployed in edge devices to overcome the problems of insufficient computing resources and long delay caused by high complexity of location calculation. Firstly, the magnetic map is built and magnetic values are matched. Secondly, orientation updating and position selection are iteratively executed using the fusion data, which gradually reduce uncertainty of orientation. Then, we filter the trajectory from a path set. By gradually reducing uncertainty, GeoLoc can bring a high positioning precision and a smooth trajectory. In addition, this method has an advantage in that it does not rely on any infrastructure such as base stations and beacons. It solves the common problems regarding the non-uniqueness of the geomagnetic fingerprint and the deviation of the sensor measurement. The experimental results show that our algorithm achieves an accuracy of less than 2.5 m in indoor environment, and the positioning results are relatively stable. It meets the basic requirements of indoor location-based services (LBSs).
AbstractList Indoor localization problems are difficult due to that the information, such as WLAN and GPS, cannot achieve enough precision for indoor issues. This paper presents a novel indoor localization algorithm, GeoLoc, with uncertainty eliminate based on fusion of acceleration, angular rate, and magnetic field sensor data. The algorithm can be deployed in edge devices to overcome the problems of insufficient computing resources and long delay caused by high complexity of location calculation. Firstly, the magnetic map is built and magnetic values are matched. Secondly, orientation updating and position selection are iteratively executed using the fusion data, which gradually reduce uncertainty of orientation. Then, we filter the trajectory from a path set. By gradually reducing uncertainty, GeoLoc can bring a high positioning precision and a smooth trajectory. In addition, this method has an advantage in that it does not rely on any infrastructure such as base stations and beacons. It solves the common problems regarding the non-uniqueness of the geomagnetic fingerprint and the deviation of the sensor measurement. The experimental results show that our algorithm achieves an accuracy of less than 2.5 m in indoor environment, and the positioning results are relatively stable. It meets the basic requirements of indoor location-based services (LBSs).
Indoor localization problems are difficult due to that the information, such as WLAN and GPS, cannot achieve enough precision for indoor issues. This paper presents a novel indoor localization algorithm, GeoLoc, with uncertainty eliminate based on fusion of acceleration, angular rate, and magnetic field sensor data. The algorithm can be deployed in edge devices to overcome the problems of insufficient computing resources and long delay caused by high complexity of location calculation. Firstly, the magnetic map is built and magnetic values are matched. Secondly, orientation updating and position selection are iteratively executed using the fusion data, which gradually reduce uncertainty of orientation. Then, we filter the trajectory from a path set. By gradually reducing uncertainty, GeoLoc can bring a high positioning precision and a smooth trajectory. In addition, this method has an advantage in that it does not rely on any infrastructure such as base stations and beacons. It solves the common problems regarding the non-uniqueness of the geomagnetic fingerprint and the deviation of the sensor measurement. The experimental results show that our algorithm achieves an accuracy of less than 2.5 m in indoor environment, and the positioning results are relatively stable. It meets the basic requirements of indoor location-based services (LBSs).Indoor localization problems are difficult due to that the information, such as WLAN and GPS, cannot achieve enough precision for indoor issues. This paper presents a novel indoor localization algorithm, GeoLoc, with uncertainty eliminate based on fusion of acceleration, angular rate, and magnetic field sensor data. The algorithm can be deployed in edge devices to overcome the problems of insufficient computing resources and long delay caused by high complexity of location calculation. Firstly, the magnetic map is built and magnetic values are matched. Secondly, orientation updating and position selection are iteratively executed using the fusion data, which gradually reduce uncertainty of orientation. Then, we filter the trajectory from a path set. By gradually reducing uncertainty, GeoLoc can bring a high positioning precision and a smooth trajectory. In addition, this method has an advantage in that it does not rely on any infrastructure such as base stations and beacons. It solves the common problems regarding the non-uniqueness of the geomagnetic fingerprint and the deviation of the sensor measurement. The experimental results show that our algorithm achieves an accuracy of less than 2.5 m in indoor environment, and the positioning results are relatively stable. It meets the basic requirements of indoor location-based services (LBSs).
Audience Academic
Author Liu, Dongpeng
Wang, Xingwei
Yu, Ruiyun
Sun, Liming
Li, Jie
AuthorAffiliation 1 School of Computer Science and Engineering, Northeastern University, Shenyang 110169, China
3 Software College, Northeastern University, Shenyang 110169, China
2 University of Texas at Dallas, Richardson, TX 75080, USA
AuthorAffiliation_xml – name: 1 School of Computer Science and Engineering, Northeastern University, Shenyang 110169, China
– name: 2 University of Texas at Dallas, Richardson, TX 75080, USA
– name: 3 Software College, Northeastern University, Shenyang 110169, China
Author_xml – sequence: 1
  givenname: Jie
  surname: Li
  fullname: Li, Jie
  organization: School of Computer Science and Engineering, Northeastern University, Shenyang 110169, China
– sequence: 2
  givenname: Liming
  surname: Sun
  fullname: Sun, Liming
  organization: School of Computer Science and Engineering, Northeastern University, Shenyang 110169, China
– sequence: 3
  givenname: Dongpeng
  surname: Liu
  fullname: Liu, Dongpeng
  organization: University of Texas at Dallas, Richardson, TX 75080, USA
– sequence: 4
  givenname: Ruiyun
  surname: Yu
  fullname: Yu, Ruiyun
  organization: Software College, Northeastern University, Shenyang 110169, China
– sequence: 5
  givenname: Xingwei
  surname: Wang
  fullname: Wang, Xingwei
  organization: School of Computer Science and Engineering, Northeastern University, Shenyang 110169, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36501734$$D View this record in MEDLINE/PubMed
BookMark eNpdkstuEzEUhkeoiF5gwQsgS2xgkeLbzNgbpBClJVIQG7q2PPbx1NGMHTxOUXkAnhunKVGLLPlY9uf_nGP_59VJiAGq6i3Bl4xJ_GmilJbI6IvqjHDKZ4JSfPJkfVqdT9MGY8oYE6-qU9bUmLSMn1V_5gHNhz4mn29H9KvMaJUh6exjQDfBQMrah3yPloMffdAZ0Bc9gUXl-BriqPsA2Rt05UMPaZsKi3bBQkLfYucHQEvbA1rEcbvLBUEuJrQKNpawjkYP_vdDqtfVS6eHCd48xovq5mr5Y_F1tv5-vVrM1zNTY5Fn3EioBcWyEVx3XMuWNLUQtuk6SZhw2BGou6blTnbASWFwR1jnamKtxa5jF9XqoGuj3qhS7qjTvYraq4eNmHqlU-lnACWZ5sAa2Uhhee245JRqJlstnaRgZNH6fNDa7roRrIGQkx6eiT4_Cf5W9fFOyZZJKVgR-PAokOLPHUxZjX4yMAw6QNxNirY1Y4Tido--_w_dxF0K5akKxUVdCylpoS4PVK9LAz64WPKaMiyM3hTPuPIjat7ypggLupf9eLhgUpymBO5YPcFqby11tFZh3z1t90j-8xL7C-JJy6o
CitedBy_id crossref_primary_10_3390_s24051703
Cites_doi 10.1007/978-981-10-4591-2_46
10.1109/TIM.2016.2566759
10.1109/TMM.2016.2636750
10.1109/TNSM.2021.3107718
10.1109/ACCESS.2021.3115157
10.1109/IPIN.2019.8911787
10.1145/3322241
10.4236/jcc.2017.53011
10.1109/CCDC.2016.7531469
10.1109/IPIN.2015.7346761
10.1109/JPROC.2008.2008853
10.1109/ICCIC.2016.7919537
10.1109/INFCOM.2010.5462058
10.1002/navi.70
10.3390/s130404781
10.1109/IPIN.2010.5646739
10.1109/JSEN.2019.2909195
10.1016/j.comnet.2022.109041
10.1109/TMC.2007.1025
10.1109/IPIN.2013.6817887
10.1109/WPMC.2014.7014819
10.1016/j.pmcj.2007.07.004
10.1109/WPNC.2007.353604
10.3390/s17030651
10.1109/21.44033
10.3390/s150100715
10.1109/WCNC.2013.6554893
10.1109/JIOT.2018.2871831
10.1109/COMST.2019.2911558
10.1109/JSEN.2014.2382568
10.1109/JIOT.2020.2989501
10.3390/s150924595
10.1109/98.626982
10.1109/JSEN.2020.3003404
10.1109/ACCESS.2019.2891942
10.1145/128756.128759
10.1109/TMC.2015.2480064
10.1109/TMC.2010.67
10.1109/JIOT.2020.2992651
10.3390/s22093307
10.3390/s140611001
10.1109/TELFOR.2015.7377543
10.1109/19.746618
10.1109/IPIN.2010.5646861
10.1007/s12206-011-0805-1
10.1007/978-3-642-04385-7_16
10.1109/ICC40277.2020.9148721
ContentType Journal Article
Copyright COPYRIGHT 2022 MDPI AG
2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 by the authors. 2022
Copyright_xml – notice: COPYRIGHT 2022 MDPI AG
– notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 by the authors. 2022
DBID NPM
AAYXX
CITATION
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
COVID
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s22239032
DatabaseName PubMed
CrossRef
ProQuest Central (Corporate)
Health Medical collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
AUTh Library subscriptions: ProQuest Central
ProQuest One Community College
Coronavirus Research Database
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
ProQuest - Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals
DatabaseTitle PubMed
CrossRef
Publicly Available Content Database
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Health & Medical Complete (Alumni)
Coronavirus Research Database
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Central China
ProQuest Hospital Collection (Alumni)
ProQuest Central
ProQuest Health & Medical Complete
Health Research Premium Collection
ProQuest Medical Library
ProQuest One Academic UKI Edition
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest One Academic
ProQuest Medical Library (Alumni)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList


CrossRef
Publicly Available Content Database
PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: http://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_93a4e369698d45f49422a397a9f92ec9
A746533823
10_3390_s22239032
36501734
Genre Journal Article
GrantInformation_xml – fundername: National Key Research and Development Projects
  grantid: 2019YFB1802602
– fundername: Shenyang Science and Technology Plan Project
  grantid: 2064240
– fundername: Liaoning Province Science and Technology Fund Project
  grantid: 2020MS086
– fundername: the Fundamental Research Funds for the Central Universities
  grantid: N2116014, N180101028
– fundername: the National Natural Science Foundation of China
  grantid: 62072094, 61872073
– fundername: the Fundamental Research Funds for the Central Universities
  grantid: N2116014; N180101028
– fundername: the National Natural Science Foundation of China
  grantid: 62072094; 61872073
GroupedDBID ---
123
2WC
3V.
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
ABDBF
ABJCF
ABUWG
ADBBV
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BENPR
BPHCQ
BVXVI
CCPQU
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
ITC
KB.
KQ8
L6V
M1P
M48
M7S
MODMG
M~E
NPM
OK1
P2P
P62
PDBOC
PIMPY
PQQKQ
PROAC
PSQYO
RIG
RNS
RPM
TUS
UKHRP
XSB
~8M
AAYXX
CITATION
7XB
8FK
AZQEC
COVID
DWQXO
K9.
PQEST
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c508t-4c9e58209684ab4a9716588d6bb9138f0f1e5b674f9be414ab0b13bf51ddd0fb3
IEDL.DBID RPM
ISSN 1424-8220
IngestDate Tue Oct 22 15:16:05 EDT 2024
Tue Sep 17 21:30:59 EDT 2024
Sat Oct 26 04:10:13 EDT 2024
Thu Nov 21 13:28:38 EST 2024
Tue Nov 12 23:17:33 EST 2024
Thu Sep 26 21:10:12 EDT 2024
Sat Nov 02 12:27:43 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 23
Keywords multisensor fusion
magnetic fields
sensors
Kalman filter
edge computing
indoor localization
PDR
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c508t-4c9e58209684ab4a9716588d6bb9138f0f1e5b674f9be414ab0b13bf51ddd0fb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9739983/
PMID 36501734
PQID 2748558992
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_93a4e369698d45f49422a397a9f92ec9
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9739983
proquest_miscellaneous_2753312073
proquest_journals_2748558992
gale_infotracacademiconefile_A746533823
crossref_primary_10_3390_s22239032
pubmed_primary_36501734
PublicationCentury 2000
PublicationDate 20221122
PublicationDateYYYYMMDD 2022-11-22
PublicationDate_xml – month: 11
  year: 2022
  text: 20221122
  day: 22
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2022
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Varshavsky (ref_37) 2007; 3
Sadowski (ref_2) 2020; 7
An (ref_31) 2021; 18
ref_14
ref_58
ref_57
Borenstein (ref_39) 2013; 19
ref_55
ref_10
ref_53
ref_51
ref_17
ref_16
Tsai (ref_15) 1998; 47
ref_59
Kuo (ref_19) 2011; 10
Zafari (ref_8) 2019; 21
ref_60
Asaad (ref_6) 2022; 212
Zamzam (ref_5) 2021; 9
Liu (ref_46) 2017; 19
Kim (ref_54) 2016; 65
ref_21
ref_20
Poulose (ref_49) 2019; 7
Chai (ref_22) 2007; 6
ref_29
ref_28
Guo (ref_7) 2019; 6
ref_27
Chen (ref_24) 2015; 15
Sugano (ref_26) 2006; 538
Want (ref_35) 1992; 10
Pei (ref_11) 2016; 2016
Xie (ref_52) 2016; 15
Gu (ref_13) 2020; 7
Cho (ref_18) 2011; 25
Chiang (ref_41) 2020; 20
ref_34
Gu (ref_12) 2019; 52
Lan (ref_25) 2013; 13
ref_32
Gasvik (ref_56) 1994; 33
ref_30
ref_38
Wymeersch (ref_23) 2009; 97
Wang (ref_50) 2019; 19
Brena (ref_42) 2014; 14
ref_47
ref_45
Ming (ref_33) 2011; 47
ref_44
ref_43
ref_40
Kang (ref_61) 2014; 15
ref_3
Wang (ref_1) 2017; 5
ref_9
Shockley (ref_48) 2014; 61
ref_4
Ward (ref_36) 1997; 4
References_xml – ident: ref_53
  doi: 10.1007/978-981-10-4591-2_46
– volume: 65
  start-page: 2035
  year: 2016
  ident: ref_54
  article-title: A novel indoor positioning technique using magnetic fingerprint difference
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2016.2566759
  contributor:
    fullname: Kim
– volume: 19
  start-page: 874
  year: 2017
  ident: ref_46
  article-title: Fusion of magnetic and visual sensors for indoor localization: Infrastructure-free and more effective
  publication-title: IEEE Trans. Multimed.
  doi: 10.1109/TMM.2016.2636750
  contributor:
    fullname: Liu
– volume: 18
  start-page: 4875
  year: 2021
  ident: ref_31
  article-title: Know where you are: A practical privacy-preserving semi-supervised indoor positioning via edge-crowdsensing
  publication-title: IEEE Trans. Netw. Serv. Manag.
  doi: 10.1109/TNSM.2021.3107718
  contributor:
    fullname: An
– volume: 9
  start-page: 133861
  year: 2021
  ident: ref_5
  article-title: A minimized latency collaborative computation offloading game under mobile edge computing for indoor localization
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3115157
  contributor:
    fullname: Zamzam
– ident: ref_51
– ident: ref_45
  doi: 10.1109/IPIN.2019.8911787
– volume: 52
  start-page: 1
  year: 2019
  ident: ref_12
  article-title: Indoor localization improved by spatial context-a survey
  publication-title: ACM Comput. Surv. (CSUR)
  doi: 10.1145/3322241
  contributor:
    fullname: Gu
– volume: 5
  start-page: 91
  year: 2017
  ident: ref_1
  article-title: A Study of WiFi-Aided Magnetic Matching Indoor Positioning Algorithm
  publication-title: J. Comput. Commun.
  doi: 10.4236/jcc.2017.53011
  contributor:
    fullname: Wang
– ident: ref_16
– ident: ref_59
  doi: 10.1109/CCDC.2016.7531469
– ident: ref_55
  doi: 10.1109/IPIN.2015.7346761
– volume: 97
  start-page: 427
  year: 2009
  ident: ref_23
  article-title: Cooperative localization in wireless networks
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2008.2008853
  contributor:
    fullname: Wymeersch
– ident: ref_10
  doi: 10.1109/ICCIC.2016.7919537
– ident: ref_30
  doi: 10.1109/INFCOM.2010.5462058
– ident: ref_58
– volume: 61
  start-page: 237
  year: 2014
  ident: ref_48
  article-title: Navigation of ground vehicles using magnetic field variations
  publication-title: Navigation
  doi: 10.1002/navi.70
  contributor:
    fullname: Shockley
– volume: 13
  start-page: 4781
  year: 2013
  ident: ref_25
  article-title: On Calibrating the Sensor Errors of a PDR-Based Indoor Localization System
  publication-title: Sensors
  doi: 10.3390/s130404781
  contributor:
    fullname: Lan
– ident: ref_27
– ident: ref_40
  doi: 10.1109/IPIN.2010.5646739
– volume: 33
  start-page: 188
  year: 1994
  ident: ref_56
  article-title: Error analysis of a zero-crossing algorithm for fringe location
  publication-title: Opt. Eng.
  contributor:
    fullname: Gasvik
– volume: 19
  start-page: 6477
  year: 2019
  ident: ref_50
  article-title: Magnetic-based indoor localization using smartphone via a fusion algorithm
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2019.2909195
  contributor:
    fullname: Wang
– ident: ref_17
– volume: 212
  start-page: 109041
  year: 2022
  ident: ref_6
  article-title: A comprehensive review of indoor/outdoor localization solutions in iot era: Research challenges and future perspectives
  publication-title: Comput. Netw.
  doi: 10.1016/j.comnet.2022.109041
  contributor:
    fullname: Asaad
– ident: ref_20
– volume: 6
  start-page: 649
  year: 2007
  ident: ref_22
  article-title: Reducing the Calibration Effort for Probabilistic Indoor Location Estimation
  publication-title: IEEE Trans. Mob. Comput.
  doi: 10.1109/TMC.2007.1025
  contributor:
    fullname: Chai
– ident: ref_57
  doi: 10.1109/IPIN.2013.6817887
– ident: ref_43
  doi: 10.1109/WPMC.2014.7014819
– volume: 3
  start-page: 698
  year: 2007
  ident: ref_37
  article-title: Gsm indoor localization
  publication-title: Pervasive Mob. Comput.
  doi: 10.1016/j.pmcj.2007.07.004
  contributor:
    fullname: Varshavsky
– ident: ref_32
  doi: 10.1109/WPNC.2007.353604
– ident: ref_4
  doi: 10.3390/s17030651
– volume: 19
  start-page: 1179
  year: 2013
  ident: ref_39
  article-title: Real-time obstacle avoidance for fast mobile robots
  publication-title: IEEE Trans. Syst. Man Cybern.
  doi: 10.1109/21.44033
  contributor:
    fullname: Borenstein
– volume: 47
  start-page: 13
  year: 2011
  ident: ref_33
  article-title: System modeling of slam-based geomagnetic aided inertial navigation
  publication-title: Aviat. Precis. Manuf. Technol.
  contributor:
    fullname: Ming
– ident: ref_34
– ident: ref_9
  doi: 10.3390/s150100715
– ident: ref_21
  doi: 10.1109/WCNC.2013.6554893
– volume: 6
  start-page: 2573
  year: 2019
  ident: ref_7
  article-title: Expectation maximization indoor localization utilizing supporting set for internet of things
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2018.2871831
  contributor:
    fullname: Guo
– volume: 2016
  start-page: 4041291
  year: 2016
  ident: ref_11
  article-title: A survey of crowd sensing opportunistic signals for indoor localization
  publication-title: Mobile Inform. Syst.
  contributor:
    fullname: Pei
– volume: 21
  start-page: 2568
  year: 2019
  ident: ref_8
  article-title: A survey of indoor localization systems and technologies
  publication-title: IEEE Commun. Surv. Tutorials
  doi: 10.1109/COMST.2019.2911558
  contributor:
    fullname: Zafari
– volume: 538
  start-page: 1
  year: 2006
  ident: ref_26
  article-title: Indoor localization system using rssi measurement of wireless sensor network based on zigbee standard
  publication-title: Wirel. Opt. Commun.
  contributor:
    fullname: Sugano
– ident: ref_14
– volume: 15
  start-page: 2906
  year: 2014
  ident: ref_61
  article-title: SmartPDR: Smartphone-based pedestrian dead reckoning for indoor localization
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2014.2382568
  contributor:
    fullname: Kang
– volume: 7
  start-page: 8343
  year: 2020
  ident: ref_13
  article-title: Landmark graph-based indoor localization
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2020.2989501
  contributor:
    fullname: Gu
– volume: 15
  start-page: 24595
  year: 2015
  ident: ref_24
  article-title: Integrated WiFi/PDR/Smartphone Using an Unscented Kalman Filter Algorithm for 3d Indoor Localization
  publication-title: Sensors
  doi: 10.3390/s150924595
  contributor:
    fullname: Chen
– volume: 4
  start-page: 42
  year: 1997
  ident: ref_36
  article-title: A new location technique for the active office
  publication-title: IEEE Pers. Commun.
  doi: 10.1109/98.626982
  contributor:
    fullname: Ward
– volume: 20
  start-page: 13110
  year: 2020
  ident: ref_41
  article-title: Magnetic field-based localization in factories using neural network with robotic sampling
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2020.3003404
  contributor:
    fullname: Chiang
– volume: 7
  start-page: 11165
  year: 2019
  ident: ref_49
  article-title: An indoor position-estimation algorithm using smartphone imu sensor data
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2891942
  contributor:
    fullname: Poulose
– volume: 10
  start-page: 91
  year: 1992
  ident: ref_35
  article-title: The active badge location system
  publication-title: ACM Trans. Inf. Syst.
  doi: 10.1145/128756.128759
  contributor:
    fullname: Want
– volume: 15
  start-page: 1877
  year: 2016
  ident: ref_52
  article-title: A reliability-augmented particle filter for magnetic fingerprinting based indoor localization on smartphone
  publication-title: IEEE Trans. Mob. Comput.
  doi: 10.1109/TMC.2015.2480064
  contributor:
    fullname: Xie
– volume: 10
  start-page: 291
  year: 2011
  ident: ref_19
  article-title: Discriminant Minimization Search for Large-Scale RF-Based Localization Systems
  publication-title: IEEE Trans. Mob. Comput.
  doi: 10.1109/TMC.2010.67
  contributor:
    fullname: Kuo
– ident: ref_29
– volume: 7
  start-page: 10996
  year: 2020
  ident: ref_2
  article-title: Memoryless techniques and wireless technologies for indoor localization with the internet of things
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2020.2992651
  contributor:
    fullname: Sadowski
– ident: ref_3
  doi: 10.3390/s22093307
– volume: 14
  start-page: 11001
  year: 2014
  ident: ref_42
  article-title: Magnetic Field Feature Extraction and Selection for Indoor Location Estimation
  publication-title: Sensors
  doi: 10.3390/s140611001
  contributor:
    fullname: Brena
– ident: ref_38
  doi: 10.1109/TELFOR.2015.7377543
– volume: 47
  start-page: 1399
  year: 1998
  ident: ref_15
  article-title: A localization system of a mobile robot by fusing dead-reckoning and ultrasonic measurements
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/19.746618
  contributor:
    fullname: Tsai
– ident: ref_28
  doi: 10.1109/IPIN.2010.5646861
– ident: ref_60
– volume: 25
  start-page: 2907
  year: 2011
  ident: ref_18
  article-title: A dead reckoning localization system for mobile robots using inertial sensors and wheel revolution encoding
  publication-title: J. Mech. Sci. Technol.
  doi: 10.1007/s12206-011-0805-1
  contributor:
    fullname: Cho
– ident: ref_47
  doi: 10.1007/978-3-642-04385-7_16
– ident: ref_44
  doi: 10.1109/ICC40277.2020.9148721
SSID ssj0023338
Score 2.427846
Snippet Indoor localization problems are difficult due to that the information, such as WLAN and GPS, cannot achieve enough precision for indoor issues. This paper...
SourceID doaj
pubmedcentral
proquest
gale
crossref
pubmed
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 9032
SubjectTerms Accuracy
Algorithms
Cold
Fingerprints
Geomagnetism
Global positioning systems
GPS
Indoor environments
indoor localization
Infrastructure
Internet of Things
Kalman filter
Localization
Location based services
Magnetic fields
Measuring instruments
Methods
multisensor fusion
Navigation systems
PDR
Radio frequency identification
Sensors
Technology
Uncertainty
Walking
Wireless access points
Wireless local area networks (Computer networks)
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagJzggKK9AqVyExClq_Igfxy3s0krABSpxi-LY3lZqE9TNHvgD_G5m4my0EQcunCLFo8jxzHhmPJ5vCHnnHLjxNbe5wfygVCbkJoI-Kl9GhfGISK0TvumvP8zHJcLkTK2-8E5YggdOC3dqRS0DNp2zxssySis5r8GI1jZaHppUuleoXTA1hloCIq-EIyQgqD_doBW0heAz6zOA9P-9Fe_Zovk9yT3Ds3pMHo0eI12kmT4h90J7SB7u4Qg-Jb8XLV3crDsI9K9uKR6t0osBLRkWnV4CW4e0f_-LLm-GJl59oGdgvTyF4U-hu63XLdYy0tVwxodHfT3F4rI7-qVzsG3QpV8HmhpAAAkFR5detL6Dx2e0hWMt5zNyuVp-_3Cejw0W8gb8sj6XjQ0luABWGVk7WSOcVGmMV85ZJkwsIgulU1pG64JkQFM4Jlwsmfe-iE48Jwdt14aXhGogL0XDdRO09FZaFwUPmDk2jVIxZOTtbuGrnwlHo4L4A7lTTdzJyBmyZCJA6OvhBQhENQpE9S-ByMh7ZGiFCgpca-qxzgDmiVBX1UIjpBymPzNytON5NWrupoIo3ZQlRKEwm5NpGHQOEyl1G7ot0sAHGIfdMSMvkohMcxbg8jItZEb0THhmPzUfaa-vBlxvq8FbNOLV_1iF1-QBx0INxnLOj8hBf7cNb8j9jd8eD5ryBwI8GUI
  priority: 102
  providerName: Directory of Open Access Journals
Title An Algorithm with Iteration Uncertainty Eliminate Based on Geomagnetic Fingerprint under Mobile Edge Computing for Indoor Localization
URI https://www.ncbi.nlm.nih.gov/pubmed/36501734
https://www.proquest.com/docview/2748558992
https://www.proquest.com/docview/2753312073
https://pubmed.ncbi.nlm.nih.gov/PMC9739983
https://doaj.org/article/93a4e369698d45f49422a397a9f92ec9
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDBaWnrbD0L3ddoU2DNjJTayHLR3TLukKrMOArcBuhmVJaYHELhLn0D_Q3z1StoMYu_UUIGIC2RRFfqL4kZAvxkAYXzAdK8wPilS5WHmwx9RKnyIe4W3rhN_Zz7_q2wxpcmRfCxMu7Zfm7qxars6qu9twt_J-VY77e2LjX9cXOgO3qvh4REYQG_YQvUNZHEBXSyHEAc-PN-gA9YSzgeMJ_Pz_78J7bmh4RXLP58wPycsuWKTTdlKvyDNXvSYv9igE35DHaUWny0UNGP92RfFUlV4FomR43_QGNBoy_s0DnS1D_67G0XNwXJbC8KWrV8WiwjJGOg_He3jK11CsK1vT69rAjkFnduFo2_sBRCjEuPSqsjV8_EA32JVxviU389mfi-9x11shLiEka2JRaifB--tUicKIApmkpFI2NUYnXPmJT5w0aSa8Nk4kIDMxCTdeJtbaiTf8HTmo6sp9IDQDcclLlpUuE1YLbTxnDpPGqkxT7yLyuX_x-X1LoZED9EDt5DvtROQcVbITQNbr8EW9XuSd7nPNC-GwAaFWVkgvtGCsgICq0F4zV-qIfEWF5miboLWy6EoMYJ7IcpVPM2STw8xnRE56need0W5yAOhKSgCgMJtPu2EwN8yhFJWrtygDf5Aw2Bgj8r5dIrs5c4h2k4yLiGSDxTN4qOEIrPBA6d2t6KMn__KYPGdYmJEkMWMn5KBZb91HMtrY7Wk4ZjgNRvIPDMAZ3w
link.rule.ids 230,315,729,782,786,866,887,2106,27933,27934,53800,53802
linkProvider National Library of Medicine
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDBbW7rDtsPfDW7dpw4Cd3Nh62NIx7ZI1WFIMWAvsZliWlAZI7CJxDvsD-90jbSeIsVtPBiLGkEFSJEXyIyFfjAE3Pmc6VJgfFIlyofKgj4mVPsF4hLejE36ll7_VtxHC5MhdL0xTtF-YxWm5XJ2Wi5umtvJ2VQx2dWKDn7NznYJZVXxwRO6DvkbRLkjv4iwOYVcLIsQhoh9s0ATqiLOe6WkQ-v8_hw8MUb9I8sDqjJ_ccb9PyePOzaTDdvkZuefK5-TRAfjgC_J3WNLhcl6tF_XNiuJ9LJ00EMvAKXoNstDUCtR_6GjZTP6qHT0Dk2cpLH931Sqfl9gAScfNxSDeD9YUO9LWdFYZOGvoyM4dbadGAAkF75hOSlvBY4oGtGsAfUmux6Or84uwm8oQFuDM1aEotJPgN-hEidyIHDGopFI2MUbHXPnIx06aJBVeGydioIlMzI2XsbU28oa_IsdlVbo3hKZALnnB0sKlwmqhjefMYbpZFUniXUA-7xiW3bbgGxkELcjVbM_VgJwhK_cEiJfd_FCt51nHhUzzXDgcXaiVFdILLRjLwRXLtdfMFTogX1EQMtRq4HaRd80JsE_Ex8qGKeLQYc40ICc7Wck6dd9kENorKSF0hd182i-DomL2JS9dtUUaeEHM4EgNyOtWtPZ75uAnxykXAUl7Qtf7qP4KyFoDBt7J1ts7__MjeXBxNZtm08nlj3fkIcP2jjgOGTshx_V6696To43dfmhU7B9ImC6C
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fb9MwELfYkBA8jP8QGGAQEk9ZEttJ7Mdua6FimybBJN6iOLa7Sm1StenDvgCfm7skjRrxBk-R6mvk6O58d7673xHyWWtw43OmfIn5QZFI60sH-piY2CUYj_B2dMKP9OqXPB8jTE4_6qsp2i_0_KRcLE_K-W1TW7laFsGuTiy4vjxTKZhVyYOVccEBuQ86G7JdoN7FWhxCrxZIiENUH2zQDKqQs4H5aVD6_z6L94zRsFByz_JMHv_Hnp-Qo87dpKOW5Cm5Z8tn5NEeCOFz8ntU0tFiVq3n9e2S4r0snTZQy8AxegMy0dQM1Hd0vGgmgNWWnoLpMxSWv9pqmc9KbISkk-aCEO8Ja4qdaWt6WWk4c-jYzCxtp0cACQUvmU5LU8HjAg1p1wj6gtxMxj_PvvnddAa_AKeu9kWhbAz-g0qkyLXIEYsqltIkWquISxe6yMY6SYVT2ooIaEIdce3iyBgTOs1fksOyKu1rQlMgj3nB0sKmwiihtOPMYtpZFknirEc-7ZiWrVoQjgyCF-Rs1nPWI6fIzp4AcbObH6r1LOs4kSmeC4sjDJU0InZCCcZycMly5RSzhfLIFxSGDLUbOF7kXZMC7BNxsrJRinh0mDv1yPFOXrJO7TcZhPgyjiGEhd187JdBYTELk5e22iINvCBicLR65FUrXv2eOfjLUcqFR9KB4A0-argC8taAgnfy9eaf__mBPLg-n2QX06vvb8lDhl0eUeQzdkwO6_XWviMHG7N932jZH6RtMQI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Algorithm+with+Iteration+Uncertainty+Eliminate+Based+on+Geomagnetic+Fingerprint+under+Mobile+Edge+Computing+for+Indoor+Localization&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Li%2C+Jie&rft.au=Sun%2C+Liming&rft.au=Liu%2C+Dongpeng&rft.au=Yu%2C+Ruiyun&rft.date=2022-11-22&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=22&rft.issue=23&rft.spage=9032&rft_id=info:doi/10.3390%2Fs22239032&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon