The structure of the catalytic domain of Tannerella forsythia karilysin reveals it is a bacterial xenologue of animal matrix metalloproteinases

Summary Metallopeptidases (MPs) are among virulence factors secreted by pathogenic bacteria at the site of infection. One such pathogen is Tannerella forsythia, a member of the microbial consortium that causes peridontitis, arguably the most prevalent infective chronic inflammatory disease known to...

Full description

Saved in:
Bibliographic Details
Published in:Molecular microbiology Vol. 79; no. 1; pp. 119 - 132
Main Authors: Cerdà‐Costa, Núria, Guevara, Tibisay, Karim, Abdulkarim Y., Ksiazek, Miroslaw, Nguyen, Ky‐Anh, Arolas, Joan L., Potempa, Jan, Gomis‐Rüth, F. Xavier
Format: Journal Article
Language:English
Published: Oxford, UK Blackwell Publishing Ltd 01-01-2011
Blackwell
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Summary Metallopeptidases (MPs) are among virulence factors secreted by pathogenic bacteria at the site of infection. One such pathogen is Tannerella forsythia, a member of the microbial consortium that causes peridontitis, arguably the most prevalent infective chronic inflammatory disease known to mankind. The only reported MP secreted by T. forsythia is karilysin, a 52 kDa multidomain protein comprising a central 18 kDa catalytic domain (CD), termed Kly18, flanked by domains unrelated to any known protein. We analysed the 3D structure of Kly18 in the absence and presence of Mg2+ or Ca2+, which are required for function and stability, and found that it evidences most of the structural features characteristic of the CDs of mammalian matrix metalloproteinases (MMPs). Unexpectedly, a peptide was bound to the active‐site cleft of Kly18 mimicking a left‐behind cleavage product, which revealed that the specificity pocket accommodates bulky hydrophobic side‐chains of substrates as in mammalian MMPs. In addition, Kly18 displayed a unique Mg2+ or Ca2+ binding site and two flexible segments that could play a role in substrate binding. Phylogenetic and sequence similarity studies revealed that Kly18 is evolutionarily much closer to winged‐insect and mammalian MMPs than to potential bacterial counterparts found by genomic sequencing projects. Therefore, we conclude that this first structurally characterized non‐mammalian MMP is a xenologue co‐opted through horizontal gene transfer during the intimate coexistence between T. forsythia and humans or other animals, in a very rare case of gene shuffling from eukaryotes to prokaryotes. Subsequently, this protein would have evolved in a bacterial environment to give rise to full‐length karilysin that is furnished with unique flanking domains that do not conform to the general multidomain architecture of animal MMPs.
Bibliography:These authors contribute equally and share first authorship.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0950-382X
1365-2958
DOI:10.1111/j.1365-2958.2010.07434.x