The Biodistribution and Immune Suppressive Effects of Breast Cancer-Derived Exosomes
Small membranous secretions from tumor cells, termed exosomes, contribute significantly to intercellular communication and subsequent reprogramming of the tumor microenvironment. Here, we use optical imaging to determine that exogenously administered fluorescently labeled exosomes derived from highl...
Saved in:
Published in: | Cancer research (Chicago, Ill.) Vol. 76; no. 23; pp. 6816 - 6827 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
01-12-2016
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Small membranous secretions from tumor cells, termed exosomes, contribute significantly to intercellular communication and subsequent reprogramming of the tumor microenvironment. Here, we use optical imaging to determine that exogenously administered fluorescently labeled exosomes derived from highly metastatic murine breast cancer cells distributed predominantly to the lung of syngeneic mice, a frequent site of breast cancer metastasis. At the sites of accumulation, exosomes were taken up by CD45
bone marrow-derived cells. Subsequent long-term conditioning of naïve mice with exosomes from highly metastatic breast cancer cells revealed the accumulation of myeloid-derived suppressor cells in the lung and liver. This favorable immune suppressive microenvironment was capable of promoting metastatic colonization in the lung and liver, an effect not observed from exosomes derived from nonmetastatic cells and liposome control vesicles. Furthermore, we determined that breast cancer exosomes directly suppressed T-cell proliferation and inhibited NK cell cytotoxicity, and hence likely suppressed the anticancer immune response in premetastatic organs. Together, our findings provide novel insight into the tissue-specific outcomes of breast cancer-derived exosome accumulation and their contribution to immune suppression and promotion of metastases. Cancer Res; 76(23); 6816-27. ©2016 AACR. |
---|---|
AbstractList | Abstract
Small membranous secretions from tumor cells, termed exosomes, contribute significantly to intercellular communication and subsequent reprogramming of the tumor microenvironment. Here, we use optical imaging to determine that exogenously administered fluorescently labeled exosomes derived from highly metastatic murine breast cancer cells distributed predominantly to the lung of syngeneic mice, a frequent site of breast cancer metastasis. At the sites of accumulation, exosomes were taken up by CD45+ bone marrow–derived cells. Subsequent long-term conditioning of naïve mice with exosomes from highly metastatic breast cancer cells revealed the accumulation of myeloid-derived suppressor cells in the lung and liver. This favorable immune suppressive microenvironment was capable of promoting metastatic colonization in the lung and liver, an effect not observed from exosomes derived from nonmetastatic cells and liposome control vesicles. Furthermore, we determined that breast cancer exosomes directly suppressed T-cell proliferation and inhibited NK cell cytotoxicity, and hence likely suppressed the anticancer immune response in premetastatic organs. Together, our findings provide novel insight into the tissue-specific outcomes of breast cancer–derived exosome accumulation and their contribution to immune suppression and promotion of metastases. Cancer Res; 76(23); 6816–27. ©2016 AACR. Small membranous secretions from tumor cells, termed exosomes, contribute significantly to intercellular communication and subsequent reprogramming of the tumor microenvironment. Here, we use optical imaging to determine that exogenously administered fluorescently labeled exosomes derived from highly metastatic murine breast cancer cells distributed predominantly to the lung of syngeneic mice, a frequent site of breast cancer metastasis. At the sites of accumulation, exosomes were taken up by CD45 bone marrow-derived cells. Subsequent long-term conditioning of naïve mice with exosomes from highly metastatic breast cancer cells revealed the accumulation of myeloid-derived suppressor cells in the lung and liver. This favorable immune suppressive microenvironment was capable of promoting metastatic colonization in the lung and liver, an effect not observed from exosomes derived from nonmetastatic cells and liposome control vesicles. Furthermore, we determined that breast cancer exosomes directly suppressed T-cell proliferation and inhibited NK cell cytotoxicity, and hence likely suppressed the anticancer immune response in premetastatic organs. Together, our findings provide novel insight into the tissue-specific outcomes of breast cancer-derived exosome accumulation and their contribution to immune suppression and promotion of metastases. Cancer Res; 76(23); 6816-27. ©2016 AACR. Small membranous secretions from tumor cells, termed exosomes, contribute significantly to intercellular communication and subsequent reprogramming of the tumor microenvironment. Here, we use optical imaging to determine that exogenously administered fluorescently labeled exosomes derived from highly metastatic murine breast cancer cells distributed predominantly to the lung of syngeneic mice, a frequent site of breast cancer metastasis. At the sites of accumulation, exosomes were taken up by CD45+ bone marrow-derived cells. Subsequent long-term conditioning of naïve mice with exosomes from highly metastatic breast cancer cells revealed the accumulation of myeloid-derived suppressor cells in the lung and liver. This favorable immune suppressive microenvironment was capable of promoting metastatic colonization in the lung and liver, an effect not observed from exosomes derived from nonmetastatic cells and liposome control vesicles. Furthermore, we determined that breast cancer exosomes directly suppressed T-cell proliferation and inhibited NK cell cytotoxicity, and hence likely suppressed the anticancer immune response in premetastatic organs. Together, our findings provide novel insight into the tissue-specific outcomes of breast cancer-derived exosome accumulation and their contribution to immune suppression and promotion of metastases. Cancer Res; 76(23); 6816-27. ©2016 AACR. This study shows how breast cancer-derived exosomes accumulate in premetastatic organs, impact immune cell character and activity, and promote metastatic spread. Small membranous secretions from tumor cells, termed exosomes, contribute significantly to intercellular communication and subsequent reprogramming of the tumor microenvironment. Here, we use optical imaging to determine that exogenously administered fluorescently labeled exosomes derived from highly metastatic murine breast cancer cells distributed predominantly to the lung of syngeneic mice, a frequent site of breast cancer metastasis. At the sites of accumulation, exosomes were taken up by CD45+ bone marrow-derived cells. Subsequent long-term conditioning of naive mice with exosomes from highly metastatic breast cancer cells revealed the accumulation of myeloid-derived suppressor cells in the lung and liver. This favorable immune suppressive microenvironment was capable of promoting metastatic colonization in the lung and liver, an effect not observed from exosomes derived from nonmetastatic cells and liposome control vesicles. Furthermore, we determined that breast cancer exosomes directly suppressed T-cell proliferation and inhibited NK cell cytotoxicity, and hence likely suppressed the anticancer immune response in premetastatic organs. Together, our findings provide novel insight into the tissue-specific outcomes of breast cancer-derived exosome accumulation and their contribution to immune suppression and promotion of metastases. Cancer Res; 76(23); 6816-27. [copy2016 AACR. |
Author | Sceneay, Jaclyn Parker, Belinda S Wong, Christina S F Krumeich, Sophie Wen, Shu Wen Lobb, Richard J Wong, Ke Ni Ellis, Sarah Castillo, Vanessa Lima, Luize Goncalves Möller, Andreas Becker, Melanie |
Author_xml | – sequence: 1 givenname: Shu Wen surname: Wen fullname: Wen, Shu Wen organization: Tumor Microenvironment Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia – sequence: 2 givenname: Jaclyn surname: Sceneay fullname: Sceneay, Jaclyn organization: Tumor Microenvironment Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia – sequence: 3 givenname: Luize Goncalves surname: Lima fullname: Lima, Luize Goncalves organization: Tumor Microenvironment Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia – sequence: 4 givenname: Christina S F surname: Wong fullname: Wong, Christina S F organization: Tumor Microenvironment Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia – sequence: 5 givenname: Melanie surname: Becker fullname: Becker, Melanie organization: Tumor Microenvironment Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia – sequence: 6 givenname: Sophie surname: Krumeich fullname: Krumeich, Sophie organization: Tumor Microenvironment Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia – sequence: 7 givenname: Richard J surname: Lobb fullname: Lobb, Richard J organization: Tumor Microenvironment Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia – sequence: 8 givenname: Vanessa surname: Castillo fullname: Castillo, Vanessa organization: Tumor Microenvironment Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia – sequence: 9 givenname: Ke Ni surname: Wong fullname: Wong, Ke Ni organization: Tumor Microenvironment Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia – sequence: 10 givenname: Sarah surname: Ellis fullname: Ellis, Sarah organization: Peter MacCallum Cancer Centre, East Melbourne, and Sir Peter MacCallum Department of Histology, University of Melbourne, Parkville, Australia – sequence: 11 givenname: Belinda S surname: Parker fullname: Parker, Belinda S organization: Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia – sequence: 12 givenname: Andreas surname: Möller fullname: Möller, Andreas email: andreas.moller@qimrberghofer.edu.au organization: School of Medicine, University of Queensland, Brisbane, Queensland, Australia |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27760789$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkMtOwzAQRS1URB_wCSAv2aT4ET-ybEuBShUsKGvLScYiqImLnSD4e1K1dM1qdDXnzkhnjAaNbwCha0qmlAp9RwjRiUgVmxa2SahMiJb6DI2o4DpRaSoGaHRihmgc40cfBSXiAg2ZUpIonY3QZvMOeF75soptqPKurXyDbVPiVV13DeDXbrcLEGP1BXjpHBRtxN7heQAbW7ywTQEhuYfQ70u8_PbR1xAv0bmz2whXxzlBbw_LzeIpWb88rhazdVIIotrEUqWdY8AoUWkOeaZlXoLUrARFM16kmlvtNDDCOBGQFVRJW1pdSiocZ8An6PZwdxf8ZwexNXUVC9hubQO-i4ZqxTRL00z-A-VCkJQL1qPigBbBxxjAmV2oaht-DCVm797svZq9V7OYPRsqzd5937s5vujyGspT6082_wV18IFT |
CitedBy_id | crossref_primary_10_1016_j_hermed_2022_100589 crossref_primary_10_1042_BST20180253 crossref_primary_10_1002_adhm_202100639 crossref_primary_10_1002_pmic_201600432 crossref_primary_10_1016_j_jconrel_2023_06_039 crossref_primary_10_1039_D1LC01053K crossref_primary_10_1186_s13045_022_01305_4 crossref_primary_10_1038_s41598_024_66168_w crossref_primary_10_1080_2162402X_2017_1362530 crossref_primary_10_3389_fphar_2018_00817 crossref_primary_10_1002_jcb_27813 crossref_primary_10_1093_carcin_bgy115 crossref_primary_10_1007_s12257_019_0170_y crossref_primary_10_1016_j_pharmthera_2022_108332 crossref_primary_10_1016_j_biomaterials_2021_120946 crossref_primary_10_1016_j_trecan_2020_03_002 crossref_primary_10_1016_j_canlet_2022_215823 crossref_primary_10_1016_j_jconrel_2020_08_056 crossref_primary_10_1111_jcmm_14838 crossref_primary_10_1080_2162402X_2019_1601479 crossref_primary_10_1007_s11307_020_01521_9 crossref_primary_10_1016_j_omto_2021_12_024 crossref_primary_10_1088_2516_1091_ac73c9 crossref_primary_10_1111_boc_202100081 crossref_primary_10_3389_fimmu_2019_00862 crossref_primary_10_1186_s12943_021_01492_7 crossref_primary_10_3390_ijms18061190 crossref_primary_10_1016_j_phrs_2023_106669 crossref_primary_10_1111_cpr_13452 crossref_primary_10_1007_s12010_022_03978_6 crossref_primary_10_1113_JP282053 crossref_primary_10_1007_s12026_018_9000_0 crossref_primary_10_1038_s41374_020_0452_1 crossref_primary_10_1016_j_prp_2023_154522 crossref_primary_10_3390_pharmaceutics16040440 crossref_primary_10_1038_s41388_019_0797_3 crossref_primary_10_1038_s41598_020_71573_y crossref_primary_10_1002_ijc_30752 crossref_primary_10_3389_fcell_2021_619565 crossref_primary_10_1038_s41419_020_03189_z crossref_primary_10_1016_j_devcel_2019_04_011 crossref_primary_10_1021_acs_biomac_2c01005 crossref_primary_10_1007_s00595_020_01976_x crossref_primary_10_1002_adhm_201801268 crossref_primary_10_2147_OTT_S281909 crossref_primary_10_1016_j_canlet_2020_03_004 crossref_primary_10_3390_cancers12082179 crossref_primary_10_3390_ijms232315236 crossref_primary_10_3390_cancers14235930 crossref_primary_10_3389_fcell_2021_731062 crossref_primary_10_1002_smll_201702153 crossref_primary_10_1080_2162402X_2022_2067944 crossref_primary_10_3390_ijms20194805 crossref_primary_10_1038_s41598_018_19339_5 crossref_primary_10_3390_cancers14143344 crossref_primary_10_1021_acs_jafc_3c04150 crossref_primary_10_1186_s13058_024_01810_z crossref_primary_10_1166_jbn_2021_3091 crossref_primary_10_3389_fcell_2023_1221784 crossref_primary_10_3390_ijms232416095 crossref_primary_10_1038_s41598_019_57018_1 crossref_primary_10_1186_s12967_020_02662_9 crossref_primary_10_1038_s41467_022_28438_x crossref_primary_10_1038_s41568_020_00299_w crossref_primary_10_1080_20013078_2020_1746529 crossref_primary_10_1111_cas_14284 crossref_primary_10_3390_pharmaceutics12070676 crossref_primary_10_3390_ncrna7010004 crossref_primary_10_18632_oncotarget_18831 crossref_primary_10_1016_j_semcancer_2022_12_008 crossref_primary_10_3389_fbioe_2023_1214648 crossref_primary_10_3389_fonc_2022_876451 crossref_primary_10_1016_j_biochi_2018_03_006 crossref_primary_10_3390_ijms21020665 crossref_primary_10_3390_ph15070876 crossref_primary_10_3389_fphar_2018_00169 crossref_primary_10_1101_cshperspect_a041326 crossref_primary_10_3389_fcell_2020_564648 crossref_primary_10_1158_0008_5472_CAN_18_2602 crossref_primary_10_1021_acs_chemrev_0c01140 crossref_primary_10_1016_j_critrevonc_2019_102860 crossref_primary_10_56782_pps_32 crossref_primary_10_1016_j_canlet_2021_12_007 crossref_primary_10_3390_cancers12010236 crossref_primary_10_1186_s12964_022_00945_w crossref_primary_10_3389_fimmu_2018_00871 crossref_primary_10_3390_pharmaceutics15020548 crossref_primary_10_1016_j_biomaterials_2018_10_034 crossref_primary_10_1007_s12672_024_01007_y crossref_primary_10_1016_j_cytogfr_2019_11_007 crossref_primary_10_3389_fcell_2020_551681 crossref_primary_10_1038_s41419_021_04409_w crossref_primary_10_4251_wjgo_v16_i6_2304 crossref_primary_10_1002_jev2_12167 crossref_primary_10_1021_acsbiomaterials_3c01404 crossref_primary_10_18632_oncotarget_23510 crossref_primary_10_3390_cancers13174397 crossref_primary_10_1111_cpr_12948 crossref_primary_10_3390_biomedicines10051130 crossref_primary_10_1096_fba_2021_00079 crossref_primary_10_1002_smtd_202001131 crossref_primary_10_1038_s41598_021_87575_3 crossref_primary_10_1093_noajnl_vdaa056 crossref_primary_10_3389_fcell_2021_625221 crossref_primary_10_1111_imr_13286 crossref_primary_10_1182_bloodadvances_2019000753 crossref_primary_10_1080_21691401_2018_1489824 crossref_primary_10_1007_s00005_018_0531_9 crossref_primary_10_1021_acsbiomaterials_3c00745 crossref_primary_10_1016_j_ab_2021_114433 crossref_primary_10_3390_ijms231911312 crossref_primary_10_3389_fcell_2021_620498 crossref_primary_10_1016_j_canlet_2022_215796 crossref_primary_10_1016_j_omtn_2022_04_011 crossref_primary_10_1016_j_ajpath_2021_03_014 crossref_primary_10_1080_20013078_2020_1800222 crossref_primary_10_3389_fimmu_2018_00137 crossref_primary_10_1007_s40610_017_0073_7 crossref_primary_10_1016_j_yexcr_2021_112943 crossref_primary_10_1142_S1793545821300056 crossref_primary_10_1080_20013078_2020_1806444 crossref_primary_10_1038_s41598_020_70393_4 crossref_primary_10_1002_jev2_12056 crossref_primary_10_1007_s13770_021_00361_0 crossref_primary_10_3390_cancers14164001 crossref_primary_10_1016_j_tranon_2021_101286 crossref_primary_10_3389_fcell_2021_733627 crossref_primary_10_1016_j_heliyon_2023_e19296 crossref_primary_10_3390_cells10113054 crossref_primary_10_1002_bmm2_12018 crossref_primary_10_1007_s10911_020_09473_0 crossref_primary_10_1002_1873_3468_14108 crossref_primary_10_1242_jcs_259166 crossref_primary_10_3389_fnhum_2023_1278501 crossref_primary_10_3390_ijms21186680 crossref_primary_10_1161_CIRCULATIONAHA_119_042640 crossref_primary_10_3389_fphar_2017_00300 crossref_primary_10_1021_acsnano_0c09873 crossref_primary_10_3389_fphar_2021_757194 crossref_primary_10_1136_jitc_2021_003217 crossref_primary_10_1242_dmm_050074 crossref_primary_10_1080_20013078_2019_1706708 crossref_primary_10_3389_fimmu_2020_01308 crossref_primary_10_3390_cells10113155 crossref_primary_10_1002_jev2_12404 crossref_primary_10_3390_ijms20215468 crossref_primary_10_3390_ijms232213993 crossref_primary_10_3390_ijms24119590 crossref_primary_10_1007_s13402_023_00815_8 crossref_primary_10_1080_14686996_2022_2133342 crossref_primary_10_1016_j_critrevonc_2023_104121 crossref_primary_10_3389_fimmu_2018_00824 crossref_primary_10_3389_fevo_2021_661583 crossref_primary_10_3389_fonc_2019_00125 crossref_primary_10_1186_s12943_018_0869_y crossref_primary_10_1016_j_cmet_2021_09_002 crossref_primary_10_1021_acs_analchem_8b01506 crossref_primary_10_1007_s12033_021_00300_3 crossref_primary_10_1002_jev2_12085 crossref_primary_10_18632_oncotarget_22014 crossref_primary_10_1002_jcp_28785 crossref_primary_10_3389_fmolb_2022_1036746 crossref_primary_10_1186_s13046_023_02830_x crossref_primary_10_3390_cancers14020285 crossref_primary_10_3389_fbioe_2020_586130 crossref_primary_10_1002_adma_202208966 crossref_primary_10_1016_j_bbcan_2022_188776 crossref_primary_10_1007_s12094_017_1805_0 crossref_primary_10_1016_j_cyto_2017_10_025 crossref_primary_10_1016_j_radonc_2023_109968 crossref_primary_10_1111_cei_12974 crossref_primary_10_1007_s00604_020_4143_9 crossref_primary_10_1007_s00428_018_2477_z crossref_primary_10_3390_diagnostics11060917 crossref_primary_10_1002_smll_202205813 crossref_primary_10_1096_fj_202200277R crossref_primary_10_15252_embj_2021109288 crossref_primary_10_1177_09603271211041997 crossref_primary_10_1177_15330338221131647 crossref_primary_10_1016_j_semcancer_2023_02_002 crossref_primary_10_1186_s12935_020_01526_y crossref_primary_10_3389_fimmu_2020_01371 crossref_primary_10_2174_1386207324666210125110732 crossref_primary_10_3390_pharmaceutics14061118 crossref_primary_10_1038_s41419_021_03825_2 crossref_primary_10_1016_j_canlet_2020_02_003 crossref_primary_10_1007_s00394_020_02420_z crossref_primary_10_7554_eLife_79543 crossref_primary_10_1016_j_canlet_2017_06_005 crossref_primary_10_3390_ijms232112941 crossref_primary_10_1016_j_semcdb_2017_01_004 crossref_primary_10_1186_s12943_020_01278_3 crossref_primary_10_1002_pmic_201800180 crossref_primary_10_1016_j_clbc_2022_05_004 crossref_primary_10_1002_cbf_3695 crossref_primary_10_1002_jex2_94 crossref_primary_10_1016_j_virol_2023_02_012 crossref_primary_10_3390_membranes11100779 crossref_primary_10_2217_fon_2017_0343 crossref_primary_10_3892_ijo_2019_4742 crossref_primary_10_3390_cancers15072014 crossref_primary_10_3389_fcell_2023_1211833 crossref_primary_10_3390_biom12010132 crossref_primary_10_1038_s41388_018_0391_0 crossref_primary_10_1002_ijc_35055 crossref_primary_10_1016_j_intimp_2018_12_009 crossref_primary_10_1016_j_smim_2017_12_003 crossref_primary_10_3390_ijms21103573 crossref_primary_10_3390_ijms24087208 crossref_primary_10_1038_s41467_021_23946_8 crossref_primary_10_3390_jpm11100971 crossref_primary_10_1002_ijc_32343 crossref_primary_10_3389_fimmu_2023_1204224 crossref_primary_10_2147_IJN_S272378 |
Cites_doi | 10.4049/jimmunol.179.3.1489 10.1073/pnas.0804543106 10.4049/jimmunol.0903225 10.1016/j.cell.2006.11.001 10.1371/journal.pone.0005219 10.1073/pnas.1220998110 10.1371/journal.pone.0066388 10.1074/mcp.M900152-MCP200 10.1038/ncb3169 10.3181/00379727-77-18779 10.1038/cddis.2015.162 10.3402/jev.v4.26316 10.1002/jcp.22773 10.1038/nri855 10.1016/0022-1759(94)90236-4 10.1111/j.1365-2567.2007.02587.x 10.1038/nrc3581 10.1007/s10555-013-9420-1 10.2353/ajpath.2010.090777 10.1016/j.biocel.2012.06.018 10.1200/JCO.2014.55.4139 10.1038/ncb1725 10.1016/j.cell.2011.02.013 10.1038/nm.2753 10.1016/j.bbagen.2012.03.017 10.1002/ijc.28622 10.1053/j.gastro.2007.02.043 10.1002/ijc.24249 10.4049/jimmunol.0900970 10.1038/mt.2010.105 10.3322/caac.21208 10.1006/gyno.2001.6551 10.1084/jem.20011624 10.3402/jev.v4.27031 10.1038/nature15756 10.1158/0008-5472.CAN-06-1819 10.1097/CJI.0b013e318242169f 10.1038/ncb1800 10.1038/nm.2830 10.1016/j.ygyno.2008.04.033 10.1158/0008-5472.CAN-11-3873 10.1158/0008-5472.CAN-14-3000 10.2217/nnm.12.173 10.1002/smll.201001129 10.1038/mt.2011.164 10.1186/1479-5876-6-37 10.1038/ncb3015 10.1038/onc.2008.382 10.4161/onci.22355 |
ContentType | Journal Article |
Copyright | 2016 American Association for Cancer Research. |
Copyright_xml | – notice: 2016 American Association for Cancer Research. |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 7T5 H94 |
DOI | 10.1158/0008-5472.can-16-0868 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef MEDLINE - Academic Immunology Abstracts AIDS and Cancer Research Abstracts |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef MEDLINE - Academic AIDS and Cancer Research Abstracts Immunology Abstracts |
DatabaseTitleList | CrossRef MEDLINE MEDLINE - Academic AIDS and Cancer Research Abstracts |
Database_xml | – sequence: 1 dbid: ECM name: MEDLINE url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1538-7445 |
EndPage | 6827 |
ExternalDocumentID | 10_1158_0008_5472_CAN_16_0868 27760789 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -ET 18M 29B 2WC 34G 39C 476 53G 5GY 5RE 5VS 6J9 ABOCM ACGFO ACIWK ACPRK ACSVP ADBBV ADCOW ADNWM AENEX AFHIN AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS BAWUL BTFSW CGR CS3 CUY CVF DIK DU5 EBS ECM EIF EJD F5P FRP GX1 H13 IH2 KQ8 L7B LSO NPM OK1 P0W P2P PQQKQ RCR RHF RHI RNS SJN TR2 W2D W8F WH7 WOQ YKV YZZ AAYXX CITATION 7X8 7T5 H94 |
ID | FETCH-LOGICAL-c507t-a178ff2e21074beb986bde682de7193c483a8f8e202305e9c176ada8d615f32e3 |
ISSN | 0008-5472 |
IngestDate | Fri Oct 25 05:47:10 EDT 2024 Fri Oct 25 09:13:31 EDT 2024 Thu Sep 26 17:02:44 EDT 2024 Sat Sep 28 08:47:02 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 23 |
Language | English |
License | 2016 American Association for Cancer Research. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c507t-a178ff2e21074beb986bde682de7193c483a8f8e202305e9c176ada8d615f32e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://doi.org/10.1158/0008-5472.22412717 |
PMID | 27760789 |
PQID | 1835504352 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_1872824496 proquest_miscellaneous_1835504352 crossref_primary_10_1158_0008_5472_CAN_16_0868 pubmed_primary_27760789 |
PublicationCentury | 2000 |
PublicationDate | 2016-12-01 |
PublicationDateYYYYMMDD | 2016-12-01 |
PublicationDate_xml | – month: 12 year: 2016 text: 2016-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Cancer research (Chicago, Ill.) |
PublicationTitleAlternate | Cancer Res |
PublicationYear | 2016 |
References | Roberts (2022061706063703000_bib27) 2010; 6 Moller (2022061706063703000_bib20) 2009; 28 Gupta (2022061706063703000_bib35) 2006; 127 Peinado (2022061706063703000_bib15) 2012; 18 Hanahan (2022061706063703000_bib4) 2011; 144 Segura (2022061706063703000_bib43) 2007; 179 Jiang (2022061706063703000_bib52) 2015; 6 Sceneay (2022061706063703000_bib30) 2012; 72 Ciravolo (2022061706063703000_bib9) 2012; 227 Chan (2022061706063703000_bib29) 2010; 184 McAllister (2022061706063703000_bib3) 2014; 16 Logozzi (2022061706063703000_bib31) 2009; 4 Hoshino (2022061706063703000_bib24) 2015; 527 Andreola (2022061706063703000_bib53) 2002; 195 Lobb (2022061706063703000_bib23) 2015; 4 Zhuang (2022061706063703000_bib39) 2011; 19 Al-Nedawi (2022061706063703000_bib7) 2009; 106 Talmadge (2022061706063703000_bib34) 2013; 13 Ichim (2022061706063703000_bib55) 2008; 6 Mallegol (2022061706063703000_bib41) 2007; 132 Kucharzewska (2022061706063703000_bib10) 2013; 110 Kim (2022061706063703000_bib40) 2007; 121 Montero (2022061706063703000_bib47) 2012; 35 Thery (2022061706063703000_bib5) 2002; 2 Casey (2022061706063703000_bib19) 1951; 77 Chafe (2022061706063703000_bib48) 2015; 75 Bidwell (2022061706063703000_bib18) 2012; 18 Pulaski (2022061706063703000_bib21) 2001 Hoshino (2022061706063703000_bib36) 2015; 527 Wiklander (2022061706063703000_bib37) 2015; 4 Valenti (2022061706063703000_bib51) 2006; 66 Taylor (2022061706063703000_bib32) 2002; 84 de Vrij (2022061706063703000_bib26) 2013; 8 Isin (2022061706063703000_bib44) 2015; 6 Lyons (2022061706063703000_bib28) 1994; 171 Al-Nedawi (2022061706063703000_bib8) 2008; 10 Xiang (2022061706063703000_bib17) 2009; 124 Costa-Silva (2022061706063703000_bib12) 2015; 17 Sceneay (2022061706063703000_bib13) 2013; 2 Vlassov (2022061706063703000_bib6) 2012; 1820 Sceneay (2022061706063703000_bib22) 2013; 8 Wen (2022061706063703000_bib11) 2014; 38 Taylor (2022061706063703000_bib16) 2003; 9 Siegel (2022061706063703000_bib1) 2014; 64 Liu (2022061706063703000_bib50) 2010; 176 Mathivanan (2022061706063703000_bib25) 2010; 9 Sledge (2022061706063703000_bib2) 2014; 32 Raber (2022061706063703000_bib33) 2014; 134 Taylor (2022061706063703000_bib46) 2008; 110 Chalmin (2022061706063703000_bib49) 2010; 120 Wieckowski (2022061706063703000_bib54) 2009; 183 Sceneay (2022061706063703000_bib14) 2013; 32 Skog (2022061706063703000_bib45) 2008; 10 Sun (2022061706063703000_bib38) 2010; 18 Rana (2022061706063703000_bib42) 2012; 44 |
References_xml | – volume: 179 start-page: 1489 year: 2007 ident: 2022061706063703000_bib43 article-title: CD8+ dendritic cells use LFA-1 to capture MHC-peptide complexes from exosomes in vivo publication-title: J Immunol doi: 10.4049/jimmunol.179.3.1489 contributor: fullname: Segura – volume: 106 start-page: 3794 year: 2009 ident: 2022061706063703000_bib7 article-title: Endothelial expression of autocrine VEGF upon the uptake of tumor-derived microvesicles containing oncogenic EGFR publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0804543106 contributor: fullname: Al-Nedawi – volume: 184 start-page: 902 year: 2010 ident: 2022061706063703000_bib29 article-title: DNAM-1/CD155 interactions promote cytokine and NK cell-mediated suppression of poorly immunogenic melanoma metastases publication-title: J Immunol doi: 10.4049/jimmunol.0903225 contributor: fullname: Chan – volume: 127 start-page: 679 year: 2006 ident: 2022061706063703000_bib35 article-title: Cancer metastasis: building a framework publication-title: Cell doi: 10.1016/j.cell.2006.11.001 contributor: fullname: Gupta – volume: 4 start-page: e5219 year: 2009 ident: 2022061706063703000_bib31 article-title: High levels of exosomes expressing CD63 and caveolin-1 in plasma of melanoma patients publication-title: PloS One doi: 10.1371/journal.pone.0005219 contributor: fullname: Logozzi – volume: 110 start-page: 7312 year: 2013 ident: 2022061706063703000_bib10 article-title: Exosomes reflect the hypoxic status of glioma cells and mediate hypoxia-dependent activation of vascular cells during tumor development publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1220998110 contributor: fullname: Kucharzewska – volume: 8 start-page: e66388 year: 2013 ident: 2022061706063703000_bib22 article-title: The antioxidant N-acetylcysteine prevents HIF-1 stabilization under hypoxia in vitro but does not affect tumorigenesis in multiple breast cancer models in vivo publication-title: PloS ONE doi: 10.1371/journal.pone.0066388 contributor: fullname: Sceneay – volume: 38 start-page: 116 year: 2014 ident: 2022061706063703000_bib11 article-title: Exosomes in cancer metastasis: novel targets for diagnosis and therapy? publication-title: Cancer Forum, Cancer Council Australia contributor: fullname: Wen – volume: 9 start-page: 197 year: 2010 ident: 2022061706063703000_bib25 article-title: Proteomics analysis of A33 immunoaffinity-purified exosomes released from the human colon tumor cell line LIM1215 reveals a tissue-specific protein signature publication-title: Mol Cell Proteomics doi: 10.1074/mcp.M900152-MCP200 contributor: fullname: Mathivanan – volume: 17 start-page: 816 year: 2015 ident: 2022061706063703000_bib12 article-title: Pancreatic cancer exosomes initiate pre-metastatic niche formation in the liver publication-title: Nat Cell Biol doi: 10.1038/ncb3169 contributor: fullname: Costa-Silva – volume: 77 start-page: 358 year: 1951 ident: 2022061706063703000_bib19 article-title: Sustained enhanced growth of carcinoma EO771 in C57 black mice publication-title: Exp Biol Med doi: 10.3181/00379727-77-18779 contributor: fullname: Casey – volume: 6 start-page: e1792 year: 2015 ident: 2022061706063703000_bib52 article-title: T-cell exhaustion in the tumor microenvironment publication-title: Cell Death Dis doi: 10.1038/cddis.2015.162 contributor: fullname: Jiang – volume: 4 start-page: 26316 year: 2015 ident: 2022061706063703000_bib37 article-title: Extracellular vesicle in vivo biodistribution is determined by cell source, route of administration and targeting publication-title: J Extracellular Vesicles doi: 10.3402/jev.v4.26316 contributor: fullname: Wiklander – volume: 227 start-page: 658 year: 2012 ident: 2022061706063703000_bib9 article-title: Potential role of HER2-overexpressing exosomes in countering trastuzumab-based therapy publication-title: J Cell Physiol doi: 10.1002/jcp.22773 contributor: fullname: Ciravolo – volume: 2 start-page: 569 year: 2002 ident: 2022061706063703000_bib5 article-title: Exosomes: composition, biogenesis and function publication-title: Nat Rev Immunol doi: 10.1038/nri855 contributor: fullname: Thery – volume: 171 start-page: 131 year: 1994 ident: 2022061706063703000_bib28 article-title: Determination of lymphocyte division by flow cytometry publication-title: J Immunol Methods doi: 10.1016/0022-1759(94)90236-4 contributor: fullname: Lyons – volume: 121 start-page: 1 year: 2007 ident: 2022061706063703000_bib40 article-title: Cancer immunoediting from immune surveillance to immune escape publication-title: Immunology doi: 10.1111/j.1365-2567.2007.02587.x contributor: fullname: Kim – volume: 13 start-page: 739 year: 2013 ident: 2022061706063703000_bib34 article-title: History of myeloid-derived suppressor cells publication-title: Nat Rev Cancer doi: 10.1038/nrc3581 contributor: fullname: Talmadge – volume: 32 start-page: 449 year: 2013 ident: 2022061706063703000_bib14 article-title: The pre-metastatic niche: finding common ground publication-title: Cancer Metastasis Rev doi: 10.1007/s10555-013-9420-1 contributor: fullname: Sceneay – volume: 176 start-page: 2490 year: 2010 ident: 2022061706063703000_bib50 article-title: Contribution of MyD88 to the tumor exosome-mediated induction of myeloid derived suppressor cells publication-title: Am J Pathol doi: 10.2353/ajpath.2010.090777 contributor: fullname: Liu – volume: 44 start-page: 1574 year: 2012 ident: 2022061706063703000_bib42 article-title: Toward tailored exosomes: the exosomal tetraspanin web contributes to target cell selection publication-title: Int J Biochem Cell Biol doi: 10.1016/j.biocel.2012.06.018 contributor: fullname: Rana – volume: 9 start-page: 5113 year: 2003 ident: 2022061706063703000_bib16 article-title: T-cell apoptosis and suppression of T-cell receptor/CD3-zeta by Fas ligand-containing membrane vesicles shed from ovarian tumors publication-title: Clin Cancer Res contributor: fullname: Taylor – volume: 120 start-page: 457 year: 2010 ident: 2022061706063703000_bib49 article-title: Membrane-associated Hsp72 from tumor-derived exosomes mediates STAT3-dependent immunosuppressive function of mouse and human myeloid-derived suppressor cells publication-title: J Clin Invest contributor: fullname: Chalmin – volume: 32 start-page: 1979 year: 2014 ident: 2022061706063703000_bib2 article-title: Past, present, and future challenges in breast cancer treatment publication-title: J Clin Oncol doi: 10.1200/JCO.2014.55.4139 contributor: fullname: Sledge – volume: 10 start-page: 619 year: 2008 ident: 2022061706063703000_bib8 article-title: Intercellular transfer of the oncogenic receptor EGFRvIII by microvesicles derived from tumour cells publication-title: Nat Cell Biol doi: 10.1038/ncb1725 contributor: fullname: Al-Nedawi – volume: 144 start-page: 646 year: 2011 ident: 2022061706063703000_bib4 article-title: Hallmarks of cancer: the next generation publication-title: Cell doi: 10.1016/j.cell.2011.02.013 contributor: fullname: Hanahan – volume: 18 start-page: 883 year: 2012 ident: 2022061706063703000_bib15 article-title: Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET publication-title: Nat Med doi: 10.1038/nm.2753 contributor: fullname: Peinado – volume: 1820 start-page: 940 year: 2012 ident: 2022061706063703000_bib6 article-title: Exosomes: current knowledge of their composition, biological functions, and diagnostic and therapeutic potentials publication-title: Biochim Biophys Acta doi: 10.1016/j.bbagen.2012.03.017 contributor: fullname: Vlassov – volume: 134 start-page: 2853 year: 2014 ident: 2022061706063703000_bib33 article-title: Subpopulations of myeloid-derived suppressor cells impair T cell responses through independent nitric oxide-related pathways publication-title: Int J Cancer doi: 10.1002/ijc.28622 contributor: fullname: Raber – volume: 132 start-page: 1866 year: 2007 ident: 2022061706063703000_bib41 article-title: T84-intestinal epithelial exosomes bear MHC class II/peptide complexes potentiating antigen presentation by dendritic cells publication-title: Gastroenterology doi: 10.1053/j.gastro.2007.02.043 contributor: fullname: Mallegol – volume: 124 start-page: 2621 year: 2009 ident: 2022061706063703000_bib17 article-title: Induction of myeloid-derived suppressor cells by tumor exosomes publication-title: Int J Cancer doi: 10.1002/ijc.24249 contributor: fullname: Xiang – volume: 183 start-page: 3720 year: 2009 ident: 2022061706063703000_bib54 article-title: Tumor-derived microvesicles promote regulatory T cell expansion and induce apoptosis in tumor-reactive activated CD8+ T lymphocytes publication-title: J Immunol doi: 10.4049/jimmunol.0900970 contributor: fullname: Wieckowski – volume: 18 start-page: 1606 year: 2010 ident: 2022061706063703000_bib38 article-title: A novel nanoparticle drug delivery system: the anti-inflammatory activity of curcumin is enhanced when encapsulated in exosomes publication-title: Mol Ther doi: 10.1038/mt.2010.105 contributor: fullname: Sun – volume: 64 start-page: 9 year: 2014 ident: 2022061706063703000_bib1 article-title: Cancer statistics, 2014 publication-title: CA Cancer J Clin doi: 10.3322/caac.21208 contributor: fullname: Siegel – volume: 84 start-page: 443 year: 2002 ident: 2022061706063703000_bib32 article-title: Shed membrane fragment-associated markers for endometrial and ovarian cancers publication-title: Gynecol Oncol doi: 10.1006/gyno.2001.6551 contributor: fullname: Taylor – volume: 195 start-page: 1303 year: 2002 ident: 2022061706063703000_bib53 article-title: Induction of lymphocyte apoptosis by tumor cell secretion of FasL-bearing microvesicles publication-title: J Exp Med doi: 10.1084/jem.20011624 contributor: fullname: Andreola – volume: 4 start-page: 27031 year: 2015 ident: 2022061706063703000_bib23 article-title: Optimized exosome isolation protocol for cell culture supernatant and human plasma publication-title: J Extracellular Vesicles doi: 10.3402/jev.v4.27031 contributor: fullname: Lobb – volume: 527 start-page: 329 year: 2015 ident: 2022061706063703000_bib36 article-title: Tumour exosome integrins determine organotropic metastasis publication-title: Nature doi: 10.1038/nature15756 contributor: fullname: Hoshino – volume: 66 start-page: 9290 year: 2006 ident: 2022061706063703000_bib51 article-title: Human tumor-released microvesicles promote the differentiation of myeloid cells with transforming growth factor-beta-mediated suppressive activity on T lymphocytes publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-06-1819 contributor: fullname: Valenti – volume: 527 start-page: 329 year: 2015 ident: 2022061706063703000_bib24 article-title: Tumour exosome integrins determine organotropic metastasis publication-title: Nature doi: 10.1038/nature15756 contributor: fullname: Hoshino – volume: 35 start-page: 107 year: 2012 ident: 2022061706063703000_bib47 article-title: Myeloid-derived suppressor cells in cancer patients: a clinical perspective publication-title: J Immunother doi: 10.1097/CJI.0b013e318242169f contributor: fullname: Montero – volume: 10 start-page: 1470 year: 2008 ident: 2022061706063703000_bib45 article-title: Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers publication-title: Nat Cell Biol doi: 10.1038/ncb1800 contributor: fullname: Skog – volume: 18 start-page: 1224 year: 2012 ident: 2022061706063703000_bib18 article-title: Silencing of Irf7 pathways in breast cancer cells promotes bone metastasis through immune escape publication-title: Nat Med doi: 10.1038/nm.2830 contributor: fullname: Bidwell – volume: 110 start-page: 13 year: 2008 ident: 2022061706063703000_bib46 article-title: MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer publication-title: Gynecol Oncol doi: 10.1016/j.ygyno.2008.04.033 contributor: fullname: Taylor – volume: 6 start-page: 168 year: 2015 ident: 2022061706063703000_bib44 article-title: Exosomal lncRNA-p21 levels may help to distinguish prostate cancer from benign disease publication-title: Front Genet contributor: fullname: Isin – volume: 72 start-page: 3906 year: 2012 ident: 2022061706063703000_bib30 article-title: Primary tumor hypoxia recruits CD11b+/Ly6Cmed/Ly6G+ immune suppressor cells and compromises NK cell cytotoxicity in the premetastatic niche publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-11-3873 contributor: fullname: Sceneay – volume: 75 start-page: 996 year: 2015 ident: 2022061706063703000_bib48 article-title: Carbonic anhydrase IX promotes myeloid-derived suppressor cell mobilization and establishment of a metastatic niche by stimulating G-CSF production publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-14-3000 contributor: fullname: Chafe – volume: 8 start-page: 1443 year: 2013 ident: 2022061706063703000_bib26 article-title: Quantification of nanosized extracellular membrane vesicles with scanning ion occlusion sensing publication-title: Nanomedicine doi: 10.2217/nnm.12.173 contributor: fullname: de Vrij – volume: 6 start-page: 2653 year: 2010 ident: 2022061706063703000_bib27 article-title: Tunable nano/micropores for particle detection and discrimination: scanning ion occlusion spectroscopy publication-title: Small doi: 10.1002/smll.201001129 contributor: fullname: Roberts – volume: 19 start-page: 1769 year: 2011 ident: 2022061706063703000_bib39 article-title: Treatment of brain inflammatory diseases by delivering exosome encapsulated anti-inflammatory drugs from the nasal region to the brain publication-title: Mol Ther doi: 10.1038/mt.2011.164 contributor: fullname: Zhuang – volume: 6 start-page: 37 year: 2008 ident: 2022061706063703000_bib55 article-title: Exosomes as a tumor immune escape mechanism: possible therapeutic implications publication-title: J Translat Med doi: 10.1186/1479-5876-6-37 contributor: fullname: Ichim – start-page: 2 volume-title: Current protocols in immunology/edited by John E Coligan [et al] year: 2001 ident: 2022061706063703000_bib21 article-title: Mouse 4T1 breast tumor model contributor: fullname: Pulaski – volume: 16 start-page: 717 year: 2014 ident: 2022061706063703000_bib3 article-title: The tumour-induced systemic environment as a critical regulator of cancer progression and metastasis publication-title: Nat Cell Biol doi: 10.1038/ncb3015 contributor: fullname: McAllister – volume: 28 start-page: 289 year: 2009 ident: 2022061706063703000_bib20 article-title: Inhibition of Siah ubiquitin ligase function publication-title: Oncogene doi: 10.1038/onc.2008.382 contributor: fullname: Moller – volume: 2 start-page: e22355 year: 2013 ident: 2022061706063703000_bib13 article-title: Hypoxia-driven immunosuppression contributes to the pre-metastatic niche publication-title: Oncoimmunology doi: 10.4161/onci.22355 contributor: fullname: Sceneay |
SSID | ssj0005105 |
Score | 2.6506336 |
Snippet | Small membranous secretions from tumor cells, termed exosomes, contribute significantly to intercellular communication and subsequent reprogramming of the... Abstract Small membranous secretions from tumor cells, termed exosomes, contribute significantly to intercellular communication and subsequent reprogramming of... This study shows how breast cancer-derived exosomes accumulate in premetastatic organs, impact immune cell character and activity, and promote metastatic... |
SourceID | proquest crossref pubmed |
SourceType | Aggregation Database Index Database |
StartPage | 6816 |
SubjectTerms | Animals Breast Neoplasms - immunology Breast Neoplasms - pathology Cell Proliferation Exosomes - metabolism Female Humans Immunosuppression - methods Mice Mice, Inbred BALB C Mice, Inbred C57BL |
Title | The Biodistribution and Immune Suppressive Effects of Breast Cancer-Derived Exosomes |
URI | https://www.ncbi.nlm.nih.gov/pubmed/27760789 https://search.proquest.com/docview/1835504352 https://search.proquest.com/docview/1872824496 |
Volume | 76 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9swFBZpB2MvY_dmNzTYm1EXy7YkP7aJS8ey7CEu7ZuRLZkGMns0cdj263dk2ZW7G93DXkwQRgrnfJyL9Z1zEHoL65IrXRAhywkJ40lB4kDmJKAxp5Bs-7Jt13S65IsLMUvCZDTqNe3W_qumYQ10bSpn_0Hb15vCAvwGncMTtA7PW-v9eFUr0xC3m2VlOb-mEER7ZopnS33daS9xXI5jw03felODgSsygz-6g0g0-Vpv6r5ExLUzgFe8rknQZXsLbOkcrblZrw8HHxfOrVFbXjbeuas5WxZgYKUdlSyL9TfHClp9bmPZebP6DuitKwDQzpEce_qwbYiwqqS37IjJ3WcLnw0oINqZWh7aZpK9LbazYDrM0WBgWZnw2cBLM2FbCvzqASJhKZOCRCGnkOVXBE6HzE04l9df8y8-ZSdn83mWJhfpHrpDwVgZWujs_QdHE4IAtKv8gq3f_XbjmzHNHxKVNmBJH6D7XaaBjyxEHqKRrh6hux87LsVjlAJS8E9IwYAUbJGCB0jBHVJwXWKLFHwTKbhHyhN0dpKk01PSzdggBWQCWyJ9LsqSamqIubnOY8FypUG6SnOI7YtQBFKUQlOTq0Y6LnzOpJJCQSRcBlQHT9F-VVf6AOFCsYIHPC_BiYQqlkJrbq6lFWw50ZNojA57KWVfbCuVrE1BI2EoECIzYs2mR4vMZ5kR6xi96WWZgdEzN1my0nWzycAPRab1XkT_9g6nAoLXmI3RM6uI62Mp58zMWXh-ixNeoHsOvy_R_vaq0a_Q3kY1r1uk_ABMuYg_ |
link.rule.ids | 315,782,786,27935,27936 |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Biodistribution+and+Immune+Suppressive+Effects+of+Breast+Cancer-Derived+Exosomes&rft.jtitle=Cancer+research+%28Chicago%2C+Ill.%29&rft.au=Wen%2C+Shu+Wen&rft.au=Sceneay%2C+Jaclyn&rft.au=Lima%2C+Luize+Goncalves&rft.au=Wong%2C+Christina+S+F&rft.date=2016-12-01&rft.eissn=1538-7445&rft.volume=76&rft.issue=23&rft.spage=6816&rft.epage=6827&rft_id=info:doi/10.1158%2F0008-5472.can-16-0868&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0008-5472&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0008-5472&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0008-5472&client=summon |