Selective integration of diverse taste inputs within a single taste modality
A fundamental question in sensory processing is how different channels of sensory input are processed to regulate behavior. Different input channels may converge onto common downstream pathways to drive the same behaviors, or they may activate separate pathways to regulate distinct behaviors. We inv...
Saved in:
Published in: | eLife Vol. 12 |
---|---|
Main Authors: | , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
England
eLife Science Publications, Ltd
24-01-2023
eLife Sciences Publications Ltd eLife Sciences Publications, Ltd |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | A fundamental question in sensory processing is how different channels of sensory input are processed to regulate behavior. Different input channels may converge onto common downstream pathways to drive the same behaviors, or they may activate separate pathways to regulate distinct behaviors. We investigated this question in the
bitter taste system, which contains diverse bitter-sensing cells residing in different taste organs. First, we optogenetically activated subsets of bitter neurons within each organ. These subsets elicited broad and highly overlapping behavioral effects, suggesting that they converge onto common downstream pathways, but we also observed behavioral differences that argue for biased convergence. Consistent with these results, transsynaptic tracing revealed that bitter neurons in different organs connect to overlapping downstream pathways with biased connectivity. We investigated taste processing in one type of downstream bitter neuron that projects to the higher brain. These neurons integrate input from multiple organs and regulate specific taste-related behaviors. We then traced downstream circuits, providing the first glimpse into taste processing in the higher brain. Together, these results reveal that different bitter inputs are selectively integrated early in the circuit, enabling the pooling of information, while the circuit then diverges into multiple pathways that may have different roles. |
---|---|
AbstractList | A fundamental question in sensory processing is how different channels of sensory input are processed to regulate behavior. Different input channels may converge onto common downstream pathways to drive the same behaviors, or they may activate separate pathways to regulate distinct behaviors. We investigated this question in the Drosophila bitter taste system, which contains diverse bitter-sensing cells residing in different taste organs. First, we optogenetically activated subsets of bitter neurons within each organ. These subsets elicited broad and highly overlapping behavioral effects, suggesting that they converge onto common downstream pathways, but we also observed behavioral differences that argue for biased convergence. Consistent with these results, transsynaptic tracing revealed that bitter neurons in different organs connect to overlapping downstream pathways with biased connectivity. We investigated taste processing in one type of downstream bitter neuron that projects to the higher brain. These neurons integrate input from multiple organs and regulate specific taste-related behaviors. We then traced downstream circuits, providing the first glimpse into taste processing in the higher brain. Together, these results reveal that different bitter inputs are selectively integrated early in the circuit, enabling the pooling of information, while the circuit then diverges into multiple pathways that may have different roles.A fundamental question in sensory processing is how different channels of sensory input are processed to regulate behavior. Different input channels may converge onto common downstream pathways to drive the same behaviors, or they may activate separate pathways to regulate distinct behaviors. We investigated this question in the Drosophila bitter taste system, which contains diverse bitter-sensing cells residing in different taste organs. First, we optogenetically activated subsets of bitter neurons within each organ. These subsets elicited broad and highly overlapping behavioral effects, suggesting that they converge onto common downstream pathways, but we also observed behavioral differences that argue for biased convergence. Consistent with these results, transsynaptic tracing revealed that bitter neurons in different organs connect to overlapping downstream pathways with biased connectivity. We investigated taste processing in one type of downstream bitter neuron that projects to the higher brain. These neurons integrate input from multiple organs and regulate specific taste-related behaviors. We then traced downstream circuits, providing the first glimpse into taste processing in the higher brain. Together, these results reveal that different bitter inputs are selectively integrated early in the circuit, enabling the pooling of information, while the circuit then diverges into multiple pathways that may have different roles. A fundamental question in sensory processing is how different channels of sensory input are processed to regulate behavior. Different input channels may converge onto common downstream pathways to drive the same behaviors, or they may activate separate pathways to regulate distinct behaviors. We investigated this question in the Drosophila bitter taste system, which contains diverse bitter-sensing cells residing in different taste organs. First, we optogenetically activated subsets of bitter neurons within each organ. These subsets elicited broad and highly overlapping behavioral effects, suggesting that they converge onto common downstream pathways, but we also observed behavioral differences that argue for biased convergence. Consistent with these results, transsynaptic tracing revealed that bitter neurons in different organs connect to overlapping downstream pathways with biased connectivity. We investigated taste processing in one type of downstream bitter neuron that projects to the higher brain. These neurons integrate input from multiple organs and regulate specific taste-related behaviors. We then traced downstream circuits, providing the first glimpse into taste processing in the higher brain. Together, these results reveal that different bitter inputs are selectively integrated early in the circuit, enabling the pooling of information, while the circuit then diverges into multiple pathways that may have different roles. A fundamental question in sensory processing is how different channels of sensory input are processed to regulate behavior. Different input channels may converge onto common downstream pathways to drive the same behaviors, or they may activate separate pathways to regulate distinct behaviors. We investigated this question in the Drosophila bitter taste system, which contains diverse bitter-sensing cells residing in different taste organs. First, we optogenetically activated subsets of bitter neurons within each organ. These subsets elicited broad and highly overlapping behavioral effects, suggesting that they converge onto common downstream pathways, but we also observed behavioral differences that argue for biased convergence. Consistent with these results, transsynaptic tracing revealed that bitter neurons in different organs connect to overlapping downstream pathways with biased connectivity. We investigated taste processing in one type of downstream bitter neuron that projects to the higher brain. These neurons integrate input from multiple organs and regulate specific taste-related behaviors. We then traced downstream circuits, providing the first glimpse into taste processing in the higher brain. Together, these results reveal that different bitter inputs are selectively integrated early in the circuit, enabling the pooling of information, while the circuit then diverges into multiple pathways that may have different roles. A fundamental question in sensory processing is how different channels of sensory input are processed to regulate behavior. Different input channels may converge onto common downstream pathways to drive the same behaviors, or they may activate separate pathways to regulate distinct behaviors. We investigated this question in the bitter taste system, which contains diverse bitter-sensing cells residing in different taste organs. First, we optogenetically activated subsets of bitter neurons within each organ. These subsets elicited broad and highly overlapping behavioral effects, suggesting that they converge onto common downstream pathways, but we also observed behavioral differences that argue for biased convergence. Consistent with these results, transsynaptic tracing revealed that bitter neurons in different organs connect to overlapping downstream pathways with biased connectivity. We investigated taste processing in one type of downstream bitter neuron that projects to the higher brain. These neurons integrate input from multiple organs and regulate specific taste-related behaviors. We then traced downstream circuits, providing the first glimpse into taste processing in the higher brain. Together, these results reveal that different bitter inputs are selectively integrated early in the circuit, enabling the pooling of information, while the circuit then diverges into multiple pathways that may have different roles. |
Audience | Academic |
Author | Deere, Julia U Yang, Meifeng Ravi, Kaushiki Sarkissian, Arvin A Martinez Santana, Nicole Nguyen, Lam Devineni, Anita V Uttley, Hannah A |
Author_xml | – sequence: 1 givenname: Julia U surname: Deere fullname: Deere, Julia U organization: Zuckerman Mind Brain Behavior Institute, Columbia University, New York, United States – sequence: 2 givenname: Arvin A orcidid: 0000-0002-6663-2989 surname: Sarkissian fullname: Sarkissian, Arvin A organization: Neuroscience Graduate Program, Emory University, Atlanta, United States – sequence: 3 givenname: Meifeng surname: Yang fullname: Yang, Meifeng organization: Department of Biology, Emory University, Atlanta, United States – sequence: 4 givenname: Hannah A orcidid: 0000-0003-0573-6546 surname: Uttley fullname: Uttley, Hannah A organization: Zuckerman Mind Brain Behavior Institute, Columbia University, New York, United States – sequence: 5 givenname: Nicole surname: Martinez Santana fullname: Martinez Santana, Nicole organization: Zuckerman Mind Brain Behavior Institute, Columbia University, New York, United States – sequence: 6 givenname: Lam surname: Nguyen fullname: Nguyen, Lam organization: Department of Biology, Emory University, Atlanta, United States – sequence: 7 givenname: Kaushiki surname: Ravi fullname: Ravi, Kaushiki organization: Department of Biology, Emory University, Atlanta, United States – sequence: 8 givenname: Anita V orcidid: 0000-0001-9540-8655 surname: Devineni fullname: Devineni, Anita V organization: Department of Biology, Emory University, Atlanta, United States |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36692370$$D View this record in MEDLINE/PubMed |
BookMark | eNptkt1rFDEUxQep2Fr75LsM-KLIrpkkk8y8CKX4sbAgWAXfQj5upllmkzXJVPvfm91tl66YPCTc-8sJOTnPqxMfPFTVywbNedvS97B0FuYd7Vr2pDrDqEUz1NGfJ4_2p9VFSitUBqdd1_TPqlPCWI8JR2fV8hpG0NndQu18hiHK7IKvg61NqcUEdZYpb5ubKaf6t8s3zteyTs4P40NzHYwcXb57UT21ckxwcb-eVz8-ffx-9WW2_Pp5cXW5nOkWsTwzCjUKt0SCtqq1CqEGUSx1a6TU3FjKDDG8k11vKMfISg1EMoWxRkRBr8l5tdjrmiBXYhPdWsY7EaQTu0KIg5AxOz2CaBkoy5QGVKwwEivVU4YZB8VpKdKi9WGvtZnUGowGn6Mcj0SPO97diCHcir7jBLe8CLy5F4jh1wQpi7VLGsZReghTEpiznpS_Qlv09T_oKkzRF6sKxRvc9ajYcqAGWR7gvA3lXr0VFZecUEq6Ileo-X-oMg2snS4hsa7Ujw68PTpQmAx_8iCnlMTi-tsx-27P6hhSimAPfjRIbHMndrkTu9wV-tVjCw_sQ8rIXw0Z1Sc |
CitedBy_id | crossref_primary_10_3389_fnut_2024_1394697 crossref_primary_10_1016_j_cois_2024_101182 |
Cites_doi | 10.1016/j.neuron.2018.10.027 10.1016/j.neuron.2017.03.009 10.1371/journal.pgen.1007059 10.1016/j.cell.2020.12.014 10.1016/s0092-8674(03)00004-7 10.1016/j.cub.2010.11.056 10.1016/j.cub.2010.07.045 10.1523/JNEUROSCI.1168-07.2007 10.1523/JNEUROSCI.3930-14.2015 10.1016/j.neuron.2019.01.045 10.1016/j.cois.2019.09.004 10.7554/eLife.24992 10.1038/s41586-018-0165-4 10.1016/j.cell.2022.10.012 10.7554/eLife.62576 10.1016/0166-2236(92)90344-8 10.1101/2022.05.13.491877 10.7554/eLife.37167 10.1038/s41586-020-2055-9 10.1016/j.cub.2020.06.042 10.1016/j.neuron.2017.10.011 10.3389/fphys.2018.00049 10.1534/genetics.112.142455 10.1016/j.cell.2017.04.028 10.1016/j.cub.2016.09.011 10.1016/j.neuron.2021.12.028 10.7554/eLife.04577 10.7554/eLife.04580 10.1073/pnas.2110641118 10.7554/eLife.16135 10.1113/jphysiol.1972.sp009719 10.1371/journal.pbio.3000712 10.1038/nature12354 10.1007/s00441-020-03264-z 10.1016/j.cub.2013.03.015 10.1038/ncomms10678 10.1016/j.neuron.2014.02.022 10.1016/j.neuron.2013.07.051 10.7554/eLife.64317 10.1038/ncomms7667 10.12688/f1000research.15580.1 10.1002/ar.1092270313 10.1016/j.celrep.2017.11.041 10.1038/nature04229 10.1038/nature12208 10.7554/eLife.66018 10.1038/ncomms5560 10.1016/j.cub.2022.07.048 10.1016/j.neuroscience.2017.08.039 10.1523/JNEUROSCI.0649-14.2014 10.7554/eLife.43924 10.7554/eLife.57443 10.1101/2021.09.23.461548 10.1016/j.cub.2010.08.025 10.1523/JNEUROSCI.21-05-01523.2001 10.1016/j.cub.2021.10.020 10.1101/2020.04.04.024703 10.1016/j.cub.2013.02.057 10.1038/s41586-021-04094-x 10.1146/annurev-ento-020117-043331 10.1016/j.cell.2016.02.061 10.1242/jeb.161646 10.1016/j.celrep.2019.04.069 10.1093/chemse/bjs082 10.1534/genetics.118.300682 10.1016/j.celrep.2019.09.036 10.1016/j.cell.2018.06.019 10.1007/978-3-319-10605-2 10.1016/j.cub.2014.12.058 10.1523/JNEUROSCI.1794-20.2021 10.1016/j.cub.2018.01.084 10.1016/j.cell.2012.03.045 10.1016/j.cell.2004.06.011 10.1007/s12038-014-9448-6 10.1016/j.cub.2014.05.078 10.1016/j.neuron.2013.12.017 10.1016/j.neuron.2005.11.037 10.7554/eLife.45636 10.1016/j.cois.2019.06.003 10.1016/j.celrep.2012.09.011 10.7554/eLife.19892 10.1126/science.1056670 10.1038/s41467-021-23490-5 10.1136/gutjnl-2013-305112 10.7554/eLife.47677 10.1038/nmeth.2836 10.7554/eLife.30115 10.1016/j.cub.2009.07.061 10.1073/pnas.2110158119 10.1016/j.neuron.2015.07.025 10.1016/j.bandl.2012.05.004 10.1016/j.neuron.2011.01.001 10.1101/2022.01.17.476660 10.7554/eLife.23386 10.1038/nmeth.4148 10.1146/annurev-biophys-052118-115655 |
ContentType | Journal Article |
Copyright | 2023, Deere et al. COPYRIGHT 2023 eLife Science Publications, Ltd. 2023, Deere et al. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023, Deere et al 2023 Deere et al |
Copyright_xml | – notice: 2023, Deere et al. – notice: COPYRIGHT 2023 eLife Science Publications, Ltd. – notice: 2023, Deere et al. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023, Deere et al 2023 Deere et al |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION ISR 3V. 7X7 7XB 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PIMPY PQEST PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.7554/eLife.84856 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Gale In Context: Science ProQuest Central (Corporate) ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials Biological Science Collection ProQuest Central ProQuest Natural Science Collection ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection (Proquest) (PQ_SDU_P3) ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) Science Database (ProQuest) Biological Science Database Publicly Available Content Database (Proquest) (PQ_SDU_P3) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) Directory of Open Access Journals |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Publicly Available Content Database ProQuest Central Student ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef Publicly Available Content Database MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: http://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: ECM name: MEDLINE url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2050-084X |
ExternalDocumentID | oai_doaj_org_article_56ebf6bce0084da2bb946267eb74ce04 A734438375 10_7554_eLife_84856 36692370 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: ; grantid: 2022-08-017 |
GroupedDBID | 3V. 53G 5VS 7X7 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAKDD ABUWG ACGFO ACGOD ACPRK ADBBV ADRAZ AENEX AFKRA ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI CCPQU CGR CUY CVF DIK DWQXO ECM EIF EMOBN FRP FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO IEA IHR INH INR ISR ITC KQ8 LK8 M1P M2P M48 M7P M~E NPM NQS OK1 PGMZT PIMPY PQQKQ PROAC PSQYO RHF RHI RNS RPM UKHRP AAYXX CITATION AFPKN 7XB 8FK K9. PQEST PQUKI PRINS Q9U 7X8 5PM |
ID | FETCH-LOGICAL-c506t-db01b253aecfb5fb001042ac5daac7df46d3d78a89d4720face3a6b22c03be9c3 |
IEDL.DBID | RPM |
ISSN | 2050-084X |
IngestDate | Tue Oct 22 15:17:12 EDT 2024 Tue Sep 17 21:30:19 EDT 2024 Sat Oct 26 04:01:05 EDT 2024 Mon Nov 18 10:25:54 EST 2024 Tue Nov 19 20:59:04 EST 2024 Tue Nov 12 22:17:39 EST 2024 Sat Sep 28 21:12:39 EDT 2024 Fri Nov 22 01:10:17 EST 2024 Sat Nov 02 12:12:33 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | sensory processing D. melanogaster neuroscience feeding neural circuits taste |
Language | English |
License | 2023, Deere et al. This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c506t-db01b253aecfb5fb001042ac5daac7df46d3d78a89d4720face3a6b22c03be9c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Rockefeller University, New York, United States. |
ORCID | 0000-0003-0573-6546 0000-0001-9540-8655 0000-0002-6663-2989 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9873257/ |
PMID | 36692370 |
PQID | 2771289025 |
PQPubID | 2045579 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_56ebf6bce0084da2bb946267eb74ce04 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9873257 proquest_miscellaneous_2769375507 proquest_journals_2771289025 gale_infotracmisc_A734438375 gale_infotracacademiconefile_A734438375 gale_incontextgauss_ISR_A734438375 crossref_primary_10_7554_eLife_84856 pubmed_primary_36692370 |
PublicationCentury | 2000 |
PublicationDate | 2023-01-24 |
PublicationDateYYYYMMDD | 2023-01-24 |
PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-24 day: 24 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Cambridge |
PublicationTitle | eLife |
PublicationTitleAlternate | Elife |
PublicationYear | 2023 |
Publisher | eLife Science Publications, Ltd eLife Sciences Publications Ltd eLife Sciences Publications, Ltd |
Publisher_xml | – name: eLife Science Publications, Ltd – name: eLife Sciences Publications Ltd – name: eLife Sciences Publications, Ltd |
References | Eyjolfsdottir (bib35) 2014 Chen (bib17) 2017; 21 Liman (bib60) 2014; 81 Chen (bib20) 2022; 119 Scott (bib77) 2018; 63 Yu (bib96) 2013; 23 Tauber (bib82) 2017; 13 Flood (bib36) 2013; 499 Emanuel (bib33) 2021; 600 Joseph (bib49) 2012; 192 Ito (bib43) 2013; 23 Ahn (bib2) 2017; 6 Joseph (bib50) 2017; 6 Mohammad (bib65) 2017; 14 Haverkamp (bib42) 2018; 9 Yao (bib93) 2022; 110 Tadres (bib79) 2020; 18 Aimon (bib3) 2022 Mahishi (bib62) 2019; 36 Caicedo (bib15) 2001; 291 Rayshubskiy (bib71) 2020 Zheng (bib97) 2018; 174 Baines (bib8) 2001; 21 Dweck (bib32) 2021; 10 Ito (bib44) 2014; 81 Wang (bib91) 2020; 579 Yapici (bib94) 2016; 165 Cachero (bib14) 2010; 20 Musso (bib69) 2019; 8 Jaeger (bib46) 2018; 7 Thistle (bib83) 2012; 149 Yu (bib95) 2010; 20 Fujii (bib37) 2015; 25 Moreira (bib67) 2019; 8 Devineni (bib28) 2019; 8 Amin (bib4) 2019; 36 Nässel (bib70) 2020; 382 Das (bib24) 2014; 24 Murata (bib68) 2017; 220 Aso (bib6) 2014; 3 Estebanez (bib34) 2018; 368 Rompani (bib72) 2017; 93 Clowney (bib23) 2015; 87 Ganguly (bib38) 2021; 118 Dethier (bib27) 1976 Itskov (bib45) 2014; 5 Li (bib59) 2020; 9 Depoortere (bib26) 2014; 63 Deng (bib25) 2019; 101 Aso (bib7) 2016; 5 Abraira (bib1) 2013; 79 Kwon (bib56) 2014; 39 Wang (bib89) 2004; 117 Dionne (bib30) 2018; 209 Moon (bib66) 2009; 19 Aso (bib5) 2014; 3 Bates (bib9) 2020; 30 Mi (bib64) 2021; 12 Scheffer (bib74) 2020; 9 Bohra (bib12) 2018; 28 Thoma (bib84) 2016; 7 Kim (bib51) 2017; 6 LeDue (bib57) 2015; 6 Jin (bib48) 2021; 184 Schlegel (bib75) 2021; 10 Vijayan (bib86) 2021 Boto (bib13) 2019; 27 Talay (bib81) 2017; 96 Duistermars (bib31) 2018; 100 Jenett (bib47) 2012; 2 Kimura (bib52) 2005; 438 Chirila (bib22) 2022; 185 Bear (bib10) 2016; 26 Wang (bib90) 2018; 558 Marella (bib63) 2006; 49 Lee (bib58) 2013; 126 Wang (bib88) 2003; 112 Devineni (bib29) 2021; 31 Groschner (bib40) 2019; 48 Voigt (bib87) 2012; 37 Chiang (bib21) 2011; 21 Behrens (bib11) 2007; 27 Chen (bib19) 2021; 41 Ling (bib61) 2014; 34 Snell (bib78) 2022; 32 Travers (bib85) 1990; 227 Schwarz (bib76) 2017; 6 Chen (bib18) 2019; 29 King (bib53) 2018; 7 Taisz (bib80) 2022 Goodale (bib39) 1992; 15 Kirkhart (bib54) 2015; 35 Weiss (bib92) 2011; 69 Rushton (bib73) 1972; 220 Hattori (bib41) 2017; 169 Chen (bib16) 2013; 499 Klapoetke (bib55) 2014; 11 |
References_xml | – volume: 100 start-page: 1474 year: 2018 ident: bib31 article-title: A brain module for scalable control of complex, multi-motor threat displays publication-title: Neuron doi: 10.1016/j.neuron.2018.10.027 contributor: fullname: Duistermars – volume: 93 year: 2017 ident: bib72 article-title: Different modes of visual integration in the lateral geniculate nucleus revealed by single-cell-initiated transsynaptic tracing publication-title: Neuron doi: 10.1016/j.neuron.2017.03.009 contributor: fullname: Rompani – volume: 13 year: 2017 ident: bib82 article-title: A subset of sweet-sensing neurons identified by ir56d are necessary and sufficient for fatty acid taste publication-title: PLOS Genetics doi: 10.1371/journal.pgen.1007059 contributor: fullname: Tauber – volume: 184 start-page: 257 year: 2021 ident: bib48 article-title: Top-down control of sweet and bitter taste in the mammalian brain publication-title: Cell doi: 10.1016/j.cell.2020.12.014 contributor: fullname: Jin – volume: 112 start-page: 271 year: 2003 ident: bib88 article-title: Two-Photon calcium imaging reveals an odor-evoked map of activity in the fly brain publication-title: Cell doi: 10.1016/s0092-8674(03)00004-7 contributor: fullname: Wang – volume: 21 start-page: 1 year: 2011 ident: bib21 article-title: Three-Dimensional reconstruction of brain-wide wiring networks in Drosophila at single-cell resolution publication-title: Current Biology doi: 10.1016/j.cub.2010.11.056 contributor: fullname: Chiang – volume: 20 start-page: 1589 year: 2010 ident: bib14 article-title: Sexual dimorphism in the fly brain publication-title: Current Biology doi: 10.1016/j.cub.2010.07.045 contributor: fullname: Cachero – volume: 27 start-page: 12630 year: 2007 ident: bib11 article-title: Gustatory expression pattern of the human tas2r bitter receptor gene family reveals a heterogenous population of bitter responsive taste receptor cells publication-title: The Journal of Neuroscience doi: 10.1523/JNEUROSCI.1168-07.2007 contributor: fullname: Behrens – volume: 35 start-page: 5950 year: 2015 ident: bib54 article-title: Gustatory learning and processing in the Drosophila mushroom bodies publication-title: The Journal of Neuroscience doi: 10.1523/JNEUROSCI.3930-14.2015 contributor: fullname: Kirkhart – volume: 101 start-page: 876 year: 2019 ident: bib25 article-title: Chemoconnectomics: mapping chemical transmission in Drosophila publication-title: Neuron doi: 10.1016/j.neuron.2019.01.045 contributor: fullname: Deng – volume: 36 start-page: 157 year: 2019 ident: bib62 article-title: The prandial process in flies publication-title: Current Opinion in Insect Science doi: 10.1016/j.cois.2019.09.004 contributor: fullname: Mahishi – volume: 6 year: 2017 ident: bib50 article-title: A receptor and neuron that activate a circuit limiting sucrose consumption publication-title: eLife doi: 10.7554/eLife.24992 contributor: fullname: Joseph – volume: 558 start-page: 127 year: 2018 ident: bib90 article-title: The coding of valence and identity in the mammalian taste system publication-title: Nature doi: 10.1038/s41586-018-0165-4 contributor: fullname: Wang – volume: 185 start-page: 4541 year: 2022 ident: bib22 article-title: Mechanoreceptor signal convergence and transformation in the dorsal horn flexibly shape a diversity of outputs to the brain publication-title: Cell doi: 10.1016/j.cell.2022.10.012 contributor: fullname: Chirila – volume: 9 year: 2020 ident: bib59 article-title: The connectome of the adult Drosophila mushroom body provides insights into function publication-title: eLife doi: 10.7554/eLife.62576 contributor: fullname: Li – volume: 15 start-page: 20 year: 1992 ident: bib39 article-title: Separate visual pathways for perception and action publication-title: Trends in Neurosciences doi: 10.1016/0166-2236(92)90344-8 contributor: fullname: Goodale – volume-title: bioRxiv year: 2022 ident: bib80 article-title: Generating parallel representations of position and identity in the olfactory system doi: 10.1101/2022.05.13.491877 contributor: fullname: Taisz – volume: 7 year: 2018 ident: bib46 article-title: A complex peripheral code for salt taste in Drosophila publication-title: eLife doi: 10.7554/eLife.37167 contributor: fullname: Jaeger – volume: 579 start-page: 101 year: 2020 ident: bib91 article-title: Neural circuitry linking mating and egg laying in Drosophila females publication-title: Nature doi: 10.1038/s41586-020-2055-9 contributor: fullname: Wang – volume: 30 start-page: 3183 year: 2020 ident: bib9 article-title: Complete connectomic reconstruction of olfactory projection neurons in the fly brain publication-title: Current Biology doi: 10.1016/j.cub.2020.06.042 contributor: fullname: Bates – volume: 96 start-page: 783 year: 2017 ident: bib81 article-title: Transsynaptic mapping of second-order taste neurons in flies by trans-tango publication-title: Neuron doi: 10.1016/j.neuron.2017.10.011 contributor: fullname: Talay – volume: 9 year: 2018 ident: bib42 article-title: Combinatorial codes and labeled lines: how insects use olfactory cues to find and judge food, mates, and oviposition sites in complex environments publication-title: Frontiers in Physiology doi: 10.3389/fphys.2018.00049 contributor: fullname: Haverkamp – volume: 192 start-page: 521 year: 2012 ident: bib49 article-title: Tissue-Specific activation of a single gustatory receptor produces opposing behavioral responses in Drosophila publication-title: Genetics doi: 10.1534/genetics.112.142455 contributor: fullname: Joseph – volume: 169 start-page: 956 year: 2017 ident: bib41 article-title: Representations of novelty and familiarity in a mushroom body compartment publication-title: Cell doi: 10.1016/j.cell.2017.04.028 contributor: fullname: Hattori – volume: 26 start-page: R1039 year: 2016 ident: bib10 article-title: The evolving neural and genetic architecture of vertebrate olfaction publication-title: Current Biology doi: 10.1016/j.cub.2016.09.011 contributor: fullname: Bear – volume: 110 start-page: 1036 year: 2022 ident: bib93 article-title: Serotonergic neurons translate taste detection into internal nutrient regulation publication-title: Neuron doi: 10.1016/j.neuron.2021.12.028 contributor: fullname: Yao – volume: 3 year: 2014 ident: bib5 article-title: The neuronal architecture of the mushroom body provides a logic for associative learning publication-title: eLife doi: 10.7554/eLife.04577 contributor: fullname: Aso – volume: 3 year: 2014 ident: bib6 article-title: Mushroom body output neurons encode valence and guide memory-based action selection in Drosophila publication-title: eLife doi: 10.7554/eLife.04580 contributor: fullname: Aso – volume: 118 year: 2021 ident: bib38 article-title: Requirement for an otopetrin-like protein for acid taste in Drosophila publication-title: PNAS doi: 10.1073/pnas.2110641118 contributor: fullname: Ganguly – volume: 5 year: 2016 ident: bib7 article-title: Dopaminergic neurons write and update memories with cell-type-specific rules publication-title: eLife doi: 10.7554/eLife.16135 contributor: fullname: Aso – volume: 220 year: 1972 ident: bib73 article-title: Pigments and signals in colour vision publication-title: The Journal of Physiology doi: 10.1113/jphysiol.1972.sp009719 contributor: fullname: Rushton – volume: 18 year: 2020 ident: bib79 article-title: PiVR: an affordable and versatile closed-loop platform to study unrestrained sensorimotor behavior publication-title: PLOS Biology doi: 10.1371/journal.pbio.3000712 contributor: fullname: Tadres – volume: 499 start-page: 295 year: 2013 ident: bib16 article-title: Ultrasensitive fluorescent proteins for imaging neuronal activity publication-title: Nature doi: 10.1038/nature12354 contributor: fullname: Chen – volume-title: The Hungry Fly year: 1976 ident: bib27 contributor: fullname: Dethier – volume: 382 start-page: 233 year: 2020 ident: bib70 article-title: Hormonal axes in Drosophila: regulation of hormone release and multiplicity of actions publication-title: Cell and Tissue Research doi: 10.1007/s00441-020-03264-z contributor: fullname: Nässel – volume: 23 start-page: 644 year: 2013 ident: bib43 article-title: Systematic analysis of neural projections reveals clonal composition of the Drosophila brain publication-title: Current Biology doi: 10.1016/j.cub.2013.03.015 contributor: fullname: Ito – volume: 7 year: 2016 ident: bib84 article-title: Functional dissociation in sweet taste receptor neurons between and within taste organs of Drosophila publication-title: Nature Communications doi: 10.1038/ncomms10678 contributor: fullname: Thoma – volume: 81 start-page: 984 year: 2014 ident: bib60 article-title: Peripheral coding of taste publication-title: Neuron doi: 10.1016/j.neuron.2014.02.022 contributor: fullname: Liman – volume: 79 start-page: 618 year: 2013 ident: bib1 article-title: The sensory neurons of touch publication-title: Neuron doi: 10.1016/j.neuron.2013.07.051 contributor: fullname: Abraira – volume: 10 year: 2021 ident: bib32 article-title: Evolutionary shifts in taste coding in the fruit pest Drosophila suzukii publication-title: eLife doi: 10.7554/eLife.64317 contributor: fullname: Dweck – volume: 6 year: 2015 ident: bib57 article-title: Pharyngeal sense organs drive robust sugar consumption in Drosophila publication-title: Nature Communications doi: 10.1038/ncomms7667 contributor: fullname: LeDue – volume: 7 year: 2018 ident: bib53 article-title: Recent advances in understanding the auditory cortex publication-title: F1000Research doi: 10.12688/f1000research.15580.1 contributor: fullname: King – volume: 227 start-page: 373 year: 1990 ident: bib85 article-title: Taste bud distribution in the rat pharynx and larynx publication-title: The Anatomical Record doi: 10.1002/ar.1092270313 contributor: fullname: Travers – volume: 21 start-page: 2978 year: 2017 ident: bib17 article-title: Molecular and cellular organization of taste neurons in adult Drosophila pharynx publication-title: Cell Reports doi: 10.1016/j.celrep.2017.11.041 contributor: fullname: Chen – volume: 438 start-page: 229 year: 2005 ident: bib52 article-title: Fruitless specifies sexually dimorphic neural circuitry in the Drosophila brain publication-title: Nature doi: 10.1038/nature04229 contributor: fullname: Kimura – volume: 499 start-page: 83 year: 2013 ident: bib36 article-title: A single pair of interneurons commands the Drosophila feeding motor program publication-title: Nature doi: 10.1038/nature12208 contributor: fullname: Flood – volume: 10 year: 2021 ident: bib75 article-title: Information flow, cell types and stereotypy in a full olfactory connectome publication-title: eLife doi: 10.7554/eLife.66018 contributor: fullname: Schlegel – volume: 5 year: 2014 ident: bib45 article-title: Automated monitoring and quantitative analysis of feeding behaviour in Drosophila publication-title: Nature Communications doi: 10.1038/ncomms5560 contributor: fullname: Itskov – volume: 32 start-page: 3758 year: 2022 ident: bib78 article-title: Complex representation of taste quality by second-order gustatory neurons in Drosophila publication-title: Current Biology doi: 10.1016/j.cub.2022.07.048 contributor: fullname: Snell – volume: 368 start-page: 81 year: 2018 ident: bib34 article-title: Representation of tactile scenes in the rodent barrel cortex publication-title: Neuroscience doi: 10.1016/j.neuroscience.2017.08.039 contributor: fullname: Estebanez – volume: 34 start-page: 7148 year: 2014 ident: bib61 article-title: The molecular and cellular basis of taste coding in the legs of Drosophila publication-title: The Journal of Neuroscience doi: 10.1523/JNEUROSCI.0649-14.2014 contributor: fullname: Ling – volume: 8 year: 2019 ident: bib67 article-title: OptoPAD, a closed-loop optogenetics system to study the circuit basis of feeding behaviors publication-title: eLife doi: 10.7554/eLife.43924 contributor: fullname: Moreira – volume: 9 year: 2020 ident: bib74 article-title: A connectome and analysis of the adult Drosophila central brain publication-title: eLife doi: 10.7554/eLife.57443 contributor: fullname: Scheffer – volume-title: bioRxiv year: 2021 ident: bib86 article-title: A Rise-to-Threshold Signal for A Relative Value Deliberation doi: 10.1101/2021.09.23.461548 contributor: fullname: Vijayan – volume: 20 start-page: 1602 year: 2010 ident: bib95 article-title: Cellular organization of the neural circuit that drives Drosophila courtship behavior publication-title: Current Biology doi: 10.1016/j.cub.2010.08.025 contributor: fullname: Yu – volume: 21 start-page: 1523 year: 2001 ident: bib8 article-title: Altered electrical properties in Drosophila neurons developing without synaptic transmission publication-title: The Journal of Neuroscience doi: 10.1523/JNEUROSCI.21-05-01523.2001 contributor: fullname: Baines – volume: 31 start-page: 5533 year: 2021 ident: bib29 article-title: Individual bitter-sensing neurons in Drosophila exhibit both on and off responses that influence synaptic plasticity publication-title: Current Biology doi: 10.1016/j.cub.2021.10.020 contributor: fullname: Devineni – volume-title: bioRxiv year: 2020 ident: bib71 article-title: Neural Control of Steering in Walking Drosophila doi: 10.1101/2020.04.04.024703 contributor: fullname: Rayshubskiy – volume: 23 start-page: 633 year: 2013 ident: bib96 article-title: Clonal development and organization of the adult Drosophila central brain publication-title: Current Biology doi: 10.1016/j.cub.2013.02.057 contributor: fullname: Yu – volume: 600 start-page: 680 year: 2021 ident: bib33 article-title: Cortical responses to touch reflect subcortical integration of ltmr signals publication-title: Nature doi: 10.1038/s41586-021-04094-x contributor: fullname: Emanuel – volume: 63 start-page: 15 year: 2018 ident: bib77 article-title: Gustatory processing in Drosophila melanogaster publication-title: Annual Review of Entomology doi: 10.1146/annurev-ento-020117-043331 contributor: fullname: Scott – volume: 165 start-page: 715 year: 2016 ident: bib94 article-title: A taste circuit that regulates ingestion by integrating food and hunger signals publication-title: Cell doi: 10.1016/j.cell.2016.02.061 contributor: fullname: Yapici – volume: 220 start-page: 3231 year: 2017 ident: bib68 article-title: Pharyngeal stimulation with sugar triggers local searching behavior in Drosophila publication-title: The Journal of Experimental Biology doi: 10.1242/jeb.161646 contributor: fullname: Murata – volume: 27 start-page: 2014 year: 2019 ident: bib13 article-title: Independent contributions of discrete dopaminergic circuits to cellular plasticity, memory strength, and valence in Drosophila publication-title: Cell Reports doi: 10.1016/j.celrep.2019.04.069 contributor: fullname: Boto – volume: 37 start-page: 897 year: 2012 ident: bib87 article-title: Genetic labeling of tas1r1 and tas2r131 taste receptor cells in mice publication-title: Chemical Senses doi: 10.1093/chemse/bjs082 contributor: fullname: Voigt – volume: 209 start-page: 31 year: 2018 ident: bib30 article-title: Genetic reagents for making split-GAL4 lines in Drosophila publication-title: Genetics doi: 10.1534/genetics.118.300682 contributor: fullname: Dionne – volume: 29 start-page: 961 year: 2019 ident: bib18 article-title: Combinatorial pharyngeal taste coding for feeding avoidance in adult Drosophila publication-title: Cell Reports doi: 10.1016/j.celrep.2019.09.036 contributor: fullname: Chen – volume: 174 start-page: 730 year: 2018 ident: bib97 article-title: A complete electron microscopy volume of the brain of adult Drosophila melanogaster publication-title: Cell doi: 10.1016/j.cell.2018.06.019 contributor: fullname: Zheng – start-page: 772 volume-title: Computer Vision – ECCV 2014 year: 2014 ident: bib35 doi: 10.1007/978-3-319-10605-2 contributor: fullname: Eyjolfsdottir – volume: 25 start-page: 621 year: 2015 ident: bib37 article-title: Drosophila sugar receptors in sweet taste perception, olfaction, and internal nutrient sensing publication-title: Current Biology doi: 10.1016/j.cub.2014.12.058 contributor: fullname: Fujii – volume: 41 start-page: 5791 year: 2021 ident: bib19 article-title: Control of sugar and amino acid feeding via pharyngeal taste neurons publication-title: The Journal of Neuroscience doi: 10.1523/JNEUROSCI.1794-20.2021 contributor: fullname: Chen – volume: 28 start-page: 847 year: 2018 ident: bib12 article-title: Identification of a single pair of interneurons for bitter taste processing in the Drosophila brain publication-title: Current Biology doi: 10.1016/j.cub.2018.01.084 contributor: fullname: Bohra – volume: 149 start-page: 1140 year: 2012 ident: bib83 article-title: Contact chemoreceptors mediate male-male repulsion and male-female attraction during Drosophila courtship publication-title: Cell doi: 10.1016/j.cell.2012.03.045 contributor: fullname: Thistle – volume: 117 start-page: 981 year: 2004 ident: bib89 article-title: Taste representations in the Drosophila brain publication-title: Cell doi: 10.1016/j.cell.2004.06.011 contributor: fullname: Wang – volume: 39 start-page: 565 year: 2014 ident: bib56 article-title: A map of taste neuron projections in the Drosophila CNS publication-title: Journal of Biosciences doi: 10.1007/s12038-014-9448-6 contributor: fullname: Kwon – volume: 24 start-page: 1723 year: 2014 ident: bib24 article-title: Drosophila learn opposing components of a compound food stimulus publication-title: Current Biology doi: 10.1016/j.cub.2014.05.078 contributor: fullname: Das – volume: 81 start-page: 755 year: 2014 ident: bib44 article-title: A systematic Nomenclature for the insect brain publication-title: Neuron doi: 10.1016/j.neuron.2013.12.017 contributor: fullname: Ito – volume: 49 start-page: 285 year: 2006 ident: bib63 article-title: Imaging taste responses in the fly brain reveals a functional map of taste category and behavior publication-title: Neuron doi: 10.1016/j.neuron.2005.11.037 contributor: fullname: Marella – volume: 8 year: 2019 ident: bib69 article-title: Closed-Loop optogenetic activation of peripheral or central neurons modulates feeding in freely moving Drosophila publication-title: eLife doi: 10.7554/eLife.45636 contributor: fullname: Musso – volume: 36 start-page: 9 year: 2019 ident: bib4 article-title: Neuronal mechanisms underlying innate and learned olfactory processing in Drosophila publication-title: Current Opinion in Insect Science doi: 10.1016/j.cois.2019.06.003 contributor: fullname: Amin – volume: 2 start-page: 991 year: 2012 ident: bib47 article-title: A GAL4-driver line resource for Drosophila neurobiology publication-title: Cell Reports doi: 10.1016/j.celrep.2012.09.011 contributor: fullname: Jenett – volume: 6 year: 2017 ident: bib76 article-title: Motor control of Drosophila feeding behavior publication-title: eLife doi: 10.7554/eLife.19892 contributor: fullname: Schwarz – volume: 291 start-page: 1557 year: 2001 ident: bib15 article-title: Taste receptor cells that discriminate between bitter stimuli publication-title: Science doi: 10.1126/science.1056670 contributor: fullname: Caicedo – volume: 12 year: 2021 ident: bib64 article-title: Molecular and cellular basis of acid taste sensation in Drosophila publication-title: Nature Communications doi: 10.1038/s41467-021-23490-5 contributor: fullname: Mi – volume: 63 start-page: 179 year: 2014 ident: bib26 article-title: Taste receptors of the gut: emerging roles in health and disease publication-title: Gut doi: 10.1136/gutjnl-2013-305112 contributor: fullname: Depoortere – volume: 8 year: 2019 ident: bib28 article-title: Acetic acid activates distinct taste pathways in Drosophila to elicit opposing, state-dependent feeding responses publication-title: eLife doi: 10.7554/eLife.47677 contributor: fullname: Devineni – volume: 11 start-page: 338 year: 2014 ident: bib55 article-title: Independent optical excitation of distinct neural populations publication-title: Nature Methods doi: 10.1038/nmeth.2836 contributor: fullname: Klapoetke – volume: 6 year: 2017 ident: bib2 article-title: Molecular basis of fatty acid taste in Drosophila publication-title: eLife doi: 10.7554/eLife.30115 contributor: fullname: Ahn – volume: 19 start-page: 1623 year: 2009 ident: bib66 article-title: A Drosophila gustatory receptor essential for aversive taste and inhibiting male-to-male courtship publication-title: Current Biology doi: 10.1016/j.cub.2009.07.061 contributor: fullname: Moon – volume: 119 year: 2022 ident: bib20 article-title: A functional division of Drosophila sweet taste neurons that is value-based and task-specific publication-title: PNAS doi: 10.1073/pnas.2110158119 contributor: fullname: Chen – volume: 87 start-page: 1036 year: 2015 ident: bib23 article-title: Multimodal chemosensory circuits controlling male courtship in Drosophila publication-title: Neuron doi: 10.1016/j.neuron.2015.07.025 contributor: fullname: Clowney – volume: 126 start-page: 22 year: 2013 ident: bib58 article-title: Thalamic and cortical pathways supporting auditory processing publication-title: Brain and Language doi: 10.1016/j.bandl.2012.05.004 contributor: fullname: Lee – volume: 69 start-page: 258 year: 2011 ident: bib92 article-title: The molecular and cellular basis of bitter taste in Drosophila publication-title: Neuron doi: 10.1016/j.neuron.2011.01.001 contributor: fullname: Weiss – volume-title: bioRxiv year: 2022 ident: bib3 article-title: Complex Patterns of Neuronal Activity Underpin a Global Change in Brain State during Walk in Drosophila doi: 10.1101/2022.01.17.476660 contributor: fullname: Aimon – volume: 6 year: 2017 ident: bib51 article-title: Long-Range projection neurons in the taste circuit of Drosophila publication-title: eLife doi: 10.7554/eLife.23386 contributor: fullname: Kim – volume: 14 start-page: 271 year: 2017 ident: bib65 article-title: Optogenetic inhibition of behavior with anion channelrhodopsins publication-title: Nature Methods doi: 10.1038/nmeth.4148 contributor: fullname: Mohammad – volume: 48 start-page: 209 year: 2019 ident: bib40 article-title: Mechanisms of sensory discrimination: insights from Drosophila olfaction publication-title: Annual Review of Biophysics doi: 10.1146/annurev-biophys-052118-115655 contributor: fullname: Groschner |
SSID | ssj0000748819 |
Score | 2.4075902 |
Snippet | A fundamental question in sensory processing is how different channels of sensory input are processed to regulate behavior. Different input channels may... |
SourceID | doaj pubmedcentral proquest gale crossref pubmed |
SourceType | Open Website Open Access Repository Aggregation Database Index Database |
SubjectTerms | Animals Behavior Bitter taste Brain - physiology Connectivity Drosophila Drosophila melanogaster - physiology feeding Food Information processing neural circuits Neural networks Neurons Neuroscience Roles Sensory integration sensory processing Taste Taste - physiology Taste Perception - physiology |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagJy4IxCvQooAqcQrN2o7tHFtoVaSKAwsSN8vjB6xEk4ps_j8zTna1EQcuXD0TKfnGnhk7428YOwXpYmh9rGQjeCVDhApWASohMVkAiSE50W3k67X-_N18vCSanH2rL6oJm-iBJ-DOGhUhKfCRmN-D4wCtxCRcR9ASBycm0FodbKayD9Y4MVftdCFPY8g8izebFN8baahV9UEIykz9f_vjg4C0LJY8iD5Xj9jDOW0sz6fXfczuxe4Ju1nnJjbor8od6wOiXPapDLnaIpZbh0ZE4d24HUo6ct10pSvpeODXTnjbh5yKP2Xfri6_friu5u4IlW9qta0C1CvgjXDRJ2hS3t1J7nwTnPM6JKmCCNo40wapeZ2cj8Ip4NzXAmLrxTN21PVdfMFKKXULPhijQMo61S44TLyF0QEHoIaCne4As3cTCYbFzQPhajOuNuNasAsCc69CzNV5AO1pZ3vaf9mzYG_JFJa4KToqfvnhxmGwn9Zf7LkWkphVdVOwd7NS6tEo3s13CfBziM5qoXm80MTF45fincXtvHgHy7VeTf9fC_ZmL6YnqSCti_1IOgoTOyKDK9jzaYLsv1sohWmzrgumF1NnAcxS0m1-Zmrv1miBTvTl_0DyFXvAMSOj8yIuj9nR9vcYT9j9IYyv82L5A5YUHWU priority: 102 providerName: Directory of Open Access Journals |
Title | Selective integration of diverse taste inputs within a single taste modality |
URI | https://www.ncbi.nlm.nih.gov/pubmed/36692370 https://www.proquest.com/docview/2771289025 https://www.proquest.com/docview/2769375507 https://pubmed.ncbi.nlm.nih.gov/PMC9873257 https://doaj.org/article/56ebf6bce0084da2bb946267eb74ce04 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9QwDI-4PfGCQHwVxqmgSTz1rpekTfs4xqZNDIQ4kHiL4iQdJ-3a03r9_7HT9nQVb7zGjtTYTmynzs-MnYE03pXWJzITPJHOQwIrB4mQGCyARJdc0Wvk67X69rv4fEkwOdn4FiYU7VvYLOr77aLe_Am1lbutXY51YsvvXy8wTxZoassZm2FseJSih-NXoU2uyv4tnkJvufS3m8ovCllk1LBI5DkGNdSc-MgRBbz-f0_lI7c0LZk88kFXT9mTIXiMz_uPfMYe-fo5u12HVjZ4asUj9gPKOm6q2IWaCx_vDaoSibtu38Z08bqpYxPTJcH9SNw2LgTkL9ivq8ufF9fJ0CMhsVma7xMH6Qp4Joy3FWRVyPEkNzZzxljlKpk74VRhitJJxdPKWC9MDpzbVIAvrXjJTuqm9q9ZLKUqwbqiyEHKtEqNMxh-i0I5HIAUInY2CkzveigMjSkEiVgHEesg4oh9ImEeWAi_Ogw0D3d60KLOcg9VDtYTnr8zHKCUmFopD0rioIzYB1KFJoSKmkpg7kzXtvpm_UOfKyEJX1VlEfs4MFUNKsWa4UUBLodArSacpxNO3EJ2Sh41roct3Gqu1Kr_Cxux9wcyzaSytNo3HfHkGN4RJFzEXvUGclj3aGcRUxPTmQhmSkF7DwDfg32_-e-Zb9ljjsEYXRVxecpO9g-df8dmrevmmDbcfJmHq4d52Dh_AVX1HxM |
link.rule.ids | 230,315,729,782,786,866,887,2106,27933,27934,53800,53802 |
linkProvider | National Library of Medicine |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZoOcCFh3g0UCCgSpyym7WdODmW0morthVii8TN8vhRVuomq2bz_xk7yWojbr16JlLi-eyZccbfEHICXFlTapvwjNGEGwsJzAwkjGOwABxdsvO3kedLcf2n-H7uaXKy4S5MKNrXsJpUd-tJtfobais3az0d6sSmP6_OME9mCLXpAXmM6zVN95L0sAELROWs7G7jCfSXU7tYOTspeJH5lkUszzGs8e2J91xRYOz_f1_ec0zjosk9L3Tx_IHv_4I868PO-LQTvySPbPWKLJahCQ7ud_HAGoFWimsXm1CtYeOtQhCgcNNum9gf2a6qWMX-eOFuEK5rE0L51-T3xfnN2TzpuyskOkvzbWIgnQHNmLLaQeZCdsip0plRSgvjeG6YEYUqSsMFTZ3SlqkcKNUpA1tq9oYcVnVlj0jMuShBm6LIgfPUpcooDNxZIQwOQAoRORkmWm46Eg2JyYc3jQymkcE0EfnmjbBT8czXYaC-v5X9_Mkst-By0NZ3AjCKApQckzJhQXAc5BH54k0oPbdF5YtnblXbNPJy-UueCsY9M6vIIvK1V3I1GlOr_i4Cfo6nwxppHo80cfHpsXhAiuwXfyOpELPu_21EPu_E_klf0FbZuvU6OQaGnkwuIm87YO2-e8BnRMQIcqOJGUsQaYEavEfWuwc_-Yk8md9cLeTi8vrHe_KUYkjnD5woPyaH2_vWfiAHjWk_hgX3D8_zMrY |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZokRAXHuLRQIGAKnHKbtZ24uRY2q5asVQVCxI3y8-yUjdZNZv_z4yTrDbiBlfP5GDPZ8-MM_6GkBPNlbOlcQnPGE24dTrRM6sTxiFY0BxcssfXyJdLcf2rOL9Ampxdq69QtG_0alLdrSfV6neordyszXSoE5vefDuDPJkB1KYb66cH5CHs2ZTuJerhEBaAzFnZvcgT4DOnbrHyblLwIsO2RSzPIbTBFsV77iiw9v99Nu85p3Hh5J4nmj_9jzk8I0_68DM-7VSekweuekEWy9AMB869eGCPAGvFtY9tqNpw8VYBGEC4abdNjFe3qypWMV4z3A3CdW1DSP-S_Jxf_Di7TPouC4nJ0nybWJ3ONM2YcsbrzIcskVNlMquUEdbz3DIrClWUlguaemUcU7mm1KRMu9KwV-Swqit3RGLORamNLYpcc576VFkFATwrhIUBneqInAyLLTcdmYaEJATNI4N5ZDBPRL6gIXYqyIAdBur7W9mvocxyp32ujcOOAFZRrUsOyZlwWnAY5BH5hGaUyHFRYRHNrWqbRl4tv8tTwTgytIosIp97JV-DQY3q3yTAdJAWa6R5PNKETWjG4gEtsj8EGkmFmHX_cSPycSfGL7GwrXJ1izo5BIhIKheR1x24dvMeMBoRMYLdaGHGEkBboAjv0fXmn7_8QB7dnM_l4ur661vymEJkh_dOlB-Tw-19696Rg8a278Oe-wNRDTU2 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Selective+integration+of+diverse+taste+inputs+within+a+single+taste+modality&rft.jtitle=eLife&rft.au=Deere%2C+Julia+U&rft.au=Sarkissian%2C+Arvin+A&rft.au=Yang%2C+Meifeng&rft.au=Uttley%2C+Hannah+A&rft.date=2023-01-24&rft.issn=2050-084X&rft.eissn=2050-084X&rft.volume=12&rft_id=info:doi/10.7554%2FeLife.84856&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-084X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-084X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-084X&client=summon |