Consolidation mechanism of high-water-content slurry during vacuum preloading with prefabricated vertical drains
Vacuum preloading combined with prefabricated vertical drains (PVDs) has been widely used to improve soft clayey soil deposits. However, the consolidation deformation of high-water-content slurry under vacuum pressure is still not fully understood. In this study, the displacement field of the slurry...
Saved in:
Published in: | Canadian geotechnical journal Vol. 59; no. 8; pp. 1373 - 1385 |
---|---|
Main Authors: | , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
1840 Woodward Drive, Suite 1, Ottawa, ON K2C 0P7
Canadian Science Publishing
01-08-2022
NRC Research Press Canadian Science Publishing NRC Research Press |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Vacuum preloading combined with prefabricated vertical drains (PVDs) has been widely used to improve soft clayey soil deposits. However, the consolidation deformation of high-water-content slurry under vacuum pressure is still not fully understood. In this study, the displacement field of the slurry during vacuum preloading was directly observed using the particle image velocimetry (PIV) technique. The test results showed that the displacement field of the slurry could be divided into three different zones that reflect distinct consolidation patterns. In zones I and III, the slurry was predominantly compressed along the horizontal and vertical directions, respectively, whereas in zone II, compression occurred in both vertical and horizontal directions. In particular, the slurry elements in zones I and II underwent horizontal extension prior to horizontal compression. The study also visualized the boundary of the soil column and provided an equation for the relation between soil column thickness and consolidation time, which could provide a reference for the theoretical consolidation calculations related to soil columns. |
---|---|
AbstractList | Vacuum preloading combined with prefabricated vertical drains (PVDs) has been widely used to improve soft clayey soil deposits. However, the consolidation deformation of high-water-content slurry under vacuum pressure is still not fully understood. In this study, the displacement field of the slurry during vacuum preloading was directly observed using the particle image velocimetry (PIV) technique. The test results showed that the displacement field of the slurry could be divided into three different zones that reflect distinct consolidation patterns. In zones I and III, the slurry was predominantly compressed along the horizontal and vertical directions, respectively, whereas in zone II, compression occurred in both vertical and horizontal directions. In particular, the slurry elements in zones I and II underwent horizontal extension prior to horizontal compression. The study also visualized the boundary of the soil column and provided an equation for the relation between soil column thickness and consolidation time, which could provide a reference for the theoretical consolidation calculations related to soil columns. Vacuum preloading combined with prefabricated vertical drains (PVDs) has been widely used to improve soft clayey soil deposits. However, the consolidation deformation of high-water-content slurry under vacuum pressure is still not fully understood. In this study, the displacement field of the slurry during vacuum preloading was directly observed using the particle image velocimetry (PIV) technique. The test results showed that the displacement field of the slurry could be divided into three different zones that reflect distinct consolidation patterns. In zones I and III, the slurry was predominantly compressed along the horizontal and vertical directions, respectively, whereas in zone II, compression occurred in both vertical and horizontal directions. In particular, the slurry elements in zones I and II underwent horizontal extension prior to horizontal compression. The study also visualized the boundary of the soil column and provided an equation for the relation between soil column thickness and consolidation time, which could provide a reference for the theoretical consolidation calculations related to soil columns. Key words: dredged slurry, vacuum preloading, particle image velocimetry, PIV, deformation, soil column. Le prechargement par le vide combine a des drains verticaux prefabriques (PVD) a ete largement utilise pour ameliorer les depots de sols argileux mous. Cependant, la deformation de consolidation d'une boue a forte teneur en eau sous pression sous vide n'est pas encore totalement comprise. Dans cette etude, le champ de deplacement de la boue pendant le prechargement sous vide a ete directement observe en utilisant la technique de velocimetrie par image de particules (PIV). Les resultats des essais ont montre que le champ de deplacement de la boue pouvait etre divise en trois zones differentes qui refletent des modeles de consolidation distincts. Dans les zones I et III, la boue a ete principalement comprimee dans les directions horizontale et verticale, respectivement, tandis que dans la zone II, la compression a eu lieu dans les deux directions, verticale et horizontale. En particulier, les elements de boue des zones I et II ont subi une extension horizontale avant la compression horizontale. L'etude a egalement permis de visualiser la limite de la colonne de sol et de fournir une equation pour la relation entre l'epaisseur de la colonne de sol et le temps de consolidation, qui pourrait servir de reference pour les calculs theoriques de consolidation lies aux colonnes de sol. [Traduit par la Redaction] Mots-cles : boue de dragage, prechargement sous vide, velocimetrie par image de particules, PIV, deformation, colonne de sol. Vacuum preloading combined with prefabricated vertical drains (PVDs) has been widely used to improve soft clayey soil deposits. However, the consolidation deformation of high-water-content slurry under vacuum pressure is still not fully understood. In this study, the displacement field of the slurry during vacuum preloading was directly observed using the particle image velocimetry (PIV) technique. The test results showed that the displacement field of the slurry could be divided into three different zones that reflect distinct consolidation patterns. In zones I and III, the slurry was predominantly compressed along the horizontal and vertical directions, respectively, whereas in zone II, compression occurred in both vertical and horizontal directions. In particular, the slurry elements in zones I and II underwent horizontal extension prior to horizontal compression. The study also visualized the boundary of the soil column and provided an equation for the relation between soil column thickness and consolidation time, which could provide a reference for the theoretical consolidation calculations related to soil columns. |
Abstract_FL | Le préchargement par le vide combiné à des drains verticaux préfabriqués (PVD) a été largement utilisé pour améliorer les dépôts de sols argileux mous. Cependant, la déformation de consolidation d’une boue à forte teneur en eau sous pression sous vide n’est pas encore totalement comprise. Dans cette étude, le champ de déplacement de la boue pendant le préchargement sous vide a été directement observé en utilisant la technique de vélocimétrie par image de particules (PIV). Les résultats des essais ont montré que le champ de déplacement de la boue pouvait être divisé en trois zones différentes qui reflètent des modèles de consolidation distincts. Dans les zones I et III, la boue a été principalement comprimée dans les directions horizontale et verticale, respectivement, tandis que dans la zone II, la compression a eu lieu dans les deux directions, verticale et horizontale. En particulier, les éléments de boue des zones I et II ont subi une extension horizontale avant la compression horizontale. L’étude a également permis de visualiser la limite de la colonne de sol et de fournir une équation pour la relation entre l’épaisseur de la colonne de sol et le temps de consolidation, qui pourrait servir de référence pour les calculs théoriques de consolidation liés aux colonnes de sol. [Traduit par la Rédaction] |
Audience | Academic |
Author | Pan, Xiao-dong Geng, Xue-yu Pan, Kun Lu, Jing-ling Shi, Li He, Zi-li Sun, Hong-lei |
Author_xml | – sequence: 1 givenname: Hong-lei surname: Sun fullname: Sun, Hong-lei organization: Institute of Geotechnical Engineering, Zhejiang University of Technology, Hangzhou 310014, People’s Republic of China – sequence: 2 givenname: Zi-li surname: He fullname: He, Zi-li organization: Institute of Geotechnical Engineering, Zhejiang University of Technology, Hangzhou 310014, People’s Republic of China – sequence: 3 givenname: Kun surname: Pan fullname: Pan, Kun organization: Institute of Geotechnical Engineering, Zhejiang University of Technology, Hangzhou 310014, People’s Republic of China – sequence: 4 givenname: Jing-ling surname: Lu fullname: Lu, Jing-ling organization: Institute of Geotechnical Engineering, Zhejiang University of Technology, Hangzhou 310014, People’s Republic of China – sequence: 5 givenname: Xiao-dong surname: Pan fullname: Pan, Xiao-dong organization: Institute of Geotechnical Engineering, Zhejiang University of Technology, Hangzhou 310014, People’s Republic of China – sequence: 6 givenname: Li surname: Shi fullname: Shi, Li organization: Institute of Geotechnical Engineering, Zhejiang University of Technology, Hangzhou 310014, People’s Republic of China – sequence: 7 givenname: Xue-yu surname: Geng fullname: Geng, Xue-yu organization: School of Engineering, University of Warwick, Coventry, CV4 7AL, UK |
BookMark | eNqVkstr3DAQxkVJoZu0x95Fe-pBqR5ee_cYlrYJhBb6OIuxHrYWW3IkOWn--8pJKQ0YShGSRsPvGyHNd4pOfPAGodeMnjMm9u9VdyScckYor3bP0IZxuiM1ZfQEbSgtsaib6gU6TelIKasqzjdoOgSfwuA0ZBc8Ho3qwbs04mBx77qe3EE2kajgs_EZp2GO8R7rOTrf4VtQ8zziKZohgF4ydy73y9lCG50qUo1vTcwlHLCO4Hx6iZ5bGJJ59Xs_Qz8-fvh-uCTXXz5dHS6uidrSOhMNO0t5Y7m1pVbDt_XWcLCCAxNbZdu95bvWtrqtqrpi0DQCdGNrDnWZVChxht4-1p1iuJlNyvIY5ujLlZLXe9EItix_qA4GI523IUdQo0tKXjSs_BdntCoUWaE6402EofTAupJ-wr9Z4dXkbuTf0PkKVIY2o1OrVd89ETz05GfuYE5JXn37-h_s59XXqRhSKr2TU3QjxHvJqFyMJYux5GIsuRir8PSR91FFkwxE1f9D8gsAgtBc |
CitedBy_id | crossref_primary_10_3390_app131810340 crossref_primary_10_1016_j_geotexmem_2024_05_011 crossref_primary_10_1080_1064119X_2023_2211979 crossref_primary_10_3389_fmars_2023_1213820 crossref_primary_10_1080_1064119X_2024_2327079 crossref_primary_10_1016_j_geotexmem_2023_04_003 |
Cites_doi | 10.1061/(ASCE)GM.1943-5622.0001898 10.1016/j.geotexmem.2020.03.007 10.1139/t01-100 10.1007/s12205-017-0707-6 10.1139/cgj-2017-0635 10.12989/gae.2014.6.4.377 10.1061/(ASCE)GT.1943-5606.0000640 10.1680/gein.14.00016 10.1016/j.geotexmem.2015.05.007 10.3208/jgssp.TC217-05 10.3390/app10031139 10.1139/cgj-2018-0094 10.1061/(ASCE)1532-3641(2005)5:2(114) 10.1680/geot.2004.54.6.375 10.1139/t2012-024 10.1680/geot.2000.50.6.613 10.1016/j.geotexmem.2017.11.010 10.1139/t05-042 10.1139/t02-052 10.1080/1064119X.2018.1522398 10.1061/9780784413401.023 10.1016/j.geotexmem.2019.103459 10.1016/j.enggeo.2019.105194 10.1680/geot.2003.53.7.619 10.1061/(ASCE)GM.1943-5622.0001028 10.1016/j.sandf.2018.02.028 10.1016/j.geotexmem.2015.07.012 10.1061/(ASCE)1090-0241(2005)131:12(1552) 10.1139/cgj-2015-0253 10.1016/j.enggeo.2017.03.020 10.1016/j.geotexmem.2019.103493 10.1016/j.protcy.2016.05.034 10.1016/j.geotexmem.2020.02.010 10.1520/GTJ20130044 10.1680/geot.9.P.125 10.1680/jphmg.15.00005 10.1680/geot.2000.50.6.625 10.1016/j.geotexmem.2018.12.001 10.1016/j.compgeo.2019.103415 10.1680/geot.13.P.179 10.1680/geot.8.P.039 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2022 NRC Research Press 2022 Published by NRC Research Press |
Copyright_xml | – notice: COPYRIGHT 2022 NRC Research Press – notice: 2022 Published by NRC Research Press |
DBID | AAYXX CITATION ISN ISR 7TG 7UA 8FD C1K F1W FR3 H96 KL. KR7 L.G |
DOI | 10.1139/cgj-2021-0248 |
DatabaseName | CrossRef Gale In Context: Canada Science in Context Meteorological & Geoastrophysical Abstracts Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional |
DatabaseTitle | CrossRef Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Meteorological & Geoastrophysical Abstracts - Academic Water Resources Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | CrossRef Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1208-6010 |
EndPage | 1385 |
ExternalDocumentID | A713672104 10_1139_cgj_2021_0248 cgj-2021-0248 |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GroupedDBID | 02 08R 0R 29B 2XV 3V. 4.4 4P2 4S 5GY 5RP 6J9 88I 8AF 8FE 8FG 8FH 8FQ AAIKC ABDBF ABJCF ABPTK ABUWG ACGFO ACGFS ACGOD ACIWK ADNWM AEGXH AENEX AFKRA AFRAH AIAGR ALMA_UNASSIGNED_HOLDINGS ARCSS AZQEC BCR BENPR BGLVJ BHPHI BKSAR BLC BPHCQ CAG COF CS3 D8U DATHI DC DU5 DWQXO EAD EAP EAS EBS ECC EDH EDO EJD EMK EPL ESX GNUQQ HCIFZ HZ H~9 I I-F IAO ICQ IEA IGS IOF IPNFZ ISN ISR ITC L6V L7B L8X LK5 M2P M2Q M3C M3G M7R M7S ML. MM- MV1 NMEPN NRXXU NYCZX O9- ONR OVD P-S P2P PCBAR PQEST PQQKQ PQUKI PRINS PROAC PTHSS PV9 QF4 QM1 QN7 QO4 QRP RIG RRCRK RRP RWL RZL SJN TAE TEORI TUS U5U UMP VQG X -~X ..I .4S .DC 00T 0R~ AAMNW AAYXX ABJNI CCPQU CITATION HZ~ ~02 7TG 7UA 8FD C1K F1W FR3 H96 KL. KR7 L.G |
ID | FETCH-LOGICAL-c506t-da8f027f2fffab72565e2af32a135cfb9f28bfbdb44641a773ad7f62a662a03c3 |
ISSN | 0008-3674 |
IngestDate | Thu Nov 07 04:35:25 EST 2024 Tue Nov 19 21:34:25 EST 2024 Wed Nov 13 04:55:45 EST 2024 Tue May 28 01:36:26 EDT 2024 Tue Nov 12 23:38:45 EST 2024 Sat Sep 28 20:52:28 EDT 2024 Tue Nov 05 09:07:57 EST 2024 Thu Sep 26 17:29:07 EDT 2024 Tue Jul 26 04:11:46 EDT 2022 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c506t-da8f027f2fffab72565e2af32a135cfb9f28bfbdb44641a773ad7f62a662a03c3 |
PQID | 2693731937 |
PQPubID | 47495 |
PageCount | 13 |
ParticipantIDs | gale_infotracmisc_A713672104 nrcresearch_primary_10_1139_cgj_2021_0248 gale_infotracgeneralonefile_A713672104 gale_infotraccpiq_713672104 crossref_primary_10_1139_cgj_2021_0248 proquest_journals_2693731937 gale_incontextgauss_ISN_A713672104 gale_infotracacademiconefile_A713672104 gale_incontextgauss_ISR_A713672104 |
PublicationCentury | 2000 |
PublicationDate | 2022-08-01 |
PublicationDateYYYYMMDD | 2022-08-01 |
PublicationDate_xml | – month: 08 year: 2022 text: 2022-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | 1840 Woodward Drive, Suite 1, Ottawa, ON K2C 0P7 |
PublicationPlace_xml | – name: 1840 Woodward Drive, Suite 1, Ottawa, ON K2C 0P7 – name: Ottawa |
PublicationTitle | Canadian geotechnical journal |
PublicationYear | 2022 |
Publisher | Canadian Science Publishing NRC Research Press Canadian Science Publishing NRC Research Press |
Publisher_xml | – name: Canadian Science Publishing – name: NRC Research Press – name: Canadian Science Publishing NRC Research Press |
References | refg47/ref47 refg40/ref40 refg18/ref18 refg20/ref20 refg22/ref22 refg36/ref36 refg38/ref38 Bao S.F. (refg2/ref2) 2014; 36 refg45/ref45 refg31/ref31 refg9/ref9 refg11/ref11 refg25/ref25 refg6/ref6 refg15/ref15 refg29/ref29 refg43/ref43 refg34/ref34 refg26/ref26 refg8/ref8 refg5/ref5 refg23/ref23 refg37/ref37 refg17/ref17 refg19/ref19 refg21/ref21 refg4/ref4 refg10/ref10 refg12/ref12 refg1/ref1 refg28/ref28 refg41/ref41 refg32/ref32 Tang T.Z. (refg35/ref35) 2010; 4 Cai Y.Q. (refg7/ref7) 2020; 41 refg39/ref39 refg3/ref3 Xu K. (refg46/ref46) 2016; 38 refg42/ref42 refg44/ref44 refg24/ref24 refg16/ref16 refg33/ref33 refg13/ref13 refg27/ref27 |
References_xml | – ident: refg23/ref23 doi: 10.1061/(ASCE)GM.1943-5622.0001898 – ident: refg44/ref44 doi: 10.1016/j.geotexmem.2020.03.007 – ident: refg4/ref4 doi: 10.1139/t01-100 – ident: refg18/ref18 doi: 10.1007/s12205-017-0707-6 – ident: refg12/ref12 doi: 10.1139/cgj-2017-0635 – ident: refg17/ref17 doi: 10.12989/gae.2014.6.4.377 – ident: refg26/ref26 doi: 10.1061/(ASCE)GT.1943-5606.0000640 – ident: refg45/ref45 doi: 10.1680/gein.14.00016 – ident: refg24/ref24 doi: 10.1016/j.geotexmem.2015.05.007 – ident: refg5/ref5 doi: 10.3208/jgssp.TC217-05 – ident: refg20/ref20 doi: 10.3390/app10031139 – ident: refg41/ref41 doi: 10.1139/cgj-2018-0094 – ident: refg16/ref16 doi: 10.1061/(ASCE)1532-3641(2005)5:2(114) – ident: refg42/ref42 doi: 10.1680/geot.2004.54.6.375 – ident: refg28/ref28 doi: 10.1139/t2012-024 – ident: refg34/ref34 doi: 10.1680/geot.2000.50.6.613 – ident: refg32/ref32 doi: 10.1016/j.geotexmem.2017.11.010 – volume: 38 start-page: 123 issue: 2 year: 2016 ident: refg46/ref46 publication-title: Chinese Journal of Geotechnical Engineering, contributor: fullname: Xu K. – volume: 4 start-page: 115 year: 2010 ident: refg35/ref35 publication-title: Port and Waterway Engineering, contributor: fullname: Tang T.Z. – ident: refg47/ref47 doi: 10.1139/t05-042 – ident: refg27/ref27 doi: 10.1139/t02-052 – ident: refg13/ref13 doi: 10.1080/1064119X.2018.1522398 – ident: refg22/ref22 doi: 10.1061/9780784413401.023 – ident: refg25/ref25 doi: 10.1016/j.geotexmem.2019.103459 – ident: refg38/ref38 doi: 10.1016/j.enggeo.2019.105194 – ident: refg43/ref43 doi: 10.1680/geot.2003.53.7.619 – ident: refg21/ref21 doi: 10.1061/(ASCE)GM.1943-5622.0001028 – volume: 36 start-page: 1350 issue: 7 year: 2014 ident: refg2/ref2 publication-title: Chinese Journal of Geotechnical Engineering, contributor: fullname: Bao S.F. – ident: refg36/ref36 doi: 10.1016/j.sandf.2018.02.028 – ident: refg8/ref8 doi: 10.1016/j.geotexmem.2015.07.012 – ident: refg9/ref9 doi: 10.1061/(ASCE)1090-0241(2005)131:12(1552) – ident: refg31/ref31 doi: 10.1139/cgj-2015-0253 – ident: refg6/ref6 doi: 10.1016/j.enggeo.2017.03.020 – ident: refg39/ref39 doi: 10.1016/j.geotexmem.2019.103493 – volume: 41 start-page: 1 issue: 11 year: 2020 ident: refg7/ref7 publication-title: Rock and Soil Mechanics, contributor: fullname: Cai Y.Q. – ident: refg19/ref19 doi: 10.1016/j.protcy.2016.05.034 – ident: refg40/ref40 doi: 10.1016/j.geotexmem.2020.02.010 – ident: refg29/ref29 doi: 10.1520/GTJ20130044 – ident: refg33/ref33 doi: 10.1680/geot.9.P.125 – ident: refg3/ref3 doi: 10.1680/jphmg.15.00005 – ident: refg11/ref11 doi: 10.1680/geot.2000.50.6.625 – ident: refg37/ref37 doi: 10.1016/j.geotexmem.2018.12.001 – ident: refg10/ref10 doi: 10.1016/j.compgeo.2019.103415 – ident: refg1/ref1 doi: 10.1680/geot.13.P.179 – ident: refg15/ref15 doi: 10.1680/geot.8.P.039 |
SSID | ssj0014422 |
Score | 2.4490077 |
Snippet | Vacuum preloading combined with prefabricated vertical drains (PVDs) has been widely used to improve soft clayey soil deposits. However, the consolidation... |
SourceID | proquest gale crossref nrcresearch |
SourceType | Aggregation Database Publisher |
StartPage | 1373 |
SubjectTerms | Analysis boue de dragage Clay Clay soils colonne de sol Composition Compression Compression zone Consolidation Deformation Deformations (Mechanics) Drainage Drains dredged slurry déformation Environmental aspects Moisture content Particle image velocimetry PIV Prefabrication préchargement sous vide Reclamation of land Slurries Slurry Soil soil column Soil columns Soil mechanics Soils Vacuum vacuum preloading Vertical drains vélocimétrie par image de particules Water |
Title | Consolidation mechanism of high-water-content slurry during vacuum preloading with prefabricated vertical drains |
URI | http://www.nrcresearchpress.com/doi/abs/10.1139/cgj-2021-0248 https://www.proquest.com/docview/2693731937 |
Volume | 59 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLa68cIeEFcxVpCF0BBCgcTOrY_V1qm7qJrWISFeLDuJu6IuKUkD4t9zHDs3lesDD40a-8Sy7C_nHDvH30HolRNT3_PgBbQTYVuKn90aicS1YhGDKwf2mVd0DNN5MPsYHk_cyWBQZwdty_7rTEMZzLU6OfsPs900CgXwH-YcrjDrcP2reVcZOLPVUqdKenubqJO9KhGGcgphIW59A-cyt1SEuooCKFZlnn-vDyt-5VFZ3iregFVWxdbrbVq4l1xU-YTAPa0SOFffdlR2iaLr3TZUB4sk0-SwUUtO0QAoSxfWKlnqmKAGm5-Wlj6pPW2gdqk3Z89bobOletakYbkou1sWsNqtA-ZM5FDdmVp9dXbcZldHTcxhLwpFa-_Qor7O6vMu0QqbQJlaVHY1uuEY18gNO-rZoTpvijH1DtXpgrbNCFUsrNHiM0CLOJbifWvtZR0jMB3P2eXxCbs4nZ3voDsENJ2KKZ2fzZrPWK5r6OpNx2uSVzp632u85xQZ12AvzSND-HSz5ShU3s_1fXTPLFvwWOPtARok6UO01yGzfITWPeThBnk4k3gbeVgjD2vkYY083CIPK-ThHvJwjTyskfcYfTiZXB9NLZPPw4o8299YMQ-lTQJJpIRnA3C2vYRwSQl3qBdJMZIkFFLEwnV91-FBQHkcSJ9wH342jegTtJtmafIUYSLCka-oGSUPXWGHwhZECiE46BnPF9E-OqwHlK01bQurlrt0xGDkmRp5pkZ-H71Uw80UFUqqYq0WvCwKdjqfsXGg6AyJY7u_FLrqCb02QjLb5Dzi5nwLdFhRrPUkD3qS0Xr5hXVqD3u1C00__7Nmhj1BsAtRr_pNB0F_GoVhjS9mlELBiA9LF7DQNHj2--oDdLd9y4dod5OXyXO0U8Tli-p1-AHCqO7Q |
link.rule.ids | 315,782,786,27935,27936 |
linkProvider | Multiple Vendors |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Consolidation+mechanism+of+high-water-content+slurry+during+vacuum+preloading+with+prefabricated+vertical+drains&rft.jtitle=Canadian+geotechnical+journal&rft.au=Hong-lei%2C+Sun&rft.au=Zi-li%2C+He&rft.au=Pan%2C+Kun&rft.au=Jing-ling%2C+Lu&rft.date=2022-08-01&rft.pub=Canadian+Science+Publishing+NRC+Research+Press&rft.issn=0008-3674&rft.eissn=1208-6010&rft.volume=59&rft.issue=8&rft.spage=1373&rft.epage=1385&rft_id=info:doi/10.1139%2Fcgj-2021-0248&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0008-3674&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0008-3674&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0008-3674&client=summon |