Consolidation mechanism of high-water-content slurry during vacuum preloading with prefabricated vertical drains

Vacuum preloading combined with prefabricated vertical drains (PVDs) has been widely used to improve soft clayey soil deposits. However, the consolidation deformation of high-water-content slurry under vacuum pressure is still not fully understood. In this study, the displacement field of the slurry...

Full description

Saved in:
Bibliographic Details
Published in:Canadian geotechnical journal Vol. 59; no. 8; pp. 1373 - 1385
Main Authors: Sun, Hong-lei, He, Zi-li, Pan, Kun, Lu, Jing-ling, Pan, Xiao-dong, Shi, Li, Geng, Xue-yu
Format: Journal Article
Language:English
Published: 1840 Woodward Drive, Suite 1, Ottawa, ON K2C 0P7 Canadian Science Publishing 01-08-2022
NRC Research Press
Canadian Science Publishing NRC Research Press
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Vacuum preloading combined with prefabricated vertical drains (PVDs) has been widely used to improve soft clayey soil deposits. However, the consolidation deformation of high-water-content slurry under vacuum pressure is still not fully understood. In this study, the displacement field of the slurry during vacuum preloading was directly observed using the particle image velocimetry (PIV) technique. The test results showed that the displacement field of the slurry could be divided into three different zones that reflect distinct consolidation patterns. In zones I and III, the slurry was predominantly compressed along the horizontal and vertical directions, respectively, whereas in zone II, compression occurred in both vertical and horizontal directions. In particular, the slurry elements in zones I and II underwent horizontal extension prior to horizontal compression. The study also visualized the boundary of the soil column and provided an equation for the relation between soil column thickness and consolidation time, which could provide a reference for the theoretical consolidation calculations related to soil columns.
AbstractList Vacuum preloading combined with prefabricated vertical drains (PVDs) has been widely used to improve soft clayey soil deposits. However, the consolidation deformation of high-water-content slurry under vacuum pressure is still not fully understood. In this study, the displacement field of the slurry during vacuum preloading was directly observed using the particle image velocimetry (PIV) technique. The test results showed that the displacement field of the slurry could be divided into three different zones that reflect distinct consolidation patterns. In zones I and III, the slurry was predominantly compressed along the horizontal and vertical directions, respectively, whereas in zone II, compression occurred in both vertical and horizontal directions. In particular, the slurry elements in zones I and II underwent horizontal extension prior to horizontal compression. The study also visualized the boundary of the soil column and provided an equation for the relation between soil column thickness and consolidation time, which could provide a reference for the theoretical consolidation calculations related to soil columns.
Vacuum preloading combined with prefabricated vertical drains (PVDs) has been widely used to improve soft clayey soil deposits. However, the consolidation deformation of high-water-content slurry under vacuum pressure is still not fully understood. In this study, the displacement field of the slurry during vacuum preloading was directly observed using the particle image velocimetry (PIV) technique. The test results showed that the displacement field of the slurry could be divided into three different zones that reflect distinct consolidation patterns. In zones I and III, the slurry was predominantly compressed along the horizontal and vertical directions, respectively, whereas in zone II, compression occurred in both vertical and horizontal directions. In particular, the slurry elements in zones I and II underwent horizontal extension prior to horizontal compression. The study also visualized the boundary of the soil column and provided an equation for the relation between soil column thickness and consolidation time, which could provide a reference for the theoretical consolidation calculations related to soil columns. Key words: dredged slurry, vacuum preloading, particle image velocimetry, PIV, deformation, soil column. Le prechargement par le vide combine a des drains verticaux prefabriques (PVD) a ete largement utilise pour ameliorer les depots de sols argileux mous. Cependant, la deformation de consolidation d'une boue a forte teneur en eau sous pression sous vide n'est pas encore totalement comprise. Dans cette etude, le champ de deplacement de la boue pendant le prechargement sous vide a ete directement observe en utilisant la technique de velocimetrie par image de particules (PIV). Les resultats des essais ont montre que le champ de deplacement de la boue pouvait etre divise en trois zones differentes qui refletent des modeles de consolidation distincts. Dans les zones I et III, la boue a ete principalement comprimee dans les directions horizontale et verticale, respectivement, tandis que dans la zone II, la compression a eu lieu dans les deux directions, verticale et horizontale. En particulier, les elements de boue des zones I et II ont subi une extension horizontale avant la compression horizontale. L'etude a egalement permis de visualiser la limite de la colonne de sol et de fournir une equation pour la relation entre l'epaisseur de la colonne de sol et le temps de consolidation, qui pourrait servir de reference pour les calculs theoriques de consolidation lies aux colonnes de sol. [Traduit par la Redaction] Mots-cles : boue de dragage, prechargement sous vide, velocimetrie par image de particules, PIV, deformation, colonne de sol.
Vacuum preloading combined with prefabricated vertical drains (PVDs) has been widely used to improve soft clayey soil deposits. However, the consolidation deformation of high-water-content slurry under vacuum pressure is still not fully understood. In this study, the displacement field of the slurry during vacuum preloading was directly observed using the particle image velocimetry (PIV) technique. The test results showed that the displacement field of the slurry could be divided into three different zones that reflect distinct consolidation patterns. In zones I and III, the slurry was predominantly compressed along the horizontal and vertical directions, respectively, whereas in zone II, compression occurred in both vertical and horizontal directions. In particular, the slurry elements in zones I and II underwent horizontal extension prior to horizontal compression. The study also visualized the boundary of the soil column and provided an equation for the relation between soil column thickness and consolidation time, which could provide a reference for the theoretical consolidation calculations related to soil columns.
Abstract_FL Le préchargement par le vide combiné à des drains verticaux préfabriqués (PVD) a été largement utilisé pour améliorer les dépôts de sols argileux mous. Cependant, la déformation de consolidation d’une boue à forte teneur en eau sous pression sous vide n’est pas encore totalement comprise. Dans cette étude, le champ de déplacement de la boue pendant le préchargement sous vide a été directement observé en utilisant la technique de vélocimétrie par image de particules (PIV). Les résultats des essais ont montré que le champ de déplacement de la boue pouvait être divisé en trois zones différentes qui reflètent des modèles de consolidation distincts. Dans les zones I et III, la boue a été principalement comprimée dans les directions horizontale et verticale, respectivement, tandis que dans la zone II, la compression a eu lieu dans les deux directions, verticale et horizontale. En particulier, les éléments de boue des zones I et II ont subi une extension horizontale avant la compression horizontale. L’étude a également permis de visualiser la limite de la colonne de sol et de fournir une équation pour la relation entre l’épaisseur de la colonne de sol et le temps de consolidation, qui pourrait servir de référence pour les calculs théoriques de consolidation liés aux colonnes de sol. [Traduit par la Rédaction]
Audience Academic
Author Pan, Xiao-dong
Geng, Xue-yu
Pan, Kun
Lu, Jing-ling
Shi, Li
He, Zi-li
Sun, Hong-lei
Author_xml – sequence: 1
  givenname: Hong-lei
  surname: Sun
  fullname: Sun, Hong-lei
  organization: Institute of Geotechnical Engineering, Zhejiang University of Technology, Hangzhou 310014, People’s Republic of China
– sequence: 2
  givenname: Zi-li
  surname: He
  fullname: He, Zi-li
  organization: Institute of Geotechnical Engineering, Zhejiang University of Technology, Hangzhou 310014, People’s Republic of China
– sequence: 3
  givenname: Kun
  surname: Pan
  fullname: Pan, Kun
  organization: Institute of Geotechnical Engineering, Zhejiang University of Technology, Hangzhou 310014, People’s Republic of China
– sequence: 4
  givenname: Jing-ling
  surname: Lu
  fullname: Lu, Jing-ling
  organization: Institute of Geotechnical Engineering, Zhejiang University of Technology, Hangzhou 310014, People’s Republic of China
– sequence: 5
  givenname: Xiao-dong
  surname: Pan
  fullname: Pan, Xiao-dong
  organization: Institute of Geotechnical Engineering, Zhejiang University of Technology, Hangzhou 310014, People’s Republic of China
– sequence: 6
  givenname: Li
  surname: Shi
  fullname: Shi, Li
  organization: Institute of Geotechnical Engineering, Zhejiang University of Technology, Hangzhou 310014, People’s Republic of China
– sequence: 7
  givenname: Xue-yu
  surname: Geng
  fullname: Geng, Xue-yu
  organization: School of Engineering, University of Warwick, Coventry, CV4 7AL, UK
BookMark eNqVkstr3DAQxkVJoZu0x95Fe-pBqR5ee_cYlrYJhBb6OIuxHrYWW3IkOWn--8pJKQ0YShGSRsPvGyHNd4pOfPAGodeMnjMm9u9VdyScckYor3bP0IZxuiM1ZfQEbSgtsaib6gU6TelIKasqzjdoOgSfwuA0ZBc8Ho3qwbs04mBx77qe3EE2kajgs_EZp2GO8R7rOTrf4VtQ8zziKZohgF4ydy73y9lCG50qUo1vTcwlHLCO4Hx6iZ5bGJJ59Xs_Qz8-fvh-uCTXXz5dHS6uidrSOhMNO0t5Y7m1pVbDt_XWcLCCAxNbZdu95bvWtrqtqrpi0DQCdGNrDnWZVChxht4-1p1iuJlNyvIY5ujLlZLXe9EItix_qA4GI523IUdQo0tKXjSs_BdntCoUWaE6402EofTAupJ-wr9Z4dXkbuTf0PkKVIY2o1OrVd89ETz05GfuYE5JXn37-h_s59XXqRhSKr2TU3QjxHvJqFyMJYux5GIsuRir8PSR91FFkwxE1f9D8gsAgtBc
CitedBy_id crossref_primary_10_3390_app131810340
crossref_primary_10_1016_j_geotexmem_2024_05_011
crossref_primary_10_1080_1064119X_2023_2211979
crossref_primary_10_3389_fmars_2023_1213820
crossref_primary_10_1080_1064119X_2024_2327079
crossref_primary_10_1016_j_geotexmem_2023_04_003
Cites_doi 10.1061/(ASCE)GM.1943-5622.0001898
10.1016/j.geotexmem.2020.03.007
10.1139/t01-100
10.1007/s12205-017-0707-6
10.1139/cgj-2017-0635
10.12989/gae.2014.6.4.377
10.1061/(ASCE)GT.1943-5606.0000640
10.1680/gein.14.00016
10.1016/j.geotexmem.2015.05.007
10.3208/jgssp.TC217-05
10.3390/app10031139
10.1139/cgj-2018-0094
10.1061/(ASCE)1532-3641(2005)5:2(114)
10.1680/geot.2004.54.6.375
10.1139/t2012-024
10.1680/geot.2000.50.6.613
10.1016/j.geotexmem.2017.11.010
10.1139/t05-042
10.1139/t02-052
10.1080/1064119X.2018.1522398
10.1061/9780784413401.023
10.1016/j.geotexmem.2019.103459
10.1016/j.enggeo.2019.105194
10.1680/geot.2003.53.7.619
10.1061/(ASCE)GM.1943-5622.0001028
10.1016/j.sandf.2018.02.028
10.1016/j.geotexmem.2015.07.012
10.1061/(ASCE)1090-0241(2005)131:12(1552)
10.1139/cgj-2015-0253
10.1016/j.enggeo.2017.03.020
10.1016/j.geotexmem.2019.103493
10.1016/j.protcy.2016.05.034
10.1016/j.geotexmem.2020.02.010
10.1520/GTJ20130044
10.1680/geot.9.P.125
10.1680/jphmg.15.00005
10.1680/geot.2000.50.6.625
10.1016/j.geotexmem.2018.12.001
10.1016/j.compgeo.2019.103415
10.1680/geot.13.P.179
10.1680/geot.8.P.039
ContentType Journal Article
Copyright COPYRIGHT 2022 NRC Research Press
2022 Published by NRC Research Press
Copyright_xml – notice: COPYRIGHT 2022 NRC Research Press
– notice: 2022 Published by NRC Research Press
DBID AAYXX
CITATION
ISN
ISR
7TG
7UA
8FD
C1K
F1W
FR3
H96
KL.
KR7
L.G
DOI 10.1139/cgj-2021-0248
DatabaseName CrossRef
Gale In Context: Canada
Science in Context
Meteorological & Geoastrophysical Abstracts
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Meteorological & Geoastrophysical Abstracts - Academic
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList



CrossRef



Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1208-6010
EndPage 1385
ExternalDocumentID A713672104
10_1139_cgj_2021_0248
cgj-2021-0248
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID 02
08R
0R
29B
2XV
3V.
4.4
4P2
4S
5GY
5RP
6J9
88I
8AF
8FE
8FG
8FH
8FQ
AAIKC
ABDBF
ABJCF
ABPTK
ABUWG
ACGFO
ACGFS
ACGOD
ACIWK
ADNWM
AEGXH
AENEX
AFKRA
AFRAH
AIAGR
ALMA_UNASSIGNED_HOLDINGS
ARCSS
AZQEC
BCR
BENPR
BGLVJ
BHPHI
BKSAR
BLC
BPHCQ
CAG
COF
CS3
D8U
DATHI
DC
DU5
DWQXO
EAD
EAP
EAS
EBS
ECC
EDH
EDO
EJD
EMK
EPL
ESX
GNUQQ
HCIFZ
HZ
H~9
I
I-F
IAO
ICQ
IEA
IGS
IOF
IPNFZ
ISN
ISR
ITC
L6V
L7B
L8X
LK5
M2P
M2Q
M3C
M3G
M7R
M7S
ML.
MM-
MV1
NMEPN
NRXXU
NYCZX
O9-
ONR
OVD
P-S
P2P
PCBAR
PQEST
PQQKQ
PQUKI
PRINS
PROAC
PTHSS
PV9
QF4
QM1
QN7
QO4
QRP
RIG
RRCRK
RRP
RWL
RZL
SJN
TAE
TEORI
TUS
U5U
UMP
VQG
X
-~X
..I
.4S
.DC
00T
0R~
AAMNW
AAYXX
ABJNI
CCPQU
CITATION
HZ~
~02
7TG
7UA
8FD
C1K
F1W
FR3
H96
KL.
KR7
L.G
ID FETCH-LOGICAL-c506t-da8f027f2fffab72565e2af32a135cfb9f28bfbdb44641a773ad7f62a662a03c3
ISSN 0008-3674
IngestDate Thu Nov 07 04:35:25 EST 2024
Tue Nov 19 21:34:25 EST 2024
Wed Nov 13 04:55:45 EST 2024
Tue May 28 01:36:26 EDT 2024
Tue Nov 12 23:38:45 EST 2024
Sat Sep 28 20:52:28 EDT 2024
Tue Nov 05 09:07:57 EST 2024
Thu Sep 26 17:29:07 EDT 2024
Tue Jul 26 04:11:46 EDT 2022
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c506t-da8f027f2fffab72565e2af32a135cfb9f28bfbdb44641a773ad7f62a662a03c3
PQID 2693731937
PQPubID 47495
PageCount 13
ParticipantIDs gale_infotracmisc_A713672104
nrcresearch_primary_10_1139_cgj_2021_0248
gale_infotracgeneralonefile_A713672104
gale_infotraccpiq_713672104
crossref_primary_10_1139_cgj_2021_0248
proquest_journals_2693731937
gale_incontextgauss_ISN_A713672104
gale_infotracacademiconefile_A713672104
gale_incontextgauss_ISR_A713672104
PublicationCentury 2000
PublicationDate 2022-08-01
PublicationDateYYYYMMDD 2022-08-01
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-08-01
  day: 01
PublicationDecade 2020
PublicationPlace 1840 Woodward Drive, Suite 1, Ottawa, ON K2C 0P7
PublicationPlace_xml – name: 1840 Woodward Drive, Suite 1, Ottawa, ON K2C 0P7
– name: Ottawa
PublicationTitle Canadian geotechnical journal
PublicationYear 2022
Publisher Canadian Science Publishing
NRC Research Press
Canadian Science Publishing NRC Research Press
Publisher_xml – name: Canadian Science Publishing
– name: NRC Research Press
– name: Canadian Science Publishing NRC Research Press
References refg47/ref47
refg40/ref40
refg18/ref18
refg20/ref20
refg22/ref22
refg36/ref36
refg38/ref38
Bao S.F. (refg2/ref2) 2014; 36
refg45/ref45
refg31/ref31
refg9/ref9
refg11/ref11
refg25/ref25
refg6/ref6
refg15/ref15
refg29/ref29
refg43/ref43
refg34/ref34
refg26/ref26
refg8/ref8
refg5/ref5
refg23/ref23
refg37/ref37
refg17/ref17
refg19/ref19
refg21/ref21
refg4/ref4
refg10/ref10
refg12/ref12
refg1/ref1
refg28/ref28
refg41/ref41
refg32/ref32
Tang T.Z. (refg35/ref35) 2010; 4
Cai Y.Q. (refg7/ref7) 2020; 41
refg39/ref39
refg3/ref3
Xu K. (refg46/ref46) 2016; 38
refg42/ref42
refg44/ref44
refg24/ref24
refg16/ref16
refg33/ref33
refg13/ref13
refg27/ref27
References_xml – ident: refg23/ref23
  doi: 10.1061/(ASCE)GM.1943-5622.0001898
– ident: refg44/ref44
  doi: 10.1016/j.geotexmem.2020.03.007
– ident: refg4/ref4
  doi: 10.1139/t01-100
– ident: refg18/ref18
  doi: 10.1007/s12205-017-0707-6
– ident: refg12/ref12
  doi: 10.1139/cgj-2017-0635
– ident: refg17/ref17
  doi: 10.12989/gae.2014.6.4.377
– ident: refg26/ref26
  doi: 10.1061/(ASCE)GT.1943-5606.0000640
– ident: refg45/ref45
  doi: 10.1680/gein.14.00016
– ident: refg24/ref24
  doi: 10.1016/j.geotexmem.2015.05.007
– ident: refg5/ref5
  doi: 10.3208/jgssp.TC217-05
– ident: refg20/ref20
  doi: 10.3390/app10031139
– ident: refg41/ref41
  doi: 10.1139/cgj-2018-0094
– ident: refg16/ref16
  doi: 10.1061/(ASCE)1532-3641(2005)5:2(114)
– ident: refg42/ref42
  doi: 10.1680/geot.2004.54.6.375
– ident: refg28/ref28
  doi: 10.1139/t2012-024
– ident: refg34/ref34
  doi: 10.1680/geot.2000.50.6.613
– ident: refg32/ref32
  doi: 10.1016/j.geotexmem.2017.11.010
– volume: 38
  start-page: 123
  issue: 2
  year: 2016
  ident: refg46/ref46
  publication-title: Chinese Journal of Geotechnical Engineering,
  contributor:
    fullname: Xu K.
– volume: 4
  start-page: 115
  year: 2010
  ident: refg35/ref35
  publication-title: Port and Waterway Engineering,
  contributor:
    fullname: Tang T.Z.
– ident: refg47/ref47
  doi: 10.1139/t05-042
– ident: refg27/ref27
  doi: 10.1139/t02-052
– ident: refg13/ref13
  doi: 10.1080/1064119X.2018.1522398
– ident: refg22/ref22
  doi: 10.1061/9780784413401.023
– ident: refg25/ref25
  doi: 10.1016/j.geotexmem.2019.103459
– ident: refg38/ref38
  doi: 10.1016/j.enggeo.2019.105194
– ident: refg43/ref43
  doi: 10.1680/geot.2003.53.7.619
– ident: refg21/ref21
  doi: 10.1061/(ASCE)GM.1943-5622.0001028
– volume: 36
  start-page: 1350
  issue: 7
  year: 2014
  ident: refg2/ref2
  publication-title: Chinese Journal of Geotechnical Engineering,
  contributor:
    fullname: Bao S.F.
– ident: refg36/ref36
  doi: 10.1016/j.sandf.2018.02.028
– ident: refg8/ref8
  doi: 10.1016/j.geotexmem.2015.07.012
– ident: refg9/ref9
  doi: 10.1061/(ASCE)1090-0241(2005)131:12(1552)
– ident: refg31/ref31
  doi: 10.1139/cgj-2015-0253
– ident: refg6/ref6
  doi: 10.1016/j.enggeo.2017.03.020
– ident: refg39/ref39
  doi: 10.1016/j.geotexmem.2019.103493
– volume: 41
  start-page: 1
  issue: 11
  year: 2020
  ident: refg7/ref7
  publication-title: Rock and Soil Mechanics,
  contributor:
    fullname: Cai Y.Q.
– ident: refg19/ref19
  doi: 10.1016/j.protcy.2016.05.034
– ident: refg40/ref40
  doi: 10.1016/j.geotexmem.2020.02.010
– ident: refg29/ref29
  doi: 10.1520/GTJ20130044
– ident: refg33/ref33
  doi: 10.1680/geot.9.P.125
– ident: refg3/ref3
  doi: 10.1680/jphmg.15.00005
– ident: refg11/ref11
  doi: 10.1680/geot.2000.50.6.625
– ident: refg37/ref37
  doi: 10.1016/j.geotexmem.2018.12.001
– ident: refg10/ref10
  doi: 10.1016/j.compgeo.2019.103415
– ident: refg1/ref1
  doi: 10.1680/geot.13.P.179
– ident: refg15/ref15
  doi: 10.1680/geot.8.P.039
SSID ssj0014422
Score 2.4490077
Snippet Vacuum preloading combined with prefabricated vertical drains (PVDs) has been widely used to improve soft clayey soil deposits. However, the consolidation...
SourceID proquest
gale
crossref
nrcresearch
SourceType Aggregation Database
Publisher
StartPage 1373
SubjectTerms Analysis
boue de dragage
Clay
Clay soils
colonne de sol
Composition
Compression
Compression zone
Consolidation
Deformation
Deformations (Mechanics)
Drainage
Drains
dredged slurry
déformation
Environmental aspects
Moisture content
Particle image velocimetry
PIV
Prefabrication
préchargement sous vide
Reclamation of land
Slurries
Slurry
Soil
soil column
Soil columns
Soil mechanics
Soils
Vacuum
vacuum preloading
Vertical drains
vélocimétrie par image de particules
Water
Title Consolidation mechanism of high-water-content slurry during vacuum preloading with prefabricated vertical drains
URI http://www.nrcresearchpress.com/doi/abs/10.1139/cgj-2021-0248
https://www.proquest.com/docview/2693731937
Volume 59
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLa68cIeEFcxVpCF0BBCgcTOrY_V1qm7qJrWISFeLDuJu6IuKUkD4t9zHDs3lesDD40a-8Sy7C_nHDvH30HolRNT3_PgBbQTYVuKn90aicS1YhGDKwf2mVd0DNN5MPsYHk_cyWBQZwdty_7rTEMZzLU6OfsPs900CgXwH-YcrjDrcP2reVcZOLPVUqdKenubqJO9KhGGcgphIW59A-cyt1SEuooCKFZlnn-vDyt-5VFZ3iregFVWxdbrbVq4l1xU-YTAPa0SOFffdlR2iaLr3TZUB4sk0-SwUUtO0QAoSxfWKlnqmKAGm5-Wlj6pPW2gdqk3Z89bobOletakYbkou1sWsNqtA-ZM5FDdmVp9dXbcZldHTcxhLwpFa-_Qor7O6vMu0QqbQJlaVHY1uuEY18gNO-rZoTpvijH1DtXpgrbNCFUsrNHiM0CLOJbifWvtZR0jMB3P2eXxCbs4nZ3voDsENJ2KKZ2fzZrPWK5r6OpNx2uSVzp632u85xQZ12AvzSND-HSz5ShU3s_1fXTPLFvwWOPtARok6UO01yGzfITWPeThBnk4k3gbeVgjD2vkYY083CIPK-ThHvJwjTyskfcYfTiZXB9NLZPPw4o8299YMQ-lTQJJpIRnA3C2vYRwSQl3qBdJMZIkFFLEwnV91-FBQHkcSJ9wH342jegTtJtmafIUYSLCka-oGSUPXWGHwhZECiE46BnPF9E-OqwHlK01bQurlrt0xGDkmRp5pkZ-H71Uw80UFUqqYq0WvCwKdjqfsXGg6AyJY7u_FLrqCb02QjLb5Dzi5nwLdFhRrPUkD3qS0Xr5hXVqD3u1C00__7Nmhj1BsAtRr_pNB0F_GoVhjS9mlELBiA9LF7DQNHj2--oDdLd9y4dod5OXyXO0U8Tli-p1-AHCqO7Q
link.rule.ids 315,782,786,27935,27936
linkProvider Multiple Vendors
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Consolidation+mechanism+of+high-water-content+slurry+during+vacuum+preloading+with+prefabricated+vertical+drains&rft.jtitle=Canadian+geotechnical+journal&rft.au=Hong-lei%2C+Sun&rft.au=Zi-li%2C+He&rft.au=Pan%2C+Kun&rft.au=Jing-ling%2C+Lu&rft.date=2022-08-01&rft.pub=Canadian+Science+Publishing+NRC+Research+Press&rft.issn=0008-3674&rft.eissn=1208-6010&rft.volume=59&rft.issue=8&rft.spage=1373&rft.epage=1385&rft_id=info:doi/10.1139%2Fcgj-2021-0248&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0008-3674&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0008-3674&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0008-3674&client=summon