A global census of nitrogenase diversity

Summary The global diversity of nitrogen‐fixing microorganisms was assessed through construction and analysis of an aligned database of 16 989 nifH sequences. We conclude that the diversity of diazotrophs is still poorly described and that many organisms remain to be discovered. Our analyses indicat...

Full description

Saved in:
Bibliographic Details
Published in:Environmental microbiology Vol. 13; no. 7; pp. 1790 - 1799
Main Authors: Gaby, John Christian, Buckley, Daniel H.
Format: Journal Article
Language:English
Published: Oxford, UK Blackwell Publishing Ltd 01-07-2011
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Summary The global diversity of nitrogen‐fixing microorganisms was assessed through construction and analysis of an aligned database of 16 989 nifH sequences. We conclude that the diversity of diazotrophs is still poorly described and that many organisms remain to be discovered. Our analyses indicate that diversity is not distributed evenly across phylogenetic groups or across environments and that some of the most diverse assemblages and environments remain the most poorly characterized. The majority of OTUs were rare, falling in the long tail of the frequency distribution. The most dominant OTUs fell into either the Cyanobacteria or the α, β, and γ Proteobacteria, and five of these dominant OTUs do not have any representatives cultivated in isolation. Soils contained the greatest diversity of nifH sequences of all of the environments surveyed. Cluster III, which is dominated by nifH sequences from obligate anaerobes, was found to contain the greatest diversity of all nifH lineages and is also the group for which diversity is the least sampled. Our findings provide context for ongoing efforts to explore diazotroph diversity, indicating specific groups and environments that remain poorly characterized.
AbstractList The global diversity of nitrogen-fixing microorganisms was assessed through construction and analysis of an aligned database of 16989 nifH sequences. We conclude that the diversity of diazotrophs is still poorly described and that many organisms remain to be discovered. Our analyses indicate that diversity is not distributed evenly across phylogenetic groups or across environments and that some of the most diverse assemblages and environments remain the most poorly characterized. The majority of OTUs were rare, falling in the long tail of the frequency distribution. The most dominant OTUs fell into either the Cyanobacteria or the alpha , beta , and gamma Proteobacteria, and five of these dominant OTUs do not have any representatives cultivated in isolation. Soils contained the greatest diversity of nifH sequences of all of the environments surveyed. Cluster III, which is dominated by nifH sequences from obligate anaerobes, was found to contain the greatest diversity of all nifH lineages and is also the group for which diversity is the least sampled. Our findings provide context for ongoing efforts to explore diazotroph diversity, indicating specific groups and environments that remain poorly characterized.
Summary The global diversity of nitrogen‐fixing microorganisms was assessed through construction and analysis of an aligned database of 16 989 nifH sequences. We conclude that the diversity of diazotrophs is still poorly described and that many organisms remain to be discovered. Our analyses indicate that diversity is not distributed evenly across phylogenetic groups or across environments and that some of the most diverse assemblages and environments remain the most poorly characterized. The majority of OTUs were rare, falling in the long tail of the frequency distribution. The most dominant OTUs fell into either the Cyanobacteria or the α, β, and γ Proteobacteria, and five of these dominant OTUs do not have any representatives cultivated in isolation. Soils contained the greatest diversity of nifH sequences of all of the environments surveyed. Cluster III, which is dominated by nifH sequences from obligate anaerobes, was found to contain the greatest diversity of all nifH lineages and is also the group for which diversity is the least sampled. Our findings provide context for ongoing efforts to explore diazotroph diversity, indicating specific groups and environments that remain poorly characterized.
The global diversity of nitrogen‐fixing microorganisms was assessed through construction and analysis of an aligned database of 16 989 nifH sequences. We conclude that the diversity of diazotrophs is still poorly described and that many organisms remain to be discovered. Our analyses indicate that diversity is not distributed evenly across phylogenetic groups or across environments and that some of the most diverse assemblages and environments remain the most poorly characterized. The majority of OTUs were rare, falling in the long tail of the frequency distribution. The most dominant OTUs fell into either the Cyanobacteria or the α , β , and γ Proteobacteria , and five of these dominant OTUs do not have any representatives cultivated in isolation. Soils contained the greatest diversity of nifH sequences of all of the environments surveyed. Cluster III, which is dominated by nifH sequences from obligate anaerobes, was found to contain the greatest diversity of all nifH lineages and is also the group for which diversity is the least sampled. Our findings provide context for ongoing efforts to explore diazotroph diversity, indicating specific groups and environments that remain poorly characterized.
The global diversity of nitrogen-fixing microorganisms was assessed through construction and analysis of an aligned database of 16,989 nifH sequences. We conclude that the diversity of diazotrophs is still poorly described and that many organisms remain to be discovered. Our analyses indicate that diversity is not distributed evenly across phylogenetic groups or across environments and that some of the most diverse assemblages and environments remain the most poorly characterized. The majority of OTUs were rare, falling in the long tail of the frequency distribution. The most dominant OTUs fell into either the Cyanobacteria or the α, β, and γ Proteobacteria, and five of these dominant OTUs do not have any representatives cultivated in isolation. Soils contained the greatest diversity of nifH sequences of all of the environments surveyed. Cluster III, which is dominated by nifH sequences from obligate anaerobes, was found to contain the greatest diversity of all nifH lineages and is also the group for which diversity is the least sampled. Our findings provide context for ongoing efforts to explore diazotroph diversity, indicating specific groups and environments that remain poorly characterized.
Author Buckley, Daniel H.
Gaby, John Christian
Author_xml – sequence: 1
  givenname: John Christian
  surname: Gaby
  fullname: Gaby, John Christian
  organization: Department of Crop and Soil Sciences, Cornell University, Ithaca, NY 14853, USA
– sequence: 2
  givenname: Daniel H.
  surname: Buckley
  fullname: Buckley, Daniel H.
  email: dhb28@cornell.edu
  organization: E-mail: dhb28@cornell.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21535343$$D View this record in MEDLINE/PubMed
BookMark eNqNkU1PgzAYxxujcS_6FQw3dwH7ArQcPMy5zSVTD2p2bAq0C5PBbEG3b2-RydHYNOmT9Pd_nvTXATgtykIC4CDoIbtuNh7yQ-ziCEMPQ4Q8iH3GvP0J6HcXp12NcA8MjNlAiCih8Bz0MApIQHzSB6Oxs87LWOROIgtTG6dUTpFVulzLQhjppNmn1CarDhfgTIncyMvjOQRvs-nr5MFdPs8Xk_HSTQIYMJfSEGPCaKwEDAKIMEnSNMQiUXGkFENYxCwKZSL9hDLIsLJbYIV9KFMGFSRDcN323enyo5am4tvMJDLPRSHL2nBGfRZRgiNLjv4kEbVPDKIoYhZlLZro0hgtFd_pbCv0gSPIG6N8wxtZvBHHG6P8xyjf2-jVcUodb2XaBX8VWuC2Bb6yXB7-3ZhPHxdNZfNum89MJfddXuh3HtrvCvjqac7Z3cv9LJwTviLfZEiTLg
CitedBy_id crossref_primary_10_1021_acs_inorgchem_2c03693
crossref_primary_10_1128_AEM_01889_12
crossref_primary_10_1007_s10533_017_0399_5
crossref_primary_10_1007_s13205_023_03640_w
crossref_primary_10_1093_femsec_fiv166
crossref_primary_10_22144_ctu_jen_2017_042
crossref_primary_10_1007_s11356_015_5144_9
crossref_primary_10_1071_CP14109
crossref_primary_10_1016_j_isci_2021_102349
crossref_primary_10_1111_1574_6976_12028
crossref_primary_10_1016_j_soilbio_2020_108013
crossref_primary_10_1111_1462_2920_13954
crossref_primary_10_1016_j_scitotenv_2020_144182
crossref_primary_10_1111_1462_2920_12346
crossref_primary_10_1016_j_agee_2018_08_002
crossref_primary_10_1111_1462_2920_15984
crossref_primary_10_1002_imt2_81
crossref_primary_10_3389_fmicb_2018_00703
crossref_primary_10_1016_j_fecs_2022_100025
crossref_primary_10_3390_agronomy11020383
crossref_primary_10_1016_j_soilbio_2022_108887
crossref_primary_10_1002_mbo3_502
crossref_primary_10_1029_2023JG007687
crossref_primary_10_1371_journal_pone_0179652
crossref_primary_10_3389_fmicb_2023_1292860
crossref_primary_10_3389_fmicb_2023_1074855
crossref_primary_10_3390_ijerph16203873
crossref_primary_10_1128_AEM_02851_18
crossref_primary_10_1016_j_apsoil_2017_11_003
crossref_primary_10_1038_s41396_021_01054_1
crossref_primary_10_1007_s11356_020_09548_9
crossref_primary_10_7717_peerj_6162
crossref_primary_10_1111_plb_13003
crossref_primary_10_1371_journal_pone_0088141
crossref_primary_10_1007_s00284_021_02603_9
crossref_primary_10_1111_1462_2920_15900
crossref_primary_10_1128_AEM_00956_20
crossref_primary_10_2174_1874331501610010007
crossref_primary_10_1007_s10653_019_00261_2
crossref_primary_10_1007_s11356_019_07263_8
crossref_primary_10_1007_s00248_015_0657_9
crossref_primary_10_1016_j_scitotenv_2018_05_238
crossref_primary_10_1038_s41396_017_0008_6
crossref_primary_10_1002_sae2_12024
crossref_primary_10_3389_fsoil_2022_817641
crossref_primary_10_1111_jbi_12752
crossref_primary_10_1016_j_aquabot_2016_03_002
crossref_primary_10_1016_j_soilbio_2014_09_017
crossref_primary_10_1007_s10533_020_00666_7
crossref_primary_10_1007_s42398_023_00267_8
crossref_primary_10_1128_AEM_04034_13
crossref_primary_10_1016_j_plgene_2021_100325
crossref_primary_10_3354_ame01806
crossref_primary_10_1007_s00284_022_02948_9
crossref_primary_10_3389_fmolb_2019_00115
crossref_primary_10_1016_j_tim_2016_07_002
crossref_primary_10_1093_bioinformatics_btu417
crossref_primary_10_1016_j_resmic_2019_02_002
crossref_primary_10_3389_fmicb_2017_00267
crossref_primary_10_1016_j_dsr2_2018_09_010
crossref_primary_10_1186_s12915_022_01289_0
crossref_primary_10_1021_jacs_6b00747
crossref_primary_10_1007_s00248_018_1185_1
crossref_primary_10_1016_j_apsoil_2021_104227
crossref_primary_10_1080_03650340_2019_1566711
crossref_primary_10_1111_1462_2920_12423
crossref_primary_10_1088_1755_1315_762_1_012051
crossref_primary_10_1093_femsec_fiad009
crossref_primary_10_1111_1462_2920_13088
crossref_primary_10_3389_fpls_2020_578812
crossref_primary_10_3390_microorganisms7020053
crossref_primary_10_1007_s00248_017_0968_0
crossref_primary_10_1016_j_apsoil_2023_105157
crossref_primary_10_1016_j_still_2016_12_003
crossref_primary_10_3389_fmicb_2022_1078208
crossref_primary_10_3390_plants9081011
crossref_primary_10_1146_annurev_ecolsys_112414_054126
crossref_primary_10_1007_s00374_020_01492_7
crossref_primary_10_1038_ismej_2014_144
crossref_primary_10_3390_agronomy11071415
crossref_primary_10_1016_j_catena_2021_105844
crossref_primary_10_1016_j_apsoil_2017_09_031
crossref_primary_10_1007_s00122_021_03791_5
crossref_primary_10_3390_microorganisms9081662
crossref_primary_10_1007_s00248_015_0659_7
crossref_primary_10_1186_s40168_024_01812_1
crossref_primary_10_1093_femsec_fiv104
crossref_primary_10_1093_femsre_fuac046
crossref_primary_10_1111_1758_2229_12455
crossref_primary_10_3389_fmicb_2016_01045
crossref_primary_10_1128_AEM_02362_13
crossref_primary_10_1007_s10750_014_1832_6
crossref_primary_10_1007_s11356_015_4410_1
crossref_primary_10_3389_fmicb_2022_821030
crossref_primary_10_1111_geb_13178
crossref_primary_10_1128_AEM_02546_18
crossref_primary_10_1038_s41396_021_01002_z
crossref_primary_10_1016_j_scitotenv_2021_151768
crossref_primary_10_1111_jpy_12152
crossref_primary_10_1146_annurev_micro_022620_014338
crossref_primary_10_1016_j_chemosphere_2021_129967
crossref_primary_10_1139_cjm_2018_0588
crossref_primary_10_1016_j_soilbio_2018_08_024
crossref_primary_10_1016_j_soilbio_2024_109318
crossref_primary_10_1093_database_bau001
crossref_primary_10_3389_fmicb_2022_853411
crossref_primary_10_3389_fmicb_2021_675693
crossref_primary_10_1111_j_1462_2920_2012_02864_x
crossref_primary_10_1007_s00248_019_01334_6
crossref_primary_10_3389_fmars_2023_1213051
Cites_doi 10.1128/AEM.01720-07
10.1128/AEM.62.2.625-630.1996
10.1128/jb.177.5.1414-1417.1995
10.1128/AEM.55.10.2522-2526.1989
10.1890/06-0219
10.1093/nar/gkp985
10.1128/AEM.02610-06
10.1007/1-4020-3054-1_14
10.1016/S0923-2508(00)01172-4
10.1128/AEM.68.4.1548-1555.2002
10.1126/science.1165340
10.1128/AEM.70.1.240-247.2004
10.1128/AEM.71.3.1501-1506.2005
10.1038/ismej.2008.82
10.1007/BF02099731
10.2475/ajs.305.6-8.546
10.1007/BF00002772
10.1128/JB.00876-07
10.1128/AEM.64.9.3444-3450.1998
10.2144/03355st08
10.1093/nar/gkm929
10.1046/j.1462-2920.2003.00451.x
10.1128/AEM.68.5.2236-2245.2002
10.1111/j.1574-6941.2007.00283.x
10.1128/AEM.67.10.4399-4406.2001
10.1073/pnas.0605127103
10.1128/AEM.71.12.7910-7919.2005
10.1128/AEM.71.9.5362-5370.2005
10.1016/B978-044450965-9/50004-5
10.1007/s00299-001-0399-7
10.4319/lo.2007.52.4.1317
10.1128/jb.176.21.6590-6598.1994
10.1093/molbev/msh047
10.1098/rstb.2006.1920
10.1046/j.1529-8817.2001.00192.x
10.1023/A:1015798105851
10.1038/35088063
10.1016/S1369-5274(00)00087-4
10.4319/lo.2007.52.1.0169
10.1038/nature08786
10.1126/science.1185468
ContentType Journal Article
Copyright 2011 Society for Applied Microbiology and Blackwell Publishing Ltd
2011 Society for Applied Microbiology and Blackwell Publishing Ltd.
Copyright_xml – notice: 2011 Society for Applied Microbiology and Blackwell Publishing Ltd
– notice: 2011 Society for Applied Microbiology and Blackwell Publishing Ltd.
DBID BSCLL
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QL
C1K
7X8
DOI 10.1111/j.1462-2920.2011.02488.x
DatabaseName Istex
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Bacteriology Abstracts (Microbiology B)
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Bacteriology Abstracts (Microbiology B)
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList Bacteriology Abstracts (Microbiology B)

CrossRef
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: ECM
  name: MEDLINE
  url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1462-2920
EndPage 1799
ExternalDocumentID 10_1111_j_1462_2920_2011_02488_x
21535343
EMI2488
ark_67375_WNG_8BSDF6G3_W
Genre article
Research Support, U.S. Gov't, Non-P.H.S
Journal Article
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
1OC
29G
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
C45
CAG
COF
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
ESX
F00
F01
F04
F5P
FEDTE
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OBS
OIG
OVD
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
R.K
ROL
RX1
SUPJJ
TEORI
UB1
V8K
W8V
W99
WBKPD
WIH
WIK
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XIH
YUY
ZZTAW
~02
~IA
~KM
~WT
CGR
CUY
CVF
ECM
EIF
NPM
AAMNL
AAYXX
CITATION
7QL
C1K
7X8
ID FETCH-LOGICAL-c5058-77622387bfa0550123cdd62acfb9ff812ab896ece4c78082f82fa2f240ed80f03
IEDL.DBID 33P
ISSN 1462-2912
IngestDate Fri Aug 16 00:59:52 EDT 2024
Fri Aug 16 20:52:02 EDT 2024
Thu Nov 21 22:15:47 EST 2024
Sat Sep 28 08:00:33 EDT 2024
Sat Aug 24 00:53:27 EDT 2024
Wed Oct 30 09:47:47 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License 2011 Society for Applied Microbiology and Blackwell Publishing Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5058-77622387bfa0550123cdd62acfb9ff812ab896ece4c78082f82fa2f240ed80f03
Notes ArticleID:EMI2488
istex:1323E3DEA19B75F61EB851CB4E82AD2C236E50F8
ark:/67375/WNG-8BSDF6G3-W
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 21535343
PQID 1753459998
PQPubID 23462
PageCount 10
ParticipantIDs proquest_miscellaneous_874897329
proquest_miscellaneous_1753459998
crossref_primary_10_1111_j_1462_2920_2011_02488_x
pubmed_primary_21535343
wiley_primary_10_1111_j_1462_2920_2011_02488_x_EMI2488
istex_primary_ark_67375_WNG_8BSDF6G3_W
PublicationCentury 2000
PublicationDate July 2011
PublicationDateYYYYMMDD 2011-07-01
PublicationDate_xml – month: 07
  year: 2011
  text: July 2011
PublicationDecade 2010
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: England
PublicationTitle Environmental microbiology
PublicationTitleAlternate Environ Microbiol
PublicationYear 2011
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References Karl, D., Michaels, A., Bergman, B., Capone, D., Carpenter, E., Letelier, R., et al. (2002) Dinitrogen fixation in the world's oceans. Biogeochemistry 57/58: 47-98.
Raymond, J., Siefert, J.L., Staples, C.R., and Blankenship, R.E. (2004) The natural history of nitrogen fixation. Mol Biol Evol 21: 541-554.
Marusina, A.I., Boulygina, E.S., Kuznetsov, B.B., Tourova, T.P., Kravchenko, I.K., and Gal'chenko, V.F. (2001) A system of oligonucleotide primers for the amplification of nifH genes of different taxonomic groups of prokaryotes. Mikrobiologiya 70: 86-91.
Zehr, J.P., Waterbury, J.B., Turner, P.J., Montoya, J.P., Omoregie, E., Steward, G.F., et al. (2001) Unicellular cyanobacteria fix N2 in the subtropical North Pacific Ocean. Nature 412: 635-638.
Sipos, R., Székely, A.J., Palatinszky, M., Révész, S., Márialigeti, K., and Nikolausz, M. (2007) Effect of primer mismatch, annealing temperature and PCR cycle number on 16S rRNA gene-targetting bacterial community analysis. FEMS Microbiol Ecol 60: 341-350.
Zehr, J.P., and McReynolds, L.A. (1989) Use of degenerate oligonucleotides for amplification of the nifH gene from the marine cyanobacterium Trichodesmium thiebautii. Appl Environ Microbiol 55: 2522-2526.
Tripp, H.J., Bench, S.R., Turk, K.A., Foster, R.A., Desany, B.A., Niazi, F., et al. (2010) Metabolic streamlining in an open-ocean nitrogen-fixing cyanobacterium. Nature 464: 90-94.
Suzuki, M.T., and Giovannoni, S.J. (1996) Bias caused by template annealing in the amplification of mixtures of 16S rRNA genes by PCR. Appl Environ Microbiol 62: 625-630.
Kulakov, L.A., McAlister, M.B., Ogden, K.L., Larkin, M.L., and O'Hanlon, J.F. (2002) Analysis of bacteria contaminating ultrapure water in industrial systems. Appl Environ Microbiol 68: 1548-1555.
Vitousek, P.M., and Howarth, R.W. (1991) Nitrogen limitation on land and in the sea: how can it occur? Biogeochemistry 13: 87-115.
Staples, C.R., Lahiri, S., Raymond, J., Von Herbulis, L., Mukhophadhyay, B., and Blankenship, R.E. (2007) Expression and association of group IV nitrogenase NifD and NifH homologs in the non-nitrogen-fixing archaeon Methanocaldococcus jannaschii. J Bacteriol 189: 7392-7398.
Church, M.J., Short, C.M., Jenkins, B.D., Karl, D.M., and Zehr, J.P. (2005) Temporal patterns of nitrogenase gene (nifH) expression in the oligotrophic North Pacific Ocean. Appl Environ Microbiol 71: 5362-5370.
Hughes, J.B., Hellmann, J.J., Ricketts, T.H., and Bohannan, B.J.M. (2002) Counting the uncountable: statistical approaches to estimating microbial diversity. Appl Environ Microbiol 67: 4399-4406.
Poly, F., Monrozier, L.J., and Bally, R. (2001) Improvement in the RFLP procedure for studying the diversity of nifH genes in communities of nitrogen fixers in soil. Res Microbiol 152: 95-103.
Zehr, J.P., Crumbliss, L.L., Church, M.J., Omoregie, E.O., and Jenkins, B.D. (2003b) Nitrogenase genes in PCR and RT-PCR reagents: implications for studies of diversity of functional genes. Biotechniques 35: 996-1005.
Bürgmann, H., Widmer, F., Von Sigler, W., and Zeyer, J. (2004) New molecular screening tools for analysis of free-living diazotrophs in soil. Appl Environ Microbiol 70: 240-247.
Zehr, J.P., Jenkins, B.D., Short, S.M., and Steward, G.F. (2003a) Nitrogenase gene diversity and microbial community structure: a cross-system comparison. Environ Microbiol 5: 539-554.
Chien, Y.-T., and Zinder, S.H. (1994) Cloning, DNA-sequencing, and characterization of a nifD-homologous gene from the archaeon Methanosarcina barkeri 227 which resembles nifD1 from the eubacterium Clostridium pasteurianum. J Bacteriol 176: 6590-6598.
Hsu, S.-F., and Buckley, D.H. (2009) Evidence for the functional significance of diazotroph community structure in soil. ISME J 3: 124-136.
Ueda, T., Suga, Y., Yahiro, N., and Matsuguchi, T. (1995) Remarkable N2-fixing bacterial diversity detected in rice roots by molecular evolutionary analysis of nifH gene sequences. J Bacteriol 177: 1414-1417.
Hall, T.A. (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucleic Acids Symp Ser 41: 95-98.
Benson, D.A., Karsch-Mizrachi, I., Lipman, D.J., Ostell, J., and Wheeler, D. (2008) Genbank. Nucleic Acids Res 36 (database issue): D25-D30.
Zehr, J.P., Bench, S.R., Carter, B.J., Hewson, I., Niazi, F., Shi, T., et al. (2008) Globally distributed uncultivated oceanic N2-fixing cyanobacteria lack oxygenic photosystem II. Science 322: 1110-1112.
Moisander, P.H., Beinart, R.A., Hewson, I., White, A.E., Johnson, K.S., Carlson, C.A., et al. (2010) Unicellular cyanobacterial distributions broaden the oceanic N2 fixation domain. Science 327: 1512-1514.
Langlois, R.J., Hümmer, D., and LaRoche, J. (2008) Abundances and distributions of the dominant nifH phylotypes in the Northern Atlantic Ocean. Appl Environ Microbiol 74: 1922-1931.
Brune, A., and Friedrich, M. (2000) Microecology of the termite gut: structure and function on a microscale. Curr Opin Microbiol 3: 263-269.
Sogin, M.L., Morrison, H.G., Huber, J.A., Welch, D.M., Huse, S.M., Neal, P.R., et al. (2006) Microbial diversity in the deep sea and the underexplored 'rare biosphere'. Proc Natl Acad Sci USA 103: 12115-12120.
Langlois, R.J., LaRoche, J., and Raab, P.A. (2005) Diazotrophic diversity and distribution in the Tropical and Subtropical Atlantic Ocean. Appl Environ Microbiol 71: 7910-7919.
Orcutt, K.M., Rasmussen, U., Webb, E.A., Waterbury, J.B., Gundersen, K., and Bergman, B. (2002) Characterization of Trichodesmium spp. by genetic techniques. Appl Environ Microbiol 68: 2236-2245.
Mahaffey, C., Michaels, A.F., and Capone, D.G. (2005) The conundrum of marine N2 fixation. Am J Sci 305: 546-595.
Souillard, N., Magot, M., Possot, O., and Sibold, L. (1988) Nucleotide sequence of regions homologous to nifH (nitrogenase Fe protein) from the nitrogen-fixing archaebacteria Methanococcus thermolithotrophicus and Methanobacterium ivanovii: evolutionary implications. J Mol Evol 27: 65-76.
Buckley, D.H., Huangyutitham, V., Hsu, S.-F., and Nelson, T.A. (2007) Stable isotope probing with 15N2 reveals novel noncultivated diazotrophs in soil. Appl Environ Microbiol 73: 3196-3204.
Ludwig, W., Strunk, O., Westram, R., Richter, L., Meier, H., Yadhukumar, et al. (2004) ARB: a software environment for sequence data. Nucleic Acids Res 32: 1363-1371.
Konstantinidis, K.T., Ramette, A., and Tiedje, J.M. (2006) The bacterial species definition in the genomic era. Philos Trans R Soc Lond B Biol Sci 361: 1929-1940.
Schloss, P.D., and Handelsman, J. (2005) Introducing DOTUR, a computer program for defining operational taxonomic units and estimating species richness. Appl Environ Microbiol 71: 1501-1506.
Zehr, J.P., Mellon, M.T., and Zani, S. (1998) New nitrogen-fixing microorganisms detected in oligotrophic oceans by amplification of nitrogenase (nifH) genes. Appl Environ Microbiol 64: 3444-3450.
Zehr, J.P., Montoya, J.P., Jenkins, B.D., Hewson, I., Mondragon, E., Short, C.M., et al. (2007) Experiments linking nitrogenase gene expression to nitrogen fixation in the North Pacific subtropical gyre. Limnol Oceanogr 52: 169-183.
Finn, R.D., Mistry, J., Tate, J., Coggill, P., Heger, A., Pollington, J.E., et al. (2010) The Pfam protein families database. Nucleic Acids Res 38: D211-D222.
Needoba, J.A., Foster, R.A., Sakamoto, C., Zehr, J.P., and Johnson, K.S. (2007) Nitrogen fixation by unicellular diazotrophic cyanobacteria in the temperate oligotrophic North Pacific Ocean. Limnol Oceanogr 52: 1317-1327.
Lundgren, P., Söderbäck, E., Singer, A., Carpenter, E., and Bergman, B. (2001) Katagnymene: characterization of a novel marine diazotroph. J Phycol 37: 1052-1062.
2004; 21
2001; 70
1994; 176
2007; 189
2010; 38
2010; 327
1991; 13
2000; 3
2010; 464
2008; 36
2005
1999; 41
2007; 73
2008; 74
1995; 177
1992
2007; 52
2002
2008; 322
2003a; 5
1998; 64
2004; 32
2003b; 35
2002; 57/58
1989; 55
2004; 70
2001; 152
2000
2002; 67
2002; 68
1988; 27
2006; 361
2005; 305
1996; 62
2001; 37
2007; 60
2005; 71
2009; 3
2001; 412
2006; 103
e_1_2_6_32_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_30_1
Young J.P.W. (e_1_2_6_37_1) 1992
Marusina A.I. (e_1_2_6_20_1) 2001; 70
Paerl H.W. (e_1_2_6_24_1) 2000
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_34_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_17_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_16_1
e_1_2_6_42_1
e_1_2_6_43_1
e_1_2_6_21_1
e_1_2_6_41_1
e_1_2_6_40_1
e_1_2_6_9_1
e_1_2_6_8_1
e_1_2_6_5_1
e_1_2_6_4_1
Chien Y.‐T. (e_1_2_6_6_1) 1994; 176
e_1_2_6_7_1
e_1_2_6_25_1
e_1_2_6_3_1
e_1_2_6_23_1
e_1_2_6_2_1
Hughes J.B. (e_1_2_6_11_1) 2002; 67
e_1_2_6_22_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_27_1
e_1_2_6_26_1
References_xml – volume: 60
  start-page: 341
  year: 2007
  end-page: 350
  article-title: Effect of primer mismatch, annealing temperature and PCR cycle number on 16S rRNA gene‐targetting bacterial community analysis
  publication-title: FEMS Microbiol Ecol
– volume: 71
  start-page: 7910
  year: 2005
  end-page: 7919
  article-title: Diazotrophic diversity and distribution in the Tropical and Subtropical Atlantic Ocean
  publication-title: Appl Environ Microbiol
– volume: 305
  start-page: 546
  year: 2005
  end-page: 595
  article-title: The conundrum of marine N fixation
  publication-title: Am J Sci
– volume: 464
  start-page: 90
  year: 2010
  end-page: 94
  article-title: Metabolic streamlining in an open‐ocean nitrogen‐fixing cyanobacterium
  publication-title: Nature
– volume: 38
  start-page: D211
  year: 2010
  end-page: D222
  article-title: The Pfam protein families database
  publication-title: Nucleic Acids Res
– volume: 327
  start-page: 1512
  year: 2010
  end-page: 1514
  article-title: Unicellular cyanobacterial distributions broaden the oceanic N fixation domain
  publication-title: Science
– volume: 3
  start-page: 124
  year: 2009
  end-page: 136
  article-title: Evidence for the functional significance of diazotroph community structure in soil
  publication-title: ISME J
– volume: 37
  start-page: 1052
  year: 2001
  end-page: 1062
  article-title: : characterization of a novel marine diazotroph
  publication-title: J Phycol
– volume: 62
  start-page: 625
  year: 1996
  end-page: 630
  article-title: Bias caused by template annealing in the amplification of mixtures of 16S rRNA genes by PCR
  publication-title: Appl Environ Microbiol
– volume: 32
  start-page: 1363
  year: 2004
  end-page: 1371
  article-title: ARB: a software environment for sequence data
  publication-title: Nucleic Acids Res
– start-page: 387
  year: 2000
  end-page: 426
– volume: 412
  start-page: 635
  year: 2001
  end-page: 638
  article-title: Unicellular cyanobacteria fix N in the subtropical North Pacific Ocean
  publication-title: Nature
– volume: 35
  start-page: 996
  year: 2003b
  end-page: 1005
  article-title: Nitrogenase genes in PCR and RT‐PCR reagents: implications for studies of diversity of functional genes
  publication-title: Biotechniques
– volume: 27
  start-page: 65
  year: 1988
  end-page: 76
  article-title: Nucleotide sequence of regions homologous to (nitrogenase Fe protein) from the nitrogen‐fixing archaebacteria and : evolutionary implications
  publication-title: J Mol Evol
– volume: 70
  start-page: 86
  year: 2001
  end-page: 91
  article-title: A system of oligonucleotide primers for the amplification of genes of different taxonomic groups of prokaryotes
  publication-title: Mikrobiologiya
– volume: 177
  start-page: 1414
  year: 1995
  end-page: 1417
  article-title: Remarkable N ‐fixing bacterial diversity detected in rice roots by molecular evolutionary analysis of gene sequences
  publication-title: J Bacteriol
– volume: 152
  start-page: 95
  year: 2001
  end-page: 103
  article-title: Improvement in the RFLP procedure for studying the diversity of genes in communities of nitrogen fixers in soil
  publication-title: Res Microbiol
– volume: 55
  start-page: 2522
  year: 1989
  end-page: 2526
  article-title: Use of degenerate oligonucleotides for amplification of the gene from the marine cyanobacterium
  publication-title: Appl Environ Microbiol
– start-page: 221
  year: 2005
  end-page: 241
– volume: 57/58
  start-page: 47
  year: 2002
  end-page: 98
  article-title: Dinitrogen fixation in the world's oceans
  publication-title: Biogeochemistry
– volume: 71
  start-page: 1501
  year: 2005
  end-page: 1506
  article-title: Introducing DOTUR, a computer program for defining operational taxonomic units and estimating species richness
  publication-title: Appl Environ Microbiol
– volume: 74
  start-page: 1922
  year: 2008
  end-page: 1931
  article-title: Abundances and distributions of the dominant phylotypes in the Northern Atlantic Ocean
  publication-title: Appl Environ Microbiol
– volume: 361
  start-page: 1929
  year: 2006
  end-page: 1940
  article-title: The bacterial species definition in the genomic era
  publication-title: Philos Trans R Soc Lond B Biol Sci
– volume: 36
  start-page: D25
  year: 2008
  end-page: D30
  article-title: Genbank
  publication-title: Nucleic Acids Res
– start-page: 101
  year: 2002
  end-page: 136
– volume: 103
  start-page: 12115
  year: 2006
  end-page: 12120
  article-title: Microbial diversity in the deep sea and the underexplored ‘rare biosphere’
  publication-title: Proc Natl Acad Sci USA
– volume: 70
  start-page: 240
  year: 2004
  end-page: 247
  article-title: New molecular screening tools for analysis of free‐living diazotrophs in soil
  publication-title: Appl Environ Microbiol
– volume: 52
  start-page: 169
  year: 2007
  end-page: 183
  article-title: Experiments linking nitrogenase gene expression to nitrogen fixation in the North Pacific subtropical gyre
  publication-title: Limnol Oceanogr
– volume: 176
  start-page: 6590
  year: 1994
  end-page: 6598
  article-title: Cloning, DNA‐sequencing, and characterization of a ‐homologous gene from the archaeon 227 which resembles from the eubacterium
  publication-title: J Bacteriol
– volume: 21
  start-page: 541
  year: 2004
  end-page: 554
  article-title: The natural history of nitrogen fixation
  publication-title: Mol Biol Evol
– volume: 189
  start-page: 7392
  year: 2007
  end-page: 7398
  article-title: Expression and association of group IV nitrogenase NifD and NifH homologs in the non‐nitrogen‐fixing archaeon
  publication-title: J Bacteriol
– volume: 73
  start-page: 3196
  year: 2007
  end-page: 3204
  article-title: Stable isotope probing with N reveals novel noncultivated diazotrophs in soil
  publication-title: Appl Environ Microbiol
– volume: 41
  start-page: 95
  year: 1999
  end-page: 98
  article-title: BioEdit: a user‐friendly biological sequence alignment editor and analysis program for windows 95/98/NT
  publication-title: Nucleic Acids Symp Ser
– volume: 68
  start-page: 2236
  year: 2002
  end-page: 2245
  article-title: Characterization of spp. by genetic techniques
  publication-title: Appl Environ Microbiol
– volume: 71
  start-page: 5362
  year: 2005
  end-page: 5370
  article-title: Temporal patterns of nitrogenase gene ( ) expression in the oligotrophic North Pacific Ocean
  publication-title: Appl Environ Microbiol
– volume: 52
  start-page: 1317
  year: 2007
  end-page: 1327
  article-title: Nitrogen fixation by unicellular diazotrophic cyanobacteria in the temperate oligotrophic North Pacific Ocean
  publication-title: Limnol Oceanogr
– volume: 5
  start-page: 539
  year: 2003a
  end-page: 554
  article-title: Nitrogenase gene diversity and microbial community structure: a cross‐system comparison
  publication-title: Environ Microbiol
– volume: 322
  start-page: 1110
  year: 2008
  end-page: 1112
  article-title: Globally distributed uncultivated oceanic N ‐fixing cyanobacteria lack oxygenic photosystem II
  publication-title: Science
– volume: 67
  start-page: 4399
  year: 2002
  end-page: 4406
  article-title: Counting the uncountable: statistical approaches to estimating microbial diversity
  publication-title: Appl Environ Microbiol
– start-page: 43
  year: 1992
  end-page: 86
– volume: 3
  start-page: 263
  year: 2000
  end-page: 269
  article-title: Microecology of the termite gut: structure and function on a microscale
  publication-title: Curr Opin Microbiol
– volume: 68
  start-page: 1548
  year: 2002
  end-page: 1555
  article-title: Analysis of bacteria contaminating ultrapure water in industrial systems
  publication-title: Appl Environ Microbiol
– volume: 13
  start-page: 87
  year: 1991
  end-page: 115
  article-title: Nitrogen limitation on land and in the sea: how can it occur?
  publication-title: Biogeochemistry
– volume: 64
  start-page: 3444
  year: 1998
  end-page: 3450
  article-title: New nitrogen‐fixing microorganisms detected in oligotrophic oceans by amplification of nitrogenase ( ) genes
  publication-title: Appl Environ Microbiol
– ident: e_1_2_6_16_1
  doi: 10.1128/AEM.01720-07
– ident: e_1_2_6_33_1
  doi: 10.1128/AEM.62.2.625-630.1996
– ident: e_1_2_6_35_1
  doi: 10.1128/jb.177.5.1414-1417.1995
– ident: e_1_2_6_39_1
  doi: 10.1128/AEM.55.10.2522-2526.1989
– ident: e_1_2_6_17_1
  doi: 10.1890/06-0219
– ident: e_1_2_6_8_1
  doi: 10.1093/nar/gkp985
– ident: e_1_2_6_4_1
  doi: 10.1128/AEM.02610-06
– ident: e_1_2_6_38_1
  doi: 10.1007/1-4020-3054-1_14
– ident: e_1_2_6_25_1
  doi: 10.1016/S0923-2508(00)01172-4
– ident: e_1_2_6_14_1
  doi: 10.1128/AEM.68.4.1548-1555.2002
– ident: e_1_2_6_45_1
  doi: 10.1126/science.1165340
– ident: e_1_2_6_5_1
  doi: 10.1128/AEM.70.1.240-247.2004
– ident: e_1_2_6_28_1
  doi: 10.1128/AEM.71.3.1501-1506.2005
– start-page: 43
  volume-title: Biological Nitrogen Fixation
  year: 1992
  ident: e_1_2_6_37_1
  contributor:
    fullname: Young J.P.W.
– ident: e_1_2_6_10_1
  doi: 10.1038/ismej.2008.82
– volume: 70
  start-page: 86
  year: 2001
  ident: e_1_2_6_20_1
  article-title: A system of oligonucleotide primers for the amplification of nifH genes of different taxonomic groups of prokaryotes
  publication-title: Mikrobiologiya
  contributor:
    fullname: Marusina A.I.
– ident: e_1_2_6_31_1
  doi: 10.1007/BF02099731
– ident: e_1_2_6_19_1
  doi: 10.2475/ajs.305.6-8.546
– ident: e_1_2_6_36_1
  doi: 10.1007/BF00002772
– ident: e_1_2_6_32_1
  doi: 10.1128/JB.00876-07
– ident: e_1_2_6_40_1
  doi: 10.1128/AEM.64.9.3444-3450.1998
– ident: e_1_2_6_43_1
  doi: 10.2144/03355st08
– ident: e_1_2_6_2_1
  doi: 10.1093/nar/gkm929
– ident: e_1_2_6_42_1
  doi: 10.1046/j.1462-2920.2003.00451.x
– ident: e_1_2_6_23_1
  doi: 10.1128/AEM.68.5.2236-2245.2002
– ident: e_1_2_6_29_1
  doi: 10.1111/j.1574-6941.2007.00283.x
– volume: 67
  start-page: 4399
  year: 2002
  ident: e_1_2_6_11_1
  article-title: Counting the uncountable: statistical approaches to estimating microbial diversity
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.67.10.4399-4406.2001
  contributor:
    fullname: Hughes J.B.
– ident: e_1_2_6_30_1
  doi: 10.1073/pnas.0605127103
– start-page: 387
  volume-title: Microbial Ecology of the Oceans
  year: 2000
  ident: e_1_2_6_24_1
  contributor:
    fullname: Paerl H.W.
– ident: e_1_2_6_15_1
  doi: 10.1128/AEM.71.12.7910-7919.2005
– ident: e_1_2_6_7_1
  doi: 10.1128/AEM.71.9.5362-5370.2005
– ident: e_1_2_6_27_1
  doi: 10.1016/B978-044450965-9/50004-5
– ident: e_1_2_6_9_1
  doi: 10.1007/s00299-001-0399-7
– ident: e_1_2_6_22_1
  doi: 10.4319/lo.2007.52.4.1317
– volume: 176
  start-page: 6590
  year: 1994
  ident: e_1_2_6_6_1
  article-title: Cloning, DNA‐sequencing, and characterization of a nifD‐homologous gene from the archaeon Methanosarcina barkeri 227 which resembles nifD1 from the eubacterium Clostridium pasteurianum
  publication-title: J Bacteriol
  doi: 10.1128/jb.176.21.6590-6598.1994
  contributor:
    fullname: Chien Y.‐T.
– ident: e_1_2_6_26_1
  doi: 10.1093/molbev/msh047
– ident: e_1_2_6_13_1
  doi: 10.1098/rstb.2006.1920
– ident: e_1_2_6_18_1
  doi: 10.1046/j.1529-8817.2001.00192.x
– ident: e_1_2_6_12_1
  doi: 10.1023/A:1015798105851
– ident: e_1_2_6_41_1
  doi: 10.1038/35088063
– ident: e_1_2_6_3_1
  doi: 10.1016/S1369-5274(00)00087-4
– ident: e_1_2_6_44_1
  doi: 10.4319/lo.2007.52.1.0169
– ident: e_1_2_6_34_1
  doi: 10.1038/nature08786
– ident: e_1_2_6_21_1
  doi: 10.1126/science.1185468
SSID ssj0017370
Score 2.450088
Snippet Summary The global diversity of nitrogen‐fixing microorganisms was assessed through construction and analysis of an aligned database of 16 989 nifH sequences....
The global diversity of nitrogen-fixing microorganisms was assessed through construction and analysis of an aligned database of 16,989 nifH sequences. We...
The global diversity of nitrogen‐fixing microorganisms was assessed through construction and analysis of an aligned database of 16 989 nifH sequences. We...
The global diversity of nitrogen-fixing microorganisms was assessed through construction and analysis of an aligned database of 16989 nifH sequences. We...
SourceID proquest
crossref
pubmed
wiley
istex
SourceType Aggregation Database
Index Database
Publisher
StartPage 1790
SubjectTerms Cluster Analysis
Cyanobacteria - enzymology
Cyanobacteria - genetics
Databases, Genetic
Environment
Gammaproteobacteria - enzymology
Gammaproteobacteria - genetics
Genetic Variation
Nitrogen Fixation
Oxidoreductases - genetics
Phylogeny
Soil - analysis
Title A global census of nitrogenase diversity
URI https://api.istex.fr/ark:/67375/WNG-8BSDF6G3-W/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1462-2920.2011.02488.x
https://www.ncbi.nlm.nih.gov/pubmed/21535343
https://search.proquest.com/docview/1753459998
https://search.proquest.com/docview/874897329
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEB50RfDi-1FfRBDxUmmb3TY9rroPPCzCKustpE1yEVrZurD-eyfpA3ZZQUTooYdO2s4j800ymQG4jikLlWCem4SJwgCF-a7ooOElAY11W8S-tu2AhuNo9MYee6ZMzlN9FqasD9EsuBnLsPO1MXCRFMtGHrim21JViTNAZbwzeBKDBnuagz43GwoRtX3jKhJ_Kaln5UALnmrDMH2-CoYuolrrlvo7__lDu7BdgVPSLbVpD9ZUtg-bZbvKrwO47ZKyfghJTYOMguSa4IwwzVEJ0RkSWed4HMJrv_fyMHSrTgtuigiIIcQOESawKNHCw5AFvVkqZRiIVCex1ogBRMLiUKWqnUYMQYPGSwQa0YCSzNMePYJWlmfqBEgaauFrDNGDCMGg9GOJEpc-Bto0Fp4QDvg1V_lHWVCDLwQiATcc4IYD3HKAzx24sexvCMT03SSkRR0-GQ04ux8_9sMB5RMHrmr5cDQTs_chMpXPCm4KkrY7iIaZA-SHZ5ipxBPRIHbguJRt80IERhQHoA6EVoS__nSO1mTuTv9KeAZb5TK2yRA-h9bndKYuYL2Qs0ur4d9LVPPK
link.rule.ids 315,782,786,1408,27933,27934,46064,46488
linkProvider Wiley-Blackwell
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dS8MwED90Q_TF74_6WUHEl0rbdGn6ON2XbA5hk_kW0jZ5EVrZHMz_3ku7FjYmiAh9yEOTNveR-11yuQO4CQijUjDbCmko0UFhjiVqqHihSwLlicBRWTmgzsDvv7FGU6fJ6RZ3YfL8EOWGm9aMbL3WCq43pJe13LV0uaV5Kk4XpfEeAWXVo9jS9znIS3mk4JOscty8j7MU1rNypAVbVdVkn60Coou4NjNMrZ1_ndIubM_xqVnPBWoP1mSyDxt5xcqvA7irm3kKETPSNTImZqpMXBTGKcoh2kMzLsI8DuG11Rw-dqx5sQUrQhDEEGVTRArMD5Ww0WtBgxbFMXVFpMJAKYQBImQBlZH0Ip8hblD4CFchIJAxs5VNjqCSpIk8ATOiSjgKvXTXRzwYO0GMTI8d9LVJIGwhDHAKsvKPPKcGX_BFXK4pwDUFeEYBPjPgNqN_2UGM33VMml_jo36bs4dBo0XbhI8MuC4YxFFT9PGHSGQ6nXCdk9SrISBmBpg_vMN0Mh6fuIEBxzlzyw8iNiI4ADGAZjz89a9zVCjdOv1rxyvY7Ayfe7z31O-ewVa-q60Dhs-h8jmeygtYn8TTy0zcvwHZJvfy
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEB60RfHi-xGfEUS8RJJsmmyO1TatD0qhit6WTXb3IiSltVD_vbN5FFoqiAg55JDdJPPIfLM7-QbgKiTUl5zaVuzHEhMU6li8gY4XuyRUHg8dlbcD6g6C3jtttTVNzmP1L0zBDzFbcNOekX-vtYMPhVp0ctfS3ZZKJk4XjfEW8WTdQ1SuefQJ6c92FAKSN44rxzgLVT1LZ5oLVXUt9ekyHDoPa_O4FG395xttw2aJTs1mYU47sCLTXVgr-lV-7cFN0ywIRMxEd8gYm5ky8ZMwytAKMRqaoiry2IfXqP1y37XKVgtWghCIIsb2ESfQIFbcxpwFw1kihO_yRMWhUggCeExDXybSSwKKqEHhwV2FcEAKaiubHEAtzVJ5BGbiK-4ozNHdANGgcEKBKhcOZtok5DbnBjiVVNmwYNRgc5mIy7QEmJYAyyXApgZc5-KfDeCjD12RFjTYW6_D6N2gFfkdwt4MuKz0w9BP9OYHT2U2GTPNSOo1EA5TA8wfrqGaiicgbmjAYaHb2Q0RGRGcgBjg5yr89aMzdCd9dvzXgRew3m9F7Pmh93QCG8WStq4WPoXa52giz2B1LCbnubF_A7569pg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+global+census+of+nitrogenase+diversity&rft.jtitle=Environmental+microbiology&rft.au=Gaby%2C+John+Christian&rft.au=Buckley%2C+Daniel+H.&rft.date=2011-07-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=1462-2912&rft.eissn=1462-2920&rft.volume=13&rft.issue=7&rft.spage=1790&rft.epage=1799&rft_id=info:doi/10.1111%2Fj.1462-2920.2011.02488.x&rft.externalDBID=10.1111%252Fj.1462-2920.2011.02488.x&rft.externalDocID=EMI2488
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1462-2912&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1462-2912&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1462-2912&client=summon