Direct Imaging of Atomic Permeation Through a Vacancy Defect in the Carbon Lattice
Porous graphene has shown promise as a new generation of selective membrane for sieving atoms, ions and molecules. However, the atomistic mechanisms of permeation through defects in the graphenic lattice are still unclear and remain unobserved in action, at the atomic level. Here, the direct observa...
Saved in:
Published in: | Angewandte Chemie International Edition Vol. 59; no. 51; pp. 22922 - 22927 |
---|---|
Main Authors: | , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Germany
Wiley Subscription Services, Inc
14-12-2020
John Wiley and Sons Inc |
Edition: | International ed. in English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Porous graphene has shown promise as a new generation of selective membrane for sieving atoms, ions and molecules. However, the atomistic mechanisms of permeation through defects in the graphenic lattice are still unclear and remain unobserved in action, at the atomic level. Here, the direct observation of palladium atoms from a nanoparticle passing through a defect in a single‐walled carbon nanotube one‐by‐one has been achieved with atomic resolution in real time, revealing key stages of the atomic permeation. Bonding between the moving atom and dangling bonds around the orifice, immediately before and after passing through the subnano‐pore, plays an important role in the process. Curvature of the graphenic lattice crucially defines the direction of permeation from concave to convex side due to a difference in metal‐carbon bonding at the curved surfaces as confirmed by density functional theory calculations, demonstrating the potential of porous carbon nanotubes for atom sieving.
This work reveals the mechanism of atomic permeation through a subnano‐pore in graphenic lattice by in situ aberration‐corrected high‐resolution transmission electron microscopy imaging, highlighting the importance of chemical bonding between the mobile atom and dangling bonds around the subnano‐pore. This new phenomenon and permeation mechanism are likely to play a role in the filtration processes by porous graphenic carbon based membranes. |
---|---|
AbstractList | Porous graphene has shown promise as a new generation of selective membrane for sieving atoms, ions and molecules. However, the atomistic mechanisms of permeation through defects in the graphenic lattice are still unclear and remain unobserved in action, at the atomic level. Here, the direct observation of palladium atoms from a nanoparticle passing through a defect in a single‐walled carbon nanotube one‐by‐one has been achieved with atomic resolution in real time, revealing key stages of the atomic permeation. Bonding between the moving atom and dangling bonds around the orifice, immediately before and after passing through the subnano‐pore, plays an important role in the process. Curvature of the graphenic lattice crucially defines the direction of permeation from concave to convex side due to a difference in metal‐carbon bonding at the curved surfaces as confirmed by density functional theory calculations, demonstrating the potential of porous carbon nanotubes for atom sieving. Porous graphene has shown promise as a new generation of selective membrane for sieving atoms, ions and molecules. However, the atomistic mechanisms of permeation through defects in the graphenic lattice are still unclear and remain unobserved in action, at the atomic level. Here, the direct observation of palladium atoms from a nanoparticle passing through a defect in a single‐walled carbon nanotube one‐by‐one has been achieved with atomic resolution in real time, revealing key stages of the atomic permeation. Bonding between the moving atom and dangling bonds around the orifice, immediately before and after passing through the subnano‐pore, plays an important role in the process. Curvature of the graphenic lattice crucially defines the direction of permeation from concave to convex side due to a difference in metal‐carbon bonding at the curved surfaces as confirmed by density functional theory calculations, demonstrating the potential of porous carbon nanotubes for atom sieving. This work reveals the mechanism of atomic permeation through a subnano‐pore in graphenic lattice by in situ aberration‐corrected high‐resolution transmission electron microscopy imaging, highlighting the importance of chemical bonding between the mobile atom and dangling bonds around the subnano‐pore. This new phenomenon and permeation mechanism are likely to play a role in the filtration processes by porous graphenic carbon based membranes. |
Author | Stoppiello, Craig T. Kaiser, Ute Biskupek, Johannes Cao, Kecheng Skowron, Stephen T. Khlobystov, Andrei N. |
AuthorAffiliation | 3 University of Nottingham Nanoscale & Microscale Research Centre (nmRC) University Park Nottingham NG7 2RD UK 1 Ulm University Electron Microscopy of Materials Science Central Facility for Electron Microscopy Albert-Einstein-Allee 11 Ulm 89081 Germany 2 University of Nottingham School of Chemistry University Park Nottingham NG7 2RD UK |
AuthorAffiliation_xml | – name: 1 Ulm University Electron Microscopy of Materials Science Central Facility for Electron Microscopy Albert-Einstein-Allee 11 Ulm 89081 Germany – name: 2 University of Nottingham School of Chemistry University Park Nottingham NG7 2RD UK – name: 3 University of Nottingham Nanoscale & Microscale Research Centre (nmRC) University Park Nottingham NG7 2RD UK |
Author_xml | – sequence: 1 givenname: Kecheng orcidid: 0000-0002-7180-7237 surname: Cao fullname: Cao, Kecheng organization: Ulm University – sequence: 2 givenname: Stephen T. orcidid: 0000-0001-7322-5508 surname: Skowron fullname: Skowron, Stephen T. organization: University of Nottingham – sequence: 3 givenname: Craig T. orcidid: 0000-0001-5937-198X surname: Stoppiello fullname: Stoppiello, Craig T. organization: University of Nottingham – sequence: 4 givenname: Johannes orcidid: 0000-0002-0964-3200 surname: Biskupek fullname: Biskupek, Johannes organization: Ulm University – sequence: 5 givenname: Andrei N. orcidid: 0000-0001-7738-4098 surname: Khlobystov fullname: Khlobystov, Andrei N. email: andrei.khlobystov@nottingham.ac.uk organization: University of Nottingham – sequence: 6 givenname: Ute orcidid: 0000-0003-0582-4044 surname: Kaiser fullname: Kaiser, Ute email: ute.kaiser@uni-ulm.de organization: Ulm University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32918781$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUtrGzEURkVJaR7ttssi6Kabca-k0WM2BeOkrcGkpaTdCknW2AozUqqZafC_j4xT97HJQkigcw_34ztHJzFFj9BrAjMCQN-bGPyMAgUCgsEzdEY4JRWTkp2Ud81YJRUnp-h8GG4LrxSIF-iU0YYoqcgZ-nYZsncjXvZmE-IGpxbPx9QHh7_63HszhhTxzTanabPFBv8wzkS3w5e-3U-FiMetxwuTbcFWZhyD8y_R89Z0g3_1eF-g7x-vbhafq9WXT8vFfFU5DhyqtWJNIxvurXV1K2TrJKFcgDJCUgMMrFszaVQrHWfWgnOOCk7XRFFqW2bZBfpw8N5Ntvdr5-OYTafvcuhN3ulkgv73J4at3qRfugSvhayL4N2jIKefkx9G3YfB-a4z0adp0LSuKSUMYI--_Q-9TVOOJV6hhBTlcFKo2YFyOQ1D9u1xGQJ6X5fe16WPdZWBN39HOOK_-ylAcwDuQ-d3T-j0_Hp59Uf-APPOooc |
CitedBy_id | crossref_primary_10_1002_smll_202310462 crossref_primary_10_1002_smtd_202200171 crossref_primary_10_1039_D2CP05183D |
Cites_doi | 10.1038/nature13817 10.1038/nnano.2015.37 10.1016/j.desal.2014.12.046 10.1021/acs.nanolett.8b02657 10.1021/nl3012853 10.1021/ja804409f 10.1038/s41467-018-04224-6 10.1038/nature19315 10.1021/jp909490v 10.1002/adma.200601310 10.1038/nnano.2012.162 10.1021/nl9021946 10.1038/nnano.2007.141 10.1038/s41467-018-05831-z 10.1063/1.1728959 10.1126/science.1126298 10.1038/nnano.2017.72 10.1038/nature14015 10.1126/science.1249097 10.1038/nnano.2015.222 10.1038/ncomms11408 10.1016/S0009-2614(98)00705-2 10.1103/PhysRevLett.85.3193 10.1103/PhysRevLett.84.686 10.1038/s41467-018-04904-3 10.1071/PH850125 10.1103/PhysRevLett.93.145901 |
ContentType | Journal Article |
Copyright | 2020 Wiley‐VCH GmbH 2020 Wiley-VCH GmbH. 2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2020 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH |
Copyright_xml | – notice: 2020 Wiley‐VCH GmbH – notice: 2020 Wiley-VCH GmbH. – notice: 2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2020 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH |
DBID | 24P WIN NPM AAYXX CITATION 7TM K9. 7X8 5PM |
DOI | 10.1002/anie.202010630 |
DatabaseName | Wiley Open Access Wiley Online Library PubMed CrossRef Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | PubMed CrossRef ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef ProQuest Health & Medical Complete (Alumni) PubMed |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | 22927 |
ExternalDocumentID | 10_1002_anie_202010630 32918781 ANIE202010630 |
Genre | shortCommunication Journal Article |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 24P 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB B-7 BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WIN WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT NPM AAMNL AAYXX CITATION 7TM K9. 7X8 5PM |
ID | FETCH-LOGICAL-c5050-d8399795ebbc4f67fc7125608a672a030bcd37a8f7c53bb0ccc2652d1822bf3b3 |
IEDL.DBID | 33P |
ISSN | 1433-7851 |
IngestDate | Tue Sep 17 21:28:49 EDT 2024 Fri Aug 16 10:23:23 EDT 2024 Thu Oct 10 20:38:04 EDT 2024 Thu Nov 21 21:10:19 EST 2024 Sat Sep 28 08:25:24 EDT 2024 Sat Aug 24 01:05:20 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 51 |
Keywords | carbon nanotube transmission electron microscopy permeation selective membrane graphene |
Language | English |
License | 2020 Wiley-VCH GmbH. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5050-d8399795ebbc4f67fc7125608a672a030bcd37a8f7c53bb0ccc2652d1822bf3b3 |
Notes | These authors contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-0964-3200 0000-0002-7180-7237 0000-0001-7322-5508 0000-0001-7738-4098 0000-0003-0582-4044 0000-0001-5937-198X |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202010630 |
PMID | 32918781 |
PQID | 2467646751 |
PQPubID | 946352 |
PageCount | 6 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7814674 proquest_miscellaneous_2442213004 proquest_journals_2467646751 crossref_primary_10_1002_anie_202010630 pubmed_primary_32918781 wiley_primary_10_1002_anie_202010630_ANIE202010630 |
PublicationCentury | 2000 |
PublicationDate | December 14, 2020 |
PublicationDateYYYYMMDD | 2020-12-14 |
PublicationDate_xml | – month: 12 year: 2020 text: December 14, 2020 day: 14 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim – name: Hoboken |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAlternate | Angew Chem Int Ed Engl |
PublicationYear | 2020 |
Publisher | Wiley Subscription Services, Inc John Wiley and Sons Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc – name: John Wiley and Sons Inc |
References | 2014; 514 2011; 115 2018; 9 1998; 292 2007; 19 2018; 18 2016; 7 2014; 516 2004; 93 2016; 537 2015; 366 2000; 85 2017; 12 2015; 10 2000; 84 2009; 9 2007; 2 1962; 33 2012; 7 2012; 12 2008; 130 1985; 38 2006; 312 2014; 344 e_1_2_2_4_1 e_1_2_2_25_1 e_1_2_2_5_1 e_1_2_2_24_1 e_1_2_2_6_1 e_1_2_2_23_1 e_1_2_2_22_1 e_1_2_2_21_1 e_1_2_2_1_1 e_1_2_2_20_1 e_1_2_2_2_1 e_1_2_2_3_1 e_1_2_2_7_2 e_1_2_2_8_2 e_1_2_2_9_1 e_1_2_2_29_1 e_1_2_2_27_2 e_1_2_2_28_1 e_1_2_2_26_2 e_1_2_2_13_2 e_1_2_2_12_1 e_1_2_2_11_1 e_1_2_2_10_1 e_1_2_2_30_1 e_1_2_2_19_1 e_1_2_2_18_1 e_1_2_2_17_1 e_1_2_2_16_1 e_1_2_2_14_2 e_1_2_2_15_1 |
References_xml | – volume: 12 start-page: 509 year: 2017 end-page: 522 publication-title: Nat. Nanotechnol. – volume: 7 start-page: 11408 year: 2016 publication-title: Nat. Commun. – volume: 84 start-page: 686 year: 2000 end-page: 689 publication-title: Phys. Rev. Lett. – volume: 366 start-page: 59 year: 2015 end-page: 70 publication-title: Desalination – volume: 9 start-page: 4019 year: 2009 end-page: 4024 publication-title: Nano Lett. – volume: 93 year: 2004 publication-title: Phys. Rev. Lett. – volume: 292 start-page: 554 year: 1998 end-page: 560 publication-title: Chem. Phys. Lett. – volume: 514 start-page: 612 year: 2014 end-page: 615 publication-title: Nature – volume: 115 start-page: 9306 year: 2011 end-page: 9311 publication-title: J. Phys. Chem. C – volume: 10 start-page: 1053 year: 2015 end-page: 1057 publication-title: Nat. Nanotechnol. – volume: 12 start-page: 3602 year: 2012 end-page: 3608 publication-title: Nano Lett. – volume: 9 start-page: 1812 year: 2018 publication-title: Nat. Commun. – volume: 7 start-page: 728 year: 2012 end-page: 732 publication-title: Nat. Nanotechnol. – volume: 19 start-page: 883 year: 2007 end-page: 887 publication-title: Adv. Mater. – volume: 33 start-page: 2345 year: 1962 end-page: 2352 publication-title: J. Appl. Phys. – volume: 9 start-page: 3382 year: 2018 publication-title: Nat. Commun. – volume: 18 start-page: 6334 year: 2018 end-page: 6339 publication-title: Nano Lett. – volume: 2 start-page: 358 year: 2007 end-page: 360 publication-title: Nat. Nanotechnol. – volume: 312 start-page: 1034 year: 2006 end-page: 1037 publication-title: Science – volume: 516 start-page: 227 year: 2014 end-page: 230 publication-title: Nature – volume: 85 start-page: 3193 year: 2000 end-page: 3196 publication-title: Phys. Rev. Lett. – volume: 10 start-page: 459 year: 2015 end-page: 464 publication-title: Nat. Nanotechnol. – volume: 130 start-page: 16448 year: 2008 end-page: 16449 publication-title: J. Am. Chem. Soc. – volume: 344 start-page: 289 year: 2014 end-page: 292 publication-title: Science – volume: 9 start-page: 2632 year: 2018 publication-title: Nat. Commun. – volume: 537 start-page: 210 year: 2016 end-page: 213 publication-title: Nature – volume: 38 start-page: 125 year: 1985 end-page: 134 publication-title: Aust. J. Phys. – ident: e_1_2_2_19_1 doi: 10.1038/nature13817 – ident: e_1_2_2_5_1 doi: 10.1038/nnano.2015.37 – ident: e_1_2_2_11_1 doi: 10.1016/j.desal.2014.12.046 – ident: e_1_2_2_12_1 – ident: e_1_2_2_28_1 doi: 10.1021/acs.nanolett.8b02657 – ident: e_1_2_2_2_1 doi: 10.1021/nl3012853 – ident: e_1_2_2_14_2 doi: 10.1021/ja804409f – ident: e_1_2_2_13_2 doi: 10.1038/s41467-018-04224-6 – ident: e_1_2_2_17_1 doi: 10.1038/nature19315 – ident: e_1_2_2_30_1 doi: 10.1021/jp909490v – ident: e_1_2_2_21_1 doi: 10.1002/adma.200601310 – ident: e_1_2_2_7_2 doi: 10.1038/nnano.2012.162 – ident: e_1_2_2_3_1 doi: 10.1021/nl9021946 – ident: e_1_2_2_25_1 – ident: e_1_2_2_20_1 doi: 10.1038/nnano.2007.141 – ident: e_1_2_2_23_1 doi: 10.1038/s41467-018-05831-z – ident: e_1_2_2_26_2 doi: 10.1063/1.1728959 – ident: e_1_2_2_16_1 doi: 10.1126/science.1126298 – ident: e_1_2_2_1_1 doi: 10.1038/nnano.2017.72 – ident: e_1_2_2_4_1 doi: 10.1038/nature14015 – ident: e_1_2_2_8_2 doi: 10.1126/science.1249097 – ident: e_1_2_2_6_1 – ident: e_1_2_2_10_1 doi: 10.1038/nnano.2015.222 – ident: e_1_2_2_24_1 doi: 10.1038/ncomms11408 – ident: e_1_2_2_15_1 doi: 10.1016/S0009-2614(98)00705-2 – ident: e_1_2_2_22_1 doi: 10.1103/PhysRevLett.85.3193 – ident: e_1_2_2_29_1 doi: 10.1103/PhysRevLett.84.686 – ident: e_1_2_2_9_1 doi: 10.1038/s41467-018-04904-3 – ident: e_1_2_2_27_2 doi: 10.1071/PH850125 – ident: e_1_2_2_18_1 doi: 10.1103/PhysRevLett.93.145901 |
SSID | ssj0028806 |
Score | 2.4250944 |
Snippet | Porous graphene has shown promise as a new generation of selective membrane for sieving atoms, ions and molecules. However, the atomistic mechanisms of... |
SourceID | pubmedcentral proquest crossref pubmed wiley |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 22922 |
SubjectTerms | Carbon carbon nanotube Chemical bonds Communication Communications Density functional theory Graphene Lattice vacancies Nanoparticles Nanotechnology Nanotubes Orifices Palladium Penetration permeation selective membrane Single wall carbon nanotubes transmission electron microscopy |
Title | Direct Imaging of Atomic Permeation Through a Vacancy Defect in the Carbon Lattice |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202010630 https://www.ncbi.nlm.nih.gov/pubmed/32918781 https://www.proquest.com/docview/2467646751 https://search.proquest.com/docview/2442213004 https://pubmed.ncbi.nlm.nih.gov/PMC7814674 |
Volume | 59 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA7qRS--H_VFBMFTcZu0Sfa4rCu7IMviC28lSVP0YFf28f-dSbbVxYOgh0JLkzadJJNvmplvCLkE0KESp3jMnU3jNDMuVlykMbPaCOMEc552sf8ghy_qpoc0OU0Uf-CHaH644czw-honuDbT6y_SUIzABvsOd3MFR6MdTAUfw8FHjcUFgzOEF3EeYxb6mrWxxa6Xqy-vSj-g5k-Pye9I1i9Ft1v__4htsrmAobQTxs0OWXHVLlnv1tnf9sh90IV08O7TGNFxSTszjGCmI9DlAWjSx5Dkh2r6rC2qaXrj0D2EvlUUgCXt6omBYnd6hi52--TptvfY7ceL_AuxBVzUigsAT23ZzpwxNi2FLK1MECEpLSTToB2MLbjUqpQ248a0rLVMZKwAk4WZkht-QNaqceWOCDUCgIEUTkmTpY6XmmeFz8KomE6cERG5quWffwSajTwQKrMcZZQ3MorIad09-WK6TXMG6l7AkSURuWhug8Rw90NXbjzHMiljuHmXRuQw9GbzKs7a0DwFteVSPzcFkIR7-U719urJuJEyTEh4JvP9_Evr885w0Guujv9S6YRs4Dm61CTpKVmbTebujKxOi_m5H_yf-_ACZg |
link.rule.ids | 230,315,782,786,887,1408,27933,27934,46064,46488 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1BT9swFH4a3QEusME2OmDzpEmcIhrbsd1j1Ra1WqnQVtBuke04GoelE7T_f-_FTaDiMGnikENiO3H87OfP9nvfA_iKoMOkwYhEBC8TmbmQGKFkwr11ygXFQ027OPmh5z_NaEw0OYPGFybyQ7QbbjQyan1NA5w2pC8eWUPJBRsXeHScqwSu2l9Lhb2RvDjEdbvmwu4ZHYyESCgOfcPb2OMX2-W356VnYPO5zeRTLFtPRpcHL_Abb2B_g0TZIHadt_AqVIewO2wCwB3B96gO2fR3HcmILUs2WJETM7tGdR6xJlvEOD_MslvrSVOzUSALEXZXMcSWbGjvHWab2RVZ2b2Dm8vxYjhJNiEYEo_QqJcUiJ_6up8F57wslS69TgkkGas0t6ggnC-EtqbUPhPO9bz3XGW8wFULd6Vw4j10qmUVjoE5hdhAq2C0y2QQpRVZUQdiNNymwakunDcCyP9Epo08cirznNoob9uoC6eNfPLNiHvIOWp8hVeWduFLm4wtRgcgtgrLNeWRnNP5nezChyjO9lOC97F6BkvrLUG3GYiHezuluvtV83ETa5jS-E5eC_oftc8H8-m4vfv4P4U-w-5kcTXLZ9P5txPYo-dkYZPKU-is7tfhDHYeivWneiT8BVTsBo4 |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swED8xkNhexvjaOhgYCWlPEY3t2O5j1Q9RgaqKL_EW2Y4j-rAUQfv_7y5uwyoeJm0PeUhsJ85dfP5d7PsdwDmCDpMGIxIRvExk5kJihJIJ99YpFxQPNe3i5a0eP5r-gGhymij-yA_R_HCjkVHbaxrgz0V58UYaShHY6N_Raq4S6LRvScTixJ4vxKRxufDrjPFFQiSUhn5F29jmF-vt16eld1jz_ZbJP6FsPRcNd_7_Lb7A5yUOZd344ezCRqj24GNvlf5tH26iMWSjX3UeIzYrWXdOIcxsgsY8Ik12F7P8MMserCc7zfqB9oewacUQWbKefXFY7drOaY_dAdwPB3e9y2SZgCHxCIzaSYHoqaM7WXDOy1Lp0uuUIJKxSnOL5sH5QmhrSu0z4Vzbe89Vxgv0WbgrhROHsFnNqvANmFOIDLQKRrtMBlFakRV1GkbDbRqcasHPlfzz58izkUdGZZ6TjPJGRi04XqknX46315yjvVd4ZGkLzppilBgtf9gqzBZUR3JOq3eyBV-jNptHCd7B7hlsrdf03FQgFu71kmr6VLNxE2eY0nhPXuv5L73Pu-PRoDn7_i-NTmF70h_m16Px1RF8osu0vSaVx7A5f1mEH_DhtVic1OPgNxRtBTQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Direct+Imaging+of+Atomic+Permeation+Through+a+Vacancy+Defect+in+the+Carbon+Lattice&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Cao%2C+Kecheng&rft.au=Skowron%2C+Stephen+T.&rft.au=Stoppiello%2C+Craig+T.&rft.au=Biskupek%2C+Johannes&rft.date=2020-12-14&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=59&rft.issue=51&rft.spage=22922&rft.epage=22927&rft_id=info:doi/10.1002%2Fanie.202010630&rft.externalDBID=10.1002%252Fanie.202010630&rft.externalDocID=ANIE202010630 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |