Direct Imaging of Atomic Permeation Through a Vacancy Defect in the Carbon Lattice

Porous graphene has shown promise as a new generation of selective membrane for sieving atoms, ions and molecules. However, the atomistic mechanisms of permeation through defects in the graphenic lattice are still unclear and remain unobserved in action, at the atomic level. Here, the direct observa...

Full description

Saved in:
Bibliographic Details
Published in:Angewandte Chemie International Edition Vol. 59; no. 51; pp. 22922 - 22927
Main Authors: Cao, Kecheng, Skowron, Stephen T., Stoppiello, Craig T., Biskupek, Johannes, Khlobystov, Andrei N., Kaiser, Ute
Format: Journal Article
Language:English
Published: Germany Wiley Subscription Services, Inc 14-12-2020
John Wiley and Sons Inc
Edition:International ed. in English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Porous graphene has shown promise as a new generation of selective membrane for sieving atoms, ions and molecules. However, the atomistic mechanisms of permeation through defects in the graphenic lattice are still unclear and remain unobserved in action, at the atomic level. Here, the direct observation of palladium atoms from a nanoparticle passing through a defect in a single‐walled carbon nanotube one‐by‐one has been achieved with atomic resolution in real time, revealing key stages of the atomic permeation. Bonding between the moving atom and dangling bonds around the orifice, immediately before and after passing through the subnano‐pore, plays an important role in the process. Curvature of the graphenic lattice crucially defines the direction of permeation from concave to convex side due to a difference in metal‐carbon bonding at the curved surfaces as confirmed by density functional theory calculations, demonstrating the potential of porous carbon nanotubes for atom sieving. This work reveals the mechanism of atomic permeation through a subnano‐pore in graphenic lattice by in situ aberration‐corrected high‐resolution transmission electron microscopy imaging, highlighting the importance of chemical bonding between the mobile atom and dangling bonds around the subnano‐pore. This new phenomenon and permeation mechanism are likely to play a role in the filtration processes by porous graphenic carbon based membranes.
AbstractList Porous graphene has shown promise as a new generation of selective membrane for sieving atoms, ions and molecules. However, the atomistic mechanisms of permeation through defects in the graphenic lattice are still unclear and remain unobserved in action, at the atomic level. Here, the direct observation of palladium atoms from a nanoparticle passing through a defect in a single‐walled carbon nanotube one‐by‐one has been achieved with atomic resolution in real time, revealing key stages of the atomic permeation. Bonding between the moving atom and dangling bonds around the orifice, immediately before and after passing through the subnano‐pore, plays an important role in the process. Curvature of the graphenic lattice crucially defines the direction of permeation from concave to convex side due to a difference in metal‐carbon bonding at the curved surfaces as confirmed by density functional theory calculations, demonstrating the potential of porous carbon nanotubes for atom sieving.
Porous graphene has shown promise as a new generation of selective membrane for sieving atoms, ions and molecules. However, the atomistic mechanisms of permeation through defects in the graphenic lattice are still unclear and remain unobserved in action, at the atomic level. Here, the direct observation of palladium atoms from a nanoparticle passing through a defect in a single‐walled carbon nanotube one‐by‐one has been achieved with atomic resolution in real time, revealing key stages of the atomic permeation. Bonding between the moving atom and dangling bonds around the orifice, immediately before and after passing through the subnano‐pore, plays an important role in the process. Curvature of the graphenic lattice crucially defines the direction of permeation from concave to convex side due to a difference in metal‐carbon bonding at the curved surfaces as confirmed by density functional theory calculations, demonstrating the potential of porous carbon nanotubes for atom sieving. This work reveals the mechanism of atomic permeation through a subnano‐pore in graphenic lattice by in situ aberration‐corrected high‐resolution transmission electron microscopy imaging, highlighting the importance of chemical bonding between the mobile atom and dangling bonds around the subnano‐pore. This new phenomenon and permeation mechanism are likely to play a role in the filtration processes by porous graphenic carbon based membranes.
Author Stoppiello, Craig T.
Kaiser, Ute
Biskupek, Johannes
Cao, Kecheng
Skowron, Stephen T.
Khlobystov, Andrei N.
AuthorAffiliation 3 University of Nottingham Nanoscale & Microscale Research Centre (nmRC) University Park Nottingham NG7 2RD UK
1 Ulm University Electron Microscopy of Materials Science Central Facility for Electron Microscopy Albert-Einstein-Allee 11 Ulm 89081 Germany
2 University of Nottingham School of Chemistry University Park Nottingham NG7 2RD UK
AuthorAffiliation_xml – name: 1 Ulm University Electron Microscopy of Materials Science Central Facility for Electron Microscopy Albert-Einstein-Allee 11 Ulm 89081 Germany
– name: 2 University of Nottingham School of Chemistry University Park Nottingham NG7 2RD UK
– name: 3 University of Nottingham Nanoscale & Microscale Research Centre (nmRC) University Park Nottingham NG7 2RD UK
Author_xml – sequence: 1
  givenname: Kecheng
  orcidid: 0000-0002-7180-7237
  surname: Cao
  fullname: Cao, Kecheng
  organization: Ulm University
– sequence: 2
  givenname: Stephen T.
  orcidid: 0000-0001-7322-5508
  surname: Skowron
  fullname: Skowron, Stephen T.
  organization: University of Nottingham
– sequence: 3
  givenname: Craig T.
  orcidid: 0000-0001-5937-198X
  surname: Stoppiello
  fullname: Stoppiello, Craig T.
  organization: University of Nottingham
– sequence: 4
  givenname: Johannes
  orcidid: 0000-0002-0964-3200
  surname: Biskupek
  fullname: Biskupek, Johannes
  organization: Ulm University
– sequence: 5
  givenname: Andrei N.
  orcidid: 0000-0001-7738-4098
  surname: Khlobystov
  fullname: Khlobystov, Andrei N.
  email: andrei.khlobystov@nottingham.ac.uk
  organization: University of Nottingham
– sequence: 6
  givenname: Ute
  orcidid: 0000-0003-0582-4044
  surname: Kaiser
  fullname: Kaiser, Ute
  email: ute.kaiser@uni-ulm.de
  organization: Ulm University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32918781$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtrGzEURkVJaR7ttssi6Kabca-k0WM2BeOkrcGkpaTdCknW2AozUqqZafC_j4xT97HJQkigcw_34ztHJzFFj9BrAjMCQN-bGPyMAgUCgsEzdEY4JRWTkp2Ud81YJRUnp-h8GG4LrxSIF-iU0YYoqcgZ-nYZsncjXvZmE-IGpxbPx9QHh7_63HszhhTxzTanabPFBv8wzkS3w5e-3U-FiMetxwuTbcFWZhyD8y_R89Z0g3_1eF-g7x-vbhafq9WXT8vFfFU5DhyqtWJNIxvurXV1K2TrJKFcgDJCUgMMrFszaVQrHWfWgnOOCk7XRFFqW2bZBfpw8N5Ntvdr5-OYTafvcuhN3ulkgv73J4at3qRfugSvhayL4N2jIKefkx9G3YfB-a4z0adp0LSuKSUMYI--_Q-9TVOOJV6hhBTlcFKo2YFyOQ1D9u1xGQJ6X5fe16WPdZWBN39HOOK_-ylAcwDuQ-d3T-j0_Hp59Uf-APPOooc
CitedBy_id crossref_primary_10_1002_smll_202310462
crossref_primary_10_1002_smtd_202200171
crossref_primary_10_1039_D2CP05183D
Cites_doi 10.1038/nature13817
10.1038/nnano.2015.37
10.1016/j.desal.2014.12.046
10.1021/acs.nanolett.8b02657
10.1021/nl3012853
10.1021/ja804409f
10.1038/s41467-018-04224-6
10.1038/nature19315
10.1021/jp909490v
10.1002/adma.200601310
10.1038/nnano.2012.162
10.1021/nl9021946
10.1038/nnano.2007.141
10.1038/s41467-018-05831-z
10.1063/1.1728959
10.1126/science.1126298
10.1038/nnano.2017.72
10.1038/nature14015
10.1126/science.1249097
10.1038/nnano.2015.222
10.1038/ncomms11408
10.1016/S0009-2614(98)00705-2
10.1103/PhysRevLett.85.3193
10.1103/PhysRevLett.84.686
10.1038/s41467-018-04904-3
10.1071/PH850125
10.1103/PhysRevLett.93.145901
ContentType Journal Article
Copyright 2020 Wiley‐VCH GmbH
2020 Wiley-VCH GmbH.
2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2020 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH
Copyright_xml – notice: 2020 Wiley‐VCH GmbH
– notice: 2020 Wiley-VCH GmbH.
– notice: 2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2020 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH
DBID 24P
WIN
NPM
AAYXX
CITATION
7TM
K9.
7X8
5PM
DOI 10.1002/anie.202010630
DatabaseName Wiley Open Access
Wiley Online Library
PubMed
CrossRef
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle PubMed
CrossRef
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList CrossRef

ProQuest Health & Medical Complete (Alumni)

PubMed
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage 22927
ExternalDocumentID 10_1002_anie_202010630
32918781
ANIE202010630
Genre shortCommunication
Journal Article
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
24P
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
B-7
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WIN
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
NPM
AAMNL
AAYXX
CITATION
7TM
K9.
7X8
5PM
ID FETCH-LOGICAL-c5050-d8399795ebbc4f67fc7125608a672a030bcd37a8f7c53bb0ccc2652d1822bf3b3
IEDL.DBID 33P
ISSN 1433-7851
IngestDate Tue Sep 17 21:28:49 EDT 2024
Fri Aug 16 10:23:23 EDT 2024
Thu Oct 10 20:38:04 EDT 2024
Thu Nov 21 21:10:19 EST 2024
Sat Sep 28 08:25:24 EDT 2024
Sat Aug 24 01:05:20 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 51
Keywords carbon nanotube
transmission electron microscopy
permeation
selective membrane
graphene
Language English
License 2020 Wiley-VCH GmbH.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5050-d8399795ebbc4f67fc7125608a672a030bcd37a8f7c53bb0ccc2652d1822bf3b3
Notes These authors contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-0964-3200
0000-0002-7180-7237
0000-0001-7322-5508
0000-0001-7738-4098
0000-0003-0582-4044
0000-0001-5937-198X
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202010630
PMID 32918781
PQID 2467646751
PQPubID 946352
PageCount 6
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7814674
proquest_miscellaneous_2442213004
proquest_journals_2467646751
crossref_primary_10_1002_anie_202010630
pubmed_primary_32918781
wiley_primary_10_1002_anie_202010630_ANIE202010630
PublicationCentury 2000
PublicationDate December 14, 2020
PublicationDateYYYYMMDD 2020-12-14
PublicationDate_xml – month: 12
  year: 2020
  text: December 14, 2020
  day: 14
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
– name: Hoboken
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAlternate Angew Chem Int Ed Engl
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
John Wiley and Sons Inc
Publisher_xml – name: Wiley Subscription Services, Inc
– name: John Wiley and Sons Inc
References 2014; 514
2011; 115
2018; 9
1998; 292
2007; 19
2018; 18
2016; 7
2014; 516
2004; 93
2016; 537
2015; 366
2000; 85
2017; 12
2015; 10
2000; 84
2009; 9
2007; 2
1962; 33
2012; 7
2012; 12
2008; 130
1985; 38
2006; 312
2014; 344
e_1_2_2_4_1
e_1_2_2_25_1
e_1_2_2_5_1
e_1_2_2_24_1
e_1_2_2_6_1
e_1_2_2_23_1
e_1_2_2_22_1
e_1_2_2_21_1
e_1_2_2_1_1
e_1_2_2_20_1
e_1_2_2_2_1
e_1_2_2_3_1
e_1_2_2_7_2
e_1_2_2_8_2
e_1_2_2_9_1
e_1_2_2_29_1
e_1_2_2_27_2
e_1_2_2_28_1
e_1_2_2_26_2
e_1_2_2_13_2
e_1_2_2_12_1
e_1_2_2_11_1
e_1_2_2_10_1
e_1_2_2_30_1
e_1_2_2_19_1
e_1_2_2_18_1
e_1_2_2_17_1
e_1_2_2_16_1
e_1_2_2_14_2
e_1_2_2_15_1
References_xml – volume: 12
  start-page: 509
  year: 2017
  end-page: 522
  publication-title: Nat. Nanotechnol.
– volume: 7
  start-page: 11408
  year: 2016
  publication-title: Nat. Commun.
– volume: 84
  start-page: 686
  year: 2000
  end-page: 689
  publication-title: Phys. Rev. Lett.
– volume: 366
  start-page: 59
  year: 2015
  end-page: 70
  publication-title: Desalination
– volume: 9
  start-page: 4019
  year: 2009
  end-page: 4024
  publication-title: Nano Lett.
– volume: 93
  year: 2004
  publication-title: Phys. Rev. Lett.
– volume: 292
  start-page: 554
  year: 1998
  end-page: 560
  publication-title: Chem. Phys. Lett.
– volume: 514
  start-page: 612
  year: 2014
  end-page: 615
  publication-title: Nature
– volume: 115
  start-page: 9306
  year: 2011
  end-page: 9311
  publication-title: J. Phys. Chem. C
– volume: 10
  start-page: 1053
  year: 2015
  end-page: 1057
  publication-title: Nat. Nanotechnol.
– volume: 12
  start-page: 3602
  year: 2012
  end-page: 3608
  publication-title: Nano Lett.
– volume: 9
  start-page: 1812
  year: 2018
  publication-title: Nat. Commun.
– volume: 7
  start-page: 728
  year: 2012
  end-page: 732
  publication-title: Nat. Nanotechnol.
– volume: 19
  start-page: 883
  year: 2007
  end-page: 887
  publication-title: Adv. Mater.
– volume: 33
  start-page: 2345
  year: 1962
  end-page: 2352
  publication-title: J. Appl. Phys.
– volume: 9
  start-page: 3382
  year: 2018
  publication-title: Nat. Commun.
– volume: 18
  start-page: 6334
  year: 2018
  end-page: 6339
  publication-title: Nano Lett.
– volume: 2
  start-page: 358
  year: 2007
  end-page: 360
  publication-title: Nat. Nanotechnol.
– volume: 312
  start-page: 1034
  year: 2006
  end-page: 1037
  publication-title: Science
– volume: 516
  start-page: 227
  year: 2014
  end-page: 230
  publication-title: Nature
– volume: 85
  start-page: 3193
  year: 2000
  end-page: 3196
  publication-title: Phys. Rev. Lett.
– volume: 10
  start-page: 459
  year: 2015
  end-page: 464
  publication-title: Nat. Nanotechnol.
– volume: 130
  start-page: 16448
  year: 2008
  end-page: 16449
  publication-title: J. Am. Chem. Soc.
– volume: 344
  start-page: 289
  year: 2014
  end-page: 292
  publication-title: Science
– volume: 9
  start-page: 2632
  year: 2018
  publication-title: Nat. Commun.
– volume: 537
  start-page: 210
  year: 2016
  end-page: 213
  publication-title: Nature
– volume: 38
  start-page: 125
  year: 1985
  end-page: 134
  publication-title: Aust. J. Phys.
– ident: e_1_2_2_19_1
  doi: 10.1038/nature13817
– ident: e_1_2_2_5_1
  doi: 10.1038/nnano.2015.37
– ident: e_1_2_2_11_1
  doi: 10.1016/j.desal.2014.12.046
– ident: e_1_2_2_12_1
– ident: e_1_2_2_28_1
  doi: 10.1021/acs.nanolett.8b02657
– ident: e_1_2_2_2_1
  doi: 10.1021/nl3012853
– ident: e_1_2_2_14_2
  doi: 10.1021/ja804409f
– ident: e_1_2_2_13_2
  doi: 10.1038/s41467-018-04224-6
– ident: e_1_2_2_17_1
  doi: 10.1038/nature19315
– ident: e_1_2_2_30_1
  doi: 10.1021/jp909490v
– ident: e_1_2_2_21_1
  doi: 10.1002/adma.200601310
– ident: e_1_2_2_7_2
  doi: 10.1038/nnano.2012.162
– ident: e_1_2_2_3_1
  doi: 10.1021/nl9021946
– ident: e_1_2_2_25_1
– ident: e_1_2_2_20_1
  doi: 10.1038/nnano.2007.141
– ident: e_1_2_2_23_1
  doi: 10.1038/s41467-018-05831-z
– ident: e_1_2_2_26_2
  doi: 10.1063/1.1728959
– ident: e_1_2_2_16_1
  doi: 10.1126/science.1126298
– ident: e_1_2_2_1_1
  doi: 10.1038/nnano.2017.72
– ident: e_1_2_2_4_1
  doi: 10.1038/nature14015
– ident: e_1_2_2_8_2
  doi: 10.1126/science.1249097
– ident: e_1_2_2_6_1
– ident: e_1_2_2_10_1
  doi: 10.1038/nnano.2015.222
– ident: e_1_2_2_24_1
  doi: 10.1038/ncomms11408
– ident: e_1_2_2_15_1
  doi: 10.1016/S0009-2614(98)00705-2
– ident: e_1_2_2_22_1
  doi: 10.1103/PhysRevLett.85.3193
– ident: e_1_2_2_29_1
  doi: 10.1103/PhysRevLett.84.686
– ident: e_1_2_2_9_1
  doi: 10.1038/s41467-018-04904-3
– ident: e_1_2_2_27_2
  doi: 10.1071/PH850125
– ident: e_1_2_2_18_1
  doi: 10.1103/PhysRevLett.93.145901
SSID ssj0028806
Score 2.4250944
Snippet Porous graphene has shown promise as a new generation of selective membrane for sieving atoms, ions and molecules. However, the atomistic mechanisms of...
SourceID pubmedcentral
proquest
crossref
pubmed
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 22922
SubjectTerms Carbon
carbon nanotube
Chemical bonds
Communication
Communications
Density functional theory
Graphene
Lattice vacancies
Nanoparticles
Nanotechnology
Nanotubes
Orifices
Palladium
Penetration
permeation
selective membrane
Single wall carbon nanotubes
transmission electron microscopy
Title Direct Imaging of Atomic Permeation Through a Vacancy Defect in the Carbon Lattice
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202010630
https://www.ncbi.nlm.nih.gov/pubmed/32918781
https://www.proquest.com/docview/2467646751
https://search.proquest.com/docview/2442213004
https://pubmed.ncbi.nlm.nih.gov/PMC7814674
Volume 59
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA7qRS--H_VFBMFTcZu0Sfa4rCu7IMviC28lSVP0YFf28f-dSbbVxYOgh0JLkzadJJNvmplvCLkE0KESp3jMnU3jNDMuVlykMbPaCOMEc552sf8ghy_qpoc0OU0Uf-CHaH644czw-honuDbT6y_SUIzABvsOd3MFR6MdTAUfw8FHjcUFgzOEF3EeYxb6mrWxxa6Xqy-vSj-g5k-Pye9I1i9Ft1v__4htsrmAobQTxs0OWXHVLlnv1tnf9sh90IV08O7TGNFxSTszjGCmI9DlAWjSx5Dkh2r6rC2qaXrj0D2EvlUUgCXt6omBYnd6hi52--TptvfY7ceL_AuxBVzUigsAT23ZzpwxNi2FLK1MECEpLSTToB2MLbjUqpQ248a0rLVMZKwAk4WZkht-QNaqceWOCDUCgIEUTkmTpY6XmmeFz8KomE6cERG5quWffwSajTwQKrMcZZQ3MorIad09-WK6TXMG6l7AkSURuWhug8Rw90NXbjzHMiljuHmXRuQw9GbzKs7a0DwFteVSPzcFkIR7-U719urJuJEyTEh4JvP9_Evr885w0Guujv9S6YRs4Dm61CTpKVmbTebujKxOi_m5H_yf-_ACZg
link.rule.ids 230,315,782,786,887,1408,27933,27934,46064,46488
linkProvider Wiley-Blackwell
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1BT9swFH4a3QEusME2OmDzpEmcIhrbsd1j1Ra1WqnQVtBuke04GoelE7T_f-_FTaDiMGnikENiO3H87OfP9nvfA_iKoMOkwYhEBC8TmbmQGKFkwr11ygXFQ027OPmh5z_NaEw0OYPGFybyQ7QbbjQyan1NA5w2pC8eWUPJBRsXeHScqwSu2l9Lhb2RvDjEdbvmwu4ZHYyESCgOfcPb2OMX2-W356VnYPO5zeRTLFtPRpcHL_Abb2B_g0TZIHadt_AqVIewO2wCwB3B96gO2fR3HcmILUs2WJETM7tGdR6xJlvEOD_MslvrSVOzUSALEXZXMcSWbGjvHWab2RVZ2b2Dm8vxYjhJNiEYEo_QqJcUiJ_6up8F57wslS69TgkkGas0t6ggnC-EtqbUPhPO9bz3XGW8wFULd6Vw4j10qmUVjoE5hdhAq2C0y2QQpRVZUQdiNNymwakunDcCyP9Epo08cirznNoob9uoC6eNfPLNiHvIOWp8hVeWduFLm4wtRgcgtgrLNeWRnNP5nezChyjO9lOC97F6BkvrLUG3GYiHezuluvtV83ETa5jS-E5eC_oftc8H8-m4vfv4P4U-w-5kcTXLZ9P5txPYo-dkYZPKU-is7tfhDHYeivWneiT8BVTsBo4
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swED8xkNhexvjaOhgYCWlPEY3t2O5j1Q9RgaqKL_EW2Y4j-rAUQfv_7y5uwyoeJm0PeUhsJ85dfP5d7PsdwDmCDpMGIxIRvExk5kJihJIJ99YpFxQPNe3i5a0eP5r-gGhymij-yA_R_HCjkVHbaxrgz0V58UYaShHY6N_Raq4S6LRvScTixJ4vxKRxufDrjPFFQiSUhn5F29jmF-vt16eld1jz_ZbJP6FsPRcNd_7_Lb7A5yUOZd344ezCRqj24GNvlf5tH26iMWSjX3UeIzYrWXdOIcxsgsY8Ik12F7P8MMserCc7zfqB9oewacUQWbKefXFY7drOaY_dAdwPB3e9y2SZgCHxCIzaSYHoqaM7WXDOy1Lp0uuUIJKxSnOL5sH5QmhrSu0z4Vzbe89Vxgv0WbgrhROHsFnNqvANmFOIDLQKRrtMBlFakRV1GkbDbRqcasHPlfzz58izkUdGZZ6TjPJGRi04XqknX46315yjvVd4ZGkLzppilBgtf9gqzBZUR3JOq3eyBV-jNptHCd7B7hlsrdf03FQgFu71kmr6VLNxE2eY0nhPXuv5L73Pu-PRoDn7_i-NTmF70h_m16Px1RF8osu0vSaVx7A5f1mEH_DhtVic1OPgNxRtBTQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Direct+Imaging+of+Atomic+Permeation+Through+a+Vacancy+Defect+in+the+Carbon+Lattice&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Cao%2C+Kecheng&rft.au=Skowron%2C+Stephen+T.&rft.au=Stoppiello%2C+Craig+T.&rft.au=Biskupek%2C+Johannes&rft.date=2020-12-14&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=59&rft.issue=51&rft.spage=22922&rft.epage=22927&rft_id=info:doi/10.1002%2Fanie.202010630&rft.externalDBID=10.1002%252Fanie.202010630&rft.externalDocID=ANIE202010630
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon