Optofluidic analysis system for amplification-free, direct detection of Ebola infection

The massive outbreak of highly lethal Ebola hemorrhagic fever in West Africa illustrates the urgent need for diagnostic instruments that can identify and quantify infections rapidly, accurately and with low complexity. Here, we report on-chip sample preparation, amplification-free detection and quan...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports Vol. 5; no. 1; p. 14494
Main Authors: Cai, H., Parks, J. W., Wall, T. A., Stott, M. A., Stambaugh, A., Alfson, K., Griffiths, A., Mathies, R. A., Carrion, R., Patterson, J. L., Hawkins, A. R., Schmidt, H.
Format: Journal Article
Language:English
Published: London Nature Publishing Group UK 25-09-2015
Nature Publishing Group
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The massive outbreak of highly lethal Ebola hemorrhagic fever in West Africa illustrates the urgent need for diagnostic instruments that can identify and quantify infections rapidly, accurately and with low complexity. Here, we report on-chip sample preparation, amplification-free detection and quantification of Ebola virus on clinical samples using hybrid optofluidic integration. Sample preparation and target preconcentration are implemented on a PDMS-based microfluidic chip (automaton), followed by single nucleic acid fluorescence detection in liquid-core optical waveguides on a silicon chip in under ten minutes. We demonstrate excellent specificity, a limit of detection of 0.2 pfu/mL and a dynamic range of thirteen orders of magnitude, far outperforming other amplification-free methods. This chip-scale approach and reduced complexity compared to gold standard RT-PCR methods is ideal for portable instruments that can provide immediate diagnosis and continued monitoring of infectious diseases at the point-of-care.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
These authors contributed equally to this work.
ISSN:2045-2322
2045-2322
DOI:10.1038/srep14494