Co-activation of AKT and c-Met triggers rapid hepatocellular carcinoma development via the mTORC1/FASN pathway in mice
Activation of the AKT/mTOR cascade and overexpression of c-Met have been implicated in the development of human hepatocellular carcinoma (HCC). To elucidate the functional crosstalk between the two pathways, we generated a model characterized by the combined expression of activated AKT and c-Met in...
Saved in:
Published in: | Scientific reports Vol. 6; no. 1; p. 20484 |
---|---|
Main Authors: | , , , , , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
London
Nature Publishing Group UK
09-02-2016
Nature Publishing Group |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Activation of the AKT/mTOR cascade and overexpression of c-Met have been implicated in the development of human hepatocellular carcinoma (HCC). To elucidate the functional crosstalk between the two pathways, we generated a model characterized by the combined expression of activated AKT and c-Met in the mouse liver. Co-expression of AKT and c-Met triggered rapid liver tumor development and mice required to be euthanized within 8 weeks after hydrodynamic injection. At the molecular level, liver tumors induced by AKT/c-Met display activation of AKT/mTOR and Ras/MAPK cascades as well as increased lipogenesis and glycolysis. Since a remarkable lipogenic phenotype characterizes liver lesions from AKT/c-Met mice, we determined the requirement of lipogenesis in AKT/c-Met driven hepatocarcinogenesis using conditional Fatty Acid Synthase (FASN) knockout mice. Of note, hepatocarcinogenesis induced by AKT/c-Met was fully inhibited by FASN ablation. In human HCC samples, coordinated expression of FASN, activated AKT and c-Met proteins was detected in a subgroup of biologically aggressive tumors. Altogether, our study demonstrates that co-activation of AKT and c-Met induces HCC development that depends on the mTORC1/FASN pathway. Suppression of mTORC1 and/or FASN might be highly detrimental for the growth of human HCC subsets characterized by concomitant induction of the AKT and c-Met cascades. |
---|---|
Bibliography: | These authors contributed equally to this work. |
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/srep20484 |