Actual evapotranspiration and precipitation measured by lysimeters: a comparison with eddy covariance and tipping bucket
This study compares actual evapotranspiration (ETa) measurements by a set of six weighable lysimeters, ETa estimates obtained with the eddy covariance (EC) method, and evapotranspiration calculated with the full-form Penman-Monteith equation (ETPM) for the Rollesbroich site in the Eifel (western Ger...
Saved in:
Published in: | Hydrology and earth system sciences Vol. 19; no. 5; pp. 2145 - 2161 |
---|---|
Main Authors: | , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Katlenburg-Lindau
Copernicus GmbH
05-05-2015
Copernicus Publications |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | This study compares actual evapotranspiration (ETa) measurements by a set of six weighable lysimeters, ETa estimates obtained with the eddy covariance (EC) method, and evapotranspiration calculated with the full-form Penman-Monteith equation (ETPM) for the Rollesbroich site in the Eifel (western Germany). The comparison of ETa measured by EC (including correction of the energy balance deficit) and by lysimeters is rarely reported in the literature and allows more insight into the performance of both methods. An evaluation of ETa for the two methods for the year 2012 shows a good agreement with a total difference of 3.8% (19 mm) between the ETa estimates. The highest agreement and smallest relative differences (< 8%) on a monthly basis between both methods are found in summer. ETa was close to ETPM, indicating that ET was energy limited and not limited by water availability. ETa differences between lysimeter and EC were mainly related to differences in grass height caused by harvest and the EC footprint. The lysimeter data were also used to estimate precipitation amounts in combination with a filter algorithm for the high-precision lysimeters recently introduced by Peters et al. (2014). The estimated precipitation amounts from the lysimeter data differ significantly from precipitation amounts recorded with a standard rain gauge at the Rollesbroich test site. For the complete year 2012 the lysimeter records show a 16 % higher precipitation amount than the tipping bucket. After a correction of the tipping bucket measurements by the method of Richter (1995) this amount was reduced to 3%. With the help of an on-site camera the precipitation measurements of the lysimeters were analyzed in more detail. It was found that the lysimeters record more precipitation than the tipping bucket, in part related to the detection of rime and dew, which contribute 17% to the yearly difference between both methods. In addition, fog and drizzle explain an additional 5.5% of the total difference. Larger differences are also recorded for snow and sleet situations. During snowfall, the tipping bucket device underestimated precipitation severely, and these situations contributed also 7.9% to the total difference. However, 36% of the total yearly difference was associated with snow cover without apparent snowfall, and under these conditions snow bridges and snow drift seem to explain the strong overestimation of precipitation by the lysimeter. The remaining precipitation difference (about 33%) could not be explained and did not show a clear relation to wind speed. The variation of the individual lysimeters devices compared to the lysimeter mean are small, showing variations up to 3% for precipitation and 8% for evapotranspiration. |
---|---|
AbstractList | This study compares actual evapotranspiration (ETa) measurements by a set of six weighable lysimeters, ETa estimates obtained with the eddy covariance (EC) method, and evapotranspiration calculated with the full-form Penman–Monteith equation (ETPM) for the Rollesbroich site in the Eifel (western Germany). The comparison of ETa measured by EC (including correction of the energy balance deficit) and by lysimeters is rarely reported in the literature and allows more insight into the performance of both methods. An evaluation of ETa for the two methods for the year 2012 shows a good agreement with a total difference of 3.8% (19 mm) between the ETa estimates. The highest agreement and smallest relative differences (< 8%) on a monthly basis between both methods are found in summer. ETa was close to ETPM, indicating that ET was energy limited and not limited by water availability. ETa differences between lysimeter and EC were mainly related to differences in grass height caused by harvest and the EC footprint. The lysimeter data were also used to estimate precipitation amounts in combination with a filter algorithm for the high-precision lysimeters recently introduced by Peters et al. (2014). The estimated precipitation amounts from the lysimeter data differ significantly from precipitation amounts recorded with a standard rain gauge at the Rollesbroich test site. For the complete year 2012 the lysimeter records show a 16 % higher precipitation amount than the tipping bucket. After a correction of the tipping bucket measurements by the method of Richter (1995) this amount was reduced to 3%. With the help of an on-site camera the precipitation measurements of the lysimeters were analyzed in more detail. It was found that the lysimeters record more precipitation than the tipping bucket, in part related to the detection of rime and dew, which contribute 17% to the yearly difference between both methods. In addition, fog and drizzle explain an additional 5.5% of the total difference. Larger differences are also recorded for snow and sleet situations. During snowfall, the tipping bucket device underestimated precipitation severely, and these situations contributed also 7.9% to the total difference. However, 36% of the total yearly difference was associated with snow cover without apparent snowfall, and under these conditions snow bridges and snow drift seem to explain the strong overestimation of precipitation by the lysimeter. The remaining precipitation difference (about 33%) could not be explained and did not show a clear relation to wind speed. The variation of the individual lysimeters devices compared to the lysimeter mean are small, showing variations up to 3% for precipitation and 8% for evapotranspiration. |
Author | H-J Hendricks Franssen Gebler, S Post, H Vereecken, H Pütz, T Schmidt, M |
Author_xml | – sequence: 1 givenname: S surname: Gebler fullname: Gebler, S – sequence: 2 fullname: H-J Hendricks Franssen – sequence: 3 givenname: T surname: Pütz fullname: Pütz, T – sequence: 4 givenname: H surname: Post fullname: Post, H – sequence: 5 givenname: M surname: Schmidt fullname: Schmidt, M – sequence: 6 givenname: H surname: Vereecken fullname: Vereecken, H |
BookMark | eNqFkk1rFTEUhgepYFv9Ae4G3LgZm5Nk8uGuFD8KBTe6DmeSTJvrzGRMMtX7783tLSIu6irh5eHJyeE9a06WuPimeQ3kXQ-aX9z5nDvQHQXed5RA_6w5BUFkJzVTJ3_dXzRnOe8IoUoJetr8urRlw6n197jGknDJa0hYQlxaXFy7Jm_DGsoxmT3mLXnXDvt22ucw--JTft9ia-O8Ygq5Qj9DuWu9c_sa3tcMF-sfXCWsa1hu22Gz33152Twfccr-1eN53nz7-OHr1efu5sun66vLm872hJeOCSBKolfEcg0ctOXAgDAthROCaRgpd2i1lOgAFe0906PUiqnRW8scO2-uj14XcWfWFGZMexMxmIcgpluDqQQ7eUMHRwYcLBmZ4jg4RS0oRwFsL-urY3W9PbrWFH9sPhczh2z9NOHi45YNKKJIT4H0_0eFYozXsWVF3_yD7uKWlroUQ3n9spKCkaco0L2q81HVP0kJqXlllKgUHCmbYs7Jj3_2AsQc6mQOdapec6iTOdSJ_QbxVL8C |
CitedBy_id | crossref_primary_10_3389_fpls_2021_771424 crossref_primary_10_5194_hess_21_1809_2017 crossref_primary_10_1016_j_jhydrol_2021_127037 crossref_primary_10_1016_j_agwat_2015_11_003 crossref_primary_10_1016_j_scitotenv_2018_05_018 crossref_primary_10_1029_2018WR022692 crossref_primary_10_1016_j_agwat_2019_02_045 crossref_primary_10_1016_j_agrformet_2023_109382 crossref_primary_10_2139_ssrn_4156073 crossref_primary_10_2166_wcc_2022_111 crossref_primary_10_1002_hyp_11397 crossref_primary_10_3390_ijgi10030192 crossref_primary_10_1016_j_jenvman_2017_01_024 crossref_primary_10_5194_bg_16_1111_2019 crossref_primary_10_3390_w12082159 crossref_primary_10_5194_hess_25_1151_2021 crossref_primary_10_1002_hyp_14383 crossref_primary_10_5194_hess_19_3405_2015 crossref_primary_10_3390_rs13183686 crossref_primary_10_1515_boku_2016_0012 crossref_primary_10_1016_j_scitotenv_2022_160833 crossref_primary_10_5194_hess_20_2309_2016 crossref_primary_10_1016_j_fcr_2017_06_003 crossref_primary_10_1016_j_mex_2019_11_012 crossref_primary_10_5194_hess_26_2277_2022 crossref_primary_10_1016_j_agrformet_2018_09_003 crossref_primary_10_1002_vzj2_20032 crossref_primary_10_3390_w11020243 crossref_primary_10_3390_atmos10020051 crossref_primary_10_1016_j_rse_2019_111413 crossref_primary_10_5194_hess_27_3265_2023 crossref_primary_10_1016_j_jhydrol_2017_01_048 crossref_primary_10_1016_j_jhydrol_2021_126486 crossref_primary_10_1016_j_jhydrol_2019_05_065 crossref_primary_10_1007_s00704_017_2291_6 crossref_primary_10_5194_bg_13_63_2016 crossref_primary_10_1016_j_agwat_2024_108706 crossref_primary_10_1016_j_ecolmodel_2017_07_028 crossref_primary_10_1029_2019WR026699 crossref_primary_10_1007_s10546_024_00868_8 crossref_primary_10_1016_j_ejrh_2017_11_010 crossref_primary_10_1016_j_agwat_2016_08_015 crossref_primary_10_1016_j_ejrh_2021_100972 crossref_primary_10_3390_rs12030498 crossref_primary_10_1029_2018WR023894 crossref_primary_10_3390_w15193383 crossref_primary_10_3390_hydrology7030050 crossref_primary_10_1016_j_agrformet_2018_05_008 crossref_primary_10_1007_s10546_020_00550_9 crossref_primary_10_1029_2018WR024072 crossref_primary_10_1002_hyp_14051 crossref_primary_10_1029_2019WR025539 crossref_primary_10_5194_bg_17_5787_2020 crossref_primary_10_1002_2016JD025447 crossref_primary_10_1007_s00271_023_00869_4 crossref_primary_10_1080_01431161_2023_2240523 crossref_primary_10_2166_nh_2018_170 crossref_primary_10_1007_s00271_019_00626_6 crossref_primary_10_1016_j_pce_2020_102884 crossref_primary_10_3389_frwa_2020_544847 crossref_primary_10_5194_bg_14_1153_2017 crossref_primary_10_3390_geosciences8100372 crossref_primary_10_1016_j_agwat_2016_12_010 crossref_primary_10_1016_j_jhydrol_2020_125580 crossref_primary_10_3390_w11122478 crossref_primary_10_3390_rs12071065 crossref_primary_10_5194_bg_21_2051_2024 crossref_primary_10_1016_j_agrformet_2019_05_006 crossref_primary_10_1007_s11629_020_6051_1 crossref_primary_10_1007_s11629_021_6839_7 crossref_primary_10_3389_feart_2019_00055 crossref_primary_10_1111_gcbb_12503 crossref_primary_10_3390_land12051095 crossref_primary_10_1016_j_envpol_2017_05_071 crossref_primary_10_1016_j_ecolmodel_2017_07_031 crossref_primary_10_3390_w12020393 crossref_primary_10_3390_rs14143440 crossref_primary_10_3390_w9020072 crossref_primary_10_1016_j_agee_2016_07_011 crossref_primary_10_1016_j_jhydrol_2022_127890 crossref_primary_10_1016_j_jhydrol_2017_04_015 crossref_primary_10_1029_2018WR024658 crossref_primary_10_5194_hess_27_2437_2023 crossref_primary_10_1016_j_agrformet_2022_108981 crossref_primary_10_1016_j_agee_2021_107750 crossref_primary_10_1016_j_agrformet_2023_109796 crossref_primary_10_4236_gep_2022_108013 crossref_primary_10_1016_j_agrformet_2018_10_012 crossref_primary_10_1016_j_atmosres_2016_01_016 crossref_primary_10_1080_20964471_2020_1743612 crossref_primary_10_1007_s12665_016_6031_5 crossref_primary_10_1016_j_agwat_2016_02_019 crossref_primary_10_1016_j_agrformet_2018_02_020 crossref_primary_10_1029_2023GL107084 crossref_primary_10_3390_w14142268 crossref_primary_10_1007_s10546_020_00529_6 crossref_primary_10_1038_s41598_021_81776_6 crossref_primary_10_1016_j_jhydrol_2020_125435 crossref_primary_10_1016_j_jhydrol_2020_125437 crossref_primary_10_1016_j_agwat_2023_108541 crossref_primary_10_1016_j_jhydrol_2019_124317 crossref_primary_10_3390_w15020373 crossref_primary_10_1175_JHM_D_19_0260_1 crossref_primary_10_1029_2020JG005814 crossref_primary_10_3390_agronomy11010180 crossref_primary_10_1016_j_jhydrol_2019_124039 crossref_primary_10_1007_s00703_017_0507_z crossref_primary_10_2478_johh_2023_0024 crossref_primary_10_1016_j_agwat_2017_04_017 crossref_primary_10_1007_s12040_019_1098_5 crossref_primary_10_18393_ejss_567359 crossref_primary_10_5194_essd_8_517_2016 crossref_primary_10_1016_j_scitotenv_2018_09_130 crossref_primary_10_1016_j_scitotenv_2019_06_407 |
Cites_doi | 10.1007/s11267-007-9172-4 10.1016/0169-8095(95)00066-6 10.1016/j.agwat.2005.03.007 10.1016/S0168-1923(00)00123-4 10.1007/978-3-642-27281-3_53 10.1002/hyp.7059 10.1002/jpln.200625002 10.1061/(ASCE)0733-9437(2009)135:2(235) 10.1023/A:1018991015119 10.1016/j.advwatres.2012.07.008 10.1007/s00271-009-0179-7 10.1016/j.agrformet.2010.08.005 10.1016/j.proenv.2013.06.061 10.1002/wea.548 10.1016/j.agwat.2010.08.001 10.1016/j.advwatres.2012.07.023 10.1016/j.agrformet.2012.09.006 10.1111/j.1752-1688.1993.tb03245.x 10.1016/0168-1923(86)90068-7 10.1016/j.agwat.2006.10.008 10.2478/johh-2013-0021 10.2136/vzj2010.0139 10.1016/j.atmosres.2004.11.032 10.1016/j.agrformet.2009.11.002 10.1021/ac60214a047 10.1029/2005WR004055 10.1890/06-0922.1 10.2136/vzj2012.0139 10.1016/j.agrformet.2010.11.010 10.1093/biomet/76.2.297 10.1002/qj.49710644707 10.1016/j.agrformet.2004.07.008 10.1007/BF00164332 10.1016/j.agwat.2006.05.017 10.1002/jpln.201200342 10.1007/BF00122754 10.5194/hess-18-1189-2014 10.1175/2011BAMS3130.1 10.1016/j.agrformet.2012.11.019 10.1023/A:1018966204465 10.1109/TAC.1974.1100705 10.1016/j.jhydrol.2003.10.005 10.1016/S0168-1923(00)00199-4 10.1016/0168-1923(95)02248-1 |
ContentType | Journal Article |
Copyright | Copyright Copernicus GmbH 2015 2015. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: Copyright Copernicus GmbH 2015 – notice: 2015. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7QH 7TG 7UA 8FD 8FE 8FG ABJCF ABUWG AFKRA ATCPS AZQEC BENPR BFMQW BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W FR3 GNUQQ H96 HCIFZ KL. KR7 L.G L6V M7S PATMY PCBAR PIMPY PQEST PQQKQ PQUKI PRINS PTHSS PYCSY 7ST SOI 7SU H8D L7M DOA |
DOI | 10.5194/hess-19-2145-2015 |
DatabaseName | CrossRef Aqualine Meteorological & Geoastrophysical Abstracts Water Resources Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Database (Proquest) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Agriculture & Environmental Science Database ProQuest Central Essentials AUTh Library subscriptions: ProQuest Central Continental Europe Database Technology Collection ProQuest Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database ProQuest Central Student Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection (Proquest) (PQ_SDU_P3) Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection ProQuest Engineering Database Environmental Science Database ProQuest Earth, Atmospheric & Aquatic Science Database Publicly Available Content Database (Proquest) (PQ_SDU_P3) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Environmental Science Collection Environment Abstracts Environment Abstracts Environmental Engineering Abstracts Aerospace Database Advanced Technologies Database with Aerospace Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Central Student Technology Collection Technology Research Database ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China Water Resources Abstracts Environmental Sciences and Pollution Management Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest Engineering Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Engineering Collection Civil Engineering Abstracts Engineering Database ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Continental Europe Database ProQuest SciTech Collection Aqualine Environmental Science Collection Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Materials Science & Engineering Collection Environmental Science Database Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic Environment Abstracts Aerospace Database Environmental Engineering Abstracts Advanced Technologies Database with Aerospace |
DatabaseTitleList | Publicly Available Content Database CrossRef Publicly Available Content Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) Professional Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: http://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography |
EISSN | 1607-7938 |
EndPage | 2161 |
ExternalDocumentID | oai_doaj_org_article_2bd0babc0f384abd82c18d211c57413f 3678259971 10_5194_hess_19_2145_2015 |
GeographicLocations | United States--US Germany, Eifel Germany |
GeographicLocations_xml | – name: United States--US – name: Germany, Eifel – name: Germany |
GroupedDBID | 29I 2WC 3V. 5GY 5VS 7XC 8CJ 8FE 8FG 8FH 8R4 8R5 AAFWJ AAYXX ABJCF ABUWG ACGFO ACIWK ADBBV AENEX AFKRA AFRAH AHGZY AIAGR ALMA_UNASSIGNED_HOLDINGS ATCPS BBORY BCNDV BENPR BFMQW BGLVJ BHPHI BKSAR BPHCQ CCPQU CITATION D1J D1K E3Z EBS ECGQY EDH EJD GROUPED_DOAJ GX1 H13 HCIFZ IAO IEA IPNFZ ISR ITC K6- KQ8 L6V L8X LK5 M7R M7S M~E OK1 P2P PATMY PCBAR PIMPY PQQKQ PROAC PTHSS PYCSY Q2X RIG RKB RNS TR2 XSB ~02 ~KM 7QH 7TG 7UA 8FD AZQEC C1K DWQXO F1W FR3 GNUQQ H96 KL. KR7 L.G PQEST PQUKI PRINS 7ST SOI 7SU H8D L7M |
ID | FETCH-LOGICAL-c504t-361087ae80c491419c413103976d66391f24dac977ad1a825e39f79838fecc3d3 |
IEDL.DBID | DOA |
ISSN | 1607-7938 1027-5606 |
IngestDate | Tue Oct 22 15:17:03 EDT 2024 Thu Oct 24 23:27:45 EDT 2024 Sat Oct 26 01:32:32 EDT 2024 Thu Oct 10 19:31:37 EDT 2024 Thu Oct 10 20:03:48 EDT 2024 Thu Oct 10 20:13:16 EDT 2024 Thu Nov 21 21:35:02 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c504t-361087ae80c491419c413103976d66391f24dac977ad1a825e39f79838fecc3d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-5292-7092 |
OpenAccessLink | https://doaj.org/article/2bd0babc0f384abd82c18d211c57413f |
PQID | 1679428586 |
PQPubID | 105724 |
PageCount | 17 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_2bd0babc0f384abd82c18d211c57413f proquest_miscellaneous_1808052105 proquest_miscellaneous_1683349777 proquest_journals_2414187630 proquest_journals_1958413285 proquest_journals_1679428586 crossref_primary_10_5194_hess_19_2145_2015 |
PublicationCentury | 2000 |
PublicationDate | 2015-05-05 |
PublicationDateYYYYMMDD | 2015-05-05 |
PublicationDate_xml | – month: 05 year: 2015 text: 2015-05-05 day: 05 |
PublicationDecade | 2010 |
PublicationPlace | Katlenburg-Lindau |
PublicationPlace_xml | – name: Katlenburg-Lindau |
PublicationTitle | Hydrology and earth system sciences |
PublicationYear | 2015 |
Publisher | Copernicus GmbH Copernicus Publications |
Publisher_xml | – name: Copernicus GmbH – name: Copernicus Publications |
References | ref13 ref12 ref56 ref15 ref14 ref53 ref52 ref11 ref55 ref10 ref54 ref17 ref16 ref19 ref18 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 |
References_xml | – ident: ref37 – ident: ref47 doi: 10.1007/s11267-007-9172-4 – ident: ref44 doi: 10.1016/0169-8095(95)00066-6 – ident: ref5 – ident: ref4 doi: 10.1016/j.agwat.2005.03.007 – ident: ref43 – ident: ref46 doi: 10.1016/S0168-1923(00)00123-4 – ident: ref18 doi: 10.1007/978-3-642-27281-3_53 – ident: ref26 doi: 10.1002/hyp.7059 – ident: ref30 doi: 10.1002/jpln.200625002 – ident: ref48 doi: 10.1061/(ASCE)0733-9437(2009)135:2(235) – ident: ref24 doi: 10.1023/A:1018991015119 – ident: ref2 doi: 10.1016/j.advwatres.2012.07.008 – ident: ref6 doi: 10.1007/s00271-009-0179-7 – ident: ref17 doi: 10.1016/j.agrformet.2010.08.005 – ident: ref40 doi: 10.1016/j.proenv.2013.06.061 – ident: ref45 doi: 10.1002/wea.548 – ident: ref9 doi: 10.1016/j.agwat.2010.08.001 – ident: ref10 doi: 10.1016/j.advwatres.2012.07.023 – ident: ref29 doi: 10.1016/j.agrformet.2012.09.006 – ident: ref25 doi: 10.1111/j.1752-1688.1993.tb03245.x – ident: ref23 – ident: ref11 doi: 10.1016/0168-1923(86)90068-7 – ident: ref49 doi: 10.1016/j.agwat.2006.10.008 – ident: ref51 doi: 10.2478/johh-2013-0021 – ident: ref55 doi: 10.2136/vzj2010.0139 – ident: ref54 – ident: ref16 – ident: ref33 – ident: ref3 – ident: ref7 doi: 10.1016/j.atmosres.2004.11.032 – ident: ref41 doi: 10.1016/j.agrformet.2009.11.002 – ident: ref38 doi: 10.1021/ac60214a047 – ident: ref21 doi: 10.1029/2005WR004055 – ident: ref14 doi: 10.1890/06-0922.1 – ident: ref36 doi: 10.2136/vzj2012.0139 – ident: ref20 doi: 10.1016/j.agrformet.2010.11.010 – ident: ref19 doi: 10.1093/biomet/76.2.297 – ident: ref50 doi: 10.1002/qj.49710644707 – ident: ref12 doi: 10.1016/j.agrformet.2004.07.008 – ident: ref39 doi: 10.1007/BF00164332 – ident: ref27 doi: 10.1016/j.agwat.2006.05.017 – ident: ref34 doi: 10.1002/jpln.201200342 – ident: ref32 doi: 10.1007/BF00122754 – ident: ref35 doi: 10.5194/hess-18-1189-2014 – ident: ref15 doi: 10.1175/2011BAMS3130.1 – ident: ref28 – ident: ref42 – ident: ref22 doi: 10.1016/j.agrformet.2012.11.019 – ident: ref8 – ident: ref56 – ident: ref52 doi: 10.1023/A:1018966204465 – ident: ref1 doi: 10.1109/TAC.1974.1100705 – ident: ref31 doi: 10.1016/j.jhydrol.2003.10.005 – ident: ref53 doi: 10.1016/S0168-1923(00)00199-4 – ident: ref13 doi: 10.1016/0168-1923(95)02248-1 |
SSID | ssj0028862 |
Score | 2.5262349 |
Snippet | This study compares actual evapotranspiration (ETa) measurements by a set of six weighable lysimeters, ETa estimates obtained with the eddy covariance (EC)... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database |
StartPage | 2145 |
SubjectTerms | Algorithms Atmospheric precipitations Bridges Buckets Covariance Data processing Detection Devices Drizzle Eddies Eddy covariance Energy Energy balance Energy measurement Estimates Evaluation Evapotranspiration Evapotranspiration measurements Fog Gauges Growth models Hydrologic data Lysimeters Mathematical analysis Mathematical models Methods Noise Precipitation Precipitation measurements Rain Rain gauges Rainfall Rime Sleet Snow Snow cover Snowdrifts Snowfall Studies Vegetation Vortices Water availability Wind speed |
Title | Actual evapotranspiration and precipitation measured by lysimeters: a comparison with eddy covariance and tipping bucket |
URI | https://www.proquest.com/docview/1679428586 https://www.proquest.com/docview/1958413285 https://www.proquest.com/docview/2414187630 https://search.proquest.com/docview/1683349777 https://search.proquest.com/docview/1808052105 https://doaj.org/article/2bd0babc0f384abd82c18d211c57413f |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELZaLu2lAlrEAkVG6qlShBPbid0b5SFOXKBSb5btcQoHsivIIvbfM-NkV5VAcOFqW3byjT0PP75h7EfwQQSroFA6YIAScM1ZnWyRUgoRRGtsTa-Rzy-bi7_m5JRoclapvuhO2EAPPAB3WAUQ2GEUrTTKBzBVLA1g2BI1GkPZZu0rmmUwNYZaxtTDOWfVFGjT6-E8E70VdXiNGqQobUEU3ThHKB_ufxYpE_c_08vZ2Jytsy-jl8iPhq_bYB9St8k-jQnLrxdf2eNRfvjB04OfTftMUH4zyJL7DviMOCtmI_02vx32AYGHBScGklu6AnP_i3seV1kIOW3I8gSwwMIHLKPZkPvqM4XDPx7oBkb_jf05O706Pi_GJApF1EL1hUT_yDQ-GRGVLVVpI6JG579NDeht2LKtFPiIbqCH0mO8mKRtG2ukaVG6EuQWW-umXdpmPCHuSSWIoJOSoAOg-Vc1qgHs1AQ_YT-XQLrZwJXhMMYg1B2h7krrCHVHqE_Yb4J61ZBornMBCt-NwndvCX_C9paCcuPaw1Fq1DGV0aZ-udqiz4UxuNEvVtMvlUTTJybsYFWNa44OUnyXpnMawUipELLmlTZE2Im-kdA77_Gnu-wzoZavWuo9ttbfzdN39vEe5vt55j8BE30I3w |
link.rule.ids | 315,782,786,866,2107,27934,27935 |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Actual+evapotranspiration+and+precipitation+measured+by+lysimeters%3A+a+comparison+with+eddy+covariance+and+tipping+bucket&rft.jtitle=Hydrology+and+earth+system+sciences&rft.au=Gebler%2C+S&rft.au=Franssen%2C+H-J+Hendricks&rft.au=Puetz%2C+T&rft.au=Post%2C+H&rft.date=2015-05-05&rft.issn=1027-5606&rft.eissn=1607-7938&rft.volume=19&rft.issue=5&rft.spage=2145&rft.epage=2161&rft_id=info:doi/10.5194%2Fhess-19-2145-2015&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1607-7938&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1607-7938&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1607-7938&client=summon |