The ImageJ ecosystem: Open‐source software for image visualization, processing, and analysis

For decades, biologists have relied on software to visualize and interpret imaging data. As techniques for acquiring images increase in complexity, resulting in larger multidimensional datasets, imaging software must adapt. ImageJ is an open‐source image analysis software platform that has aided res...

Full description

Saved in:
Bibliographic Details
Published in:Protein science Vol. 30; no. 1; pp. 234 - 249
Main Authors: Schroeder, Alexandra B., Dobson, Ellen T. A., Rueden, Curtis T., Tomancak, Pavel, Jug, Florian, Eliceiri, Kevin W.
Format: Journal Article
Language:English
Published: Hoboken, USA John Wiley & Sons, Inc 01-01-2021
Wiley Subscription Services, Inc
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract For decades, biologists have relied on software to visualize and interpret imaging data. As techniques for acquiring images increase in complexity, resulting in larger multidimensional datasets, imaging software must adapt. ImageJ is an open‐source image analysis software platform that has aided researchers with a variety of image analysis applications, driven mainly by engaged and collaborative user and developer communities. The close collaboration between programmers and users has resulted in adaptations to accommodate new challenges in image analysis that address the needs of ImageJ's diverse user base. ImageJ consists of many components, some relevant primarily for developers and a vast collection of user‐centric plugins. It is available in many forms, including the widely used Fiji distribution. We refer to this entire ImageJ codebase and community as the ImageJ ecosystem. Here we review the core features of this ecosystem and highlight how ImageJ has responded to imaging technology advancements with new plugins and tools in recent years. These plugins and tools have been developed to address user needs in several areas such as visualization, segmentation, and tracking of biological entities in large, complex datasets. Moreover, new capabilities for deep learning are being added to ImageJ, reflecting a shift in the bioimage analysis community towards exploiting artificial intelligence. These new tools have been facilitated by profound architectural changes to the ImageJ core brought about by the ImageJ2 project. Therefore, we also discuss the contributions of ImageJ2 to enhancing multidimensional image processing and interoperability in the ImageJ ecosystem. Highlights ImageJ is an open‐source image analysis software with a large, diverse user base. ImageJ has several components and distributions such that we refer to the entirety as the ImageJ ecosystem. Recent developments have adapted to the needs of users and the demands of increasingly large, complex biological datasets accompanying technological advancements in imaging. This review highlights several new tools developed in the ImageJ ecosystem to address needs for improved visualization and analysis of biological features.
AbstractList For decades, biologists have relied on software to visualize and interpret imaging data. As techniques for acquiring images increase in complexity, resulting in larger multidimensional datasets, imaging software must adapt. ImageJ is an open‐source image analysis software platform that has aided researchers with a variety of image analysis applications, driven mainly by engaged and collaborative user and developer communities. The close collaboration between programmers and users has resulted in adaptations to accommodate new challenges in image analysis that address the needs of ImageJ's diverse user base. ImageJ consists of many components, some relevant primarily for developers and a vast collection of user‐centric plugins. It is available in many forms, including the widely used Fiji distribution. We refer to this entire ImageJ codebase and community as the ImageJ ecosystem. Here we review the core features of this ecosystem and highlight how ImageJ has responded to imaging technology advancements with new plugins and tools in recent years. These plugins and tools have been developed to address user needs in several areas such as visualization, segmentation, and tracking of biological entities in large, complex datasets. Moreover, new capabilities for deep learning are being added to ImageJ, reflecting a shift in the bioimage analysis community towards exploiting artificial intelligence. These new tools have been facilitated by profound architectural changes to the ImageJ core brought about by the ImageJ2 project. Therefore, we also discuss the contributions of ImageJ2 to enhancing multidimensional image processing and interoperability in the ImageJ ecosystem. ImageJ is an open‐source image analysis software with a large, diverse user base. ImageJ has several components and distributions such that we refer to the entirety as the ImageJ ecosystem. Recent developments have adapted to the needs of users and the demands of increasingly large, complex biological datasets accompanying technological advancements in imaging. This review highlights several new tools developed in the ImageJ ecosystem to address needs for improved visualization and analysis of biological features.
For decades, biologists have relied on software to visualize and interpret imaging data. As techniques for acquiring images increase in complexity, resulting in larger multidimensional datasets, imaging software must adapt. ImageJ is an open-source image analysis software platform that has aided researchers with a variety of image analysis applications, driven mainly by engaged and collaborative user and developer communities. The close collaboration between programmers and users has resulted in adaptations to accommodate new challenges in image analysis that address the needs of ImageJ's diverse user base. ImageJ consists of many components, some relevant primarily for developers and a vast collection of user-centric plugins. It is available in many forms, including the widely used Fiji distribution. We refer to this entire ImageJ codebase and community as the ImageJ ecosystem. Here we review the core features of this ecosystem and highlight how ImageJ has responded to imaging technology advancements with new plugins and tools in recent years. These plugins and tools have been developed to address user needs in several areas such as visualization, segmentation, and tracking of biological entities in large, complex datasets. Moreover, new capabilities for deep learning are being added to ImageJ, reflecting a shift in the bioimage analysis community towards exploiting artificial intelligence. These new tools have been facilitated by profound architectural changes to the ImageJ core brought about by the ImageJ2 project. Therefore, we also discuss the contributions of ImageJ2 to enhancing multidimensional image processing and interoperability in the ImageJ ecosystem.
For decades, biologists have relied on software to visualize and interpret imaging data. As techniques for acquiring images increase in complexity, resulting in larger multidimensional datasets, imaging software must adapt. ImageJ is an open‐source image analysis software platform that has aided researchers with a variety of image analysis applications, driven mainly by engaged and collaborative user and developer communities. The close collaboration between programmers and users has resulted in adaptations to accommodate new challenges in image analysis that address the needs of ImageJ's diverse user base. ImageJ consists of many components, some relevant primarily for developers and a vast collection of user‐centric plugins. It is available in many forms, including the widely used Fiji distribution. We refer to this entire ImageJ codebase and community as the ImageJ ecosystem. Here we review the core features of this ecosystem and highlight how ImageJ has responded to imaging technology advancements with new plugins and tools in recent years. These plugins and tools have been developed to address user needs in several areas such as visualization, segmentation, and tracking of biological entities in large, complex datasets. Moreover, new capabilities for deep learning are being added to ImageJ, reflecting a shift in the bioimage analysis community towards exploiting artificial intelligence. These new tools have been facilitated by profound architectural changes to the ImageJ core brought about by the ImageJ2 project. Therefore, we also discuss the contributions of ImageJ2 to enhancing multidimensional image processing and interoperability in the ImageJ ecosystem. Highlights ImageJ is an open‐source image analysis software with a large, diverse user base. ImageJ has several components and distributions such that we refer to the entirety as the ImageJ ecosystem. Recent developments have adapted to the needs of users and the demands of increasingly large, complex biological datasets accompanying technological advancements in imaging. This review highlights several new tools developed in the ImageJ ecosystem to address needs for improved visualization and analysis of biological features.
Author Jug, Florian
Tomancak, Pavel
Eliceiri, Kevin W.
Schroeder, Alexandra B.
Dobson, Ellen T. A.
Rueden, Curtis T.
AuthorAffiliation 3 Department of Medical Physics University of Wisconsin at Madison Madison Wisconsin USA
6 Center for Systems Biology Dresden Dresden Germany
2 Morgridge Institute for Research Madison Wisconsin USA
4 Max Planck Institute of Molecular Cell Biology and Genetics Dresden Germany
8 Department of Biomedical Engineering University of Wisconsin at Madison Madison Wisconsin USA
5 IT4Innovations, VŠB – Technical University of Ostrava Ostrava Czech Republic
1 Laboratory for Optical and Computational Instrumentation, Center for Quantitative Cell Imaging University of Wisconsin at Madison Madison Wisconsin USA
7 Fondazione Human Technopole Milan Italy
AuthorAffiliation_xml – name: 5 IT4Innovations, VŠB – Technical University of Ostrava Ostrava Czech Republic
– name: 4 Max Planck Institute of Molecular Cell Biology and Genetics Dresden Germany
– name: 2 Morgridge Institute for Research Madison Wisconsin USA
– name: 8 Department of Biomedical Engineering University of Wisconsin at Madison Madison Wisconsin USA
– name: 6 Center for Systems Biology Dresden Dresden Germany
– name: 3 Department of Medical Physics University of Wisconsin at Madison Madison Wisconsin USA
– name: 1 Laboratory for Optical and Computational Instrumentation, Center for Quantitative Cell Imaging University of Wisconsin at Madison Madison Wisconsin USA
– name: 7 Fondazione Human Technopole Milan Italy
Author_xml – sequence: 1
  givenname: Alexandra B.
  surname: Schroeder
  fullname: Schroeder, Alexandra B.
  organization: University of Wisconsin at Madison
– sequence: 2
  givenname: Ellen T. A.
  surname: Dobson
  fullname: Dobson, Ellen T. A.
  organization: University of Wisconsin at Madison
– sequence: 3
  givenname: Curtis T.
  surname: Rueden
  fullname: Rueden, Curtis T.
  organization: University of Wisconsin at Madison
– sequence: 4
  givenname: Pavel
  surname: Tomancak
  fullname: Tomancak, Pavel
  organization: IT4Innovations, VŠB – Technical University of Ostrava
– sequence: 5
  givenname: Florian
  surname: Jug
  fullname: Jug, Florian
  organization: Fondazione Human Technopole
– sequence: 6
  givenname: Kevin W.
  orcidid: 0000-0001-8678-670X
  surname: Eliceiri
  fullname: Eliceiri, Kevin W.
  email: eliceiri@wisc.edu
  organization: University of Wisconsin at Madison
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33166005$$D View this record in MEDLINE/PubMed
BookMark eNp1kd1qFDEYhoO02G0VvAIJeOJBpyaTmWTigSDF_khhRSp4ZMhkvtmmzCZrvpmW9aiX0Gv0SszaWn_AgxCSPDy8X95dshViAEKecXbAGStfrVI8EFqLR2TGK6mLRsvPW2TGtORFI2SzQ3YRLxljFS_FY7IjBJeSsXpGvpxfAD1d2gW8p-AirnGE5Ws6X0H4fnOLcUoOKMZ-vLYJaB8T9RuYXnmc7OC_2dHHsE9zAAeIPiz2qQ1dXnZYo8cnZLu3A8LT-32PfDp6d354UpzNj08P354VrmaVKKBpdaelZVI7pWsGrrJOK-f6ti1lqXSV77ksed13HcjOCgGZV7oVrLWqFXvkzZ13NbVL6ByEMdnBrFJOm9YmWm_-fgn-wizilVFKKNVUWfDyXpDi1wlwNEuPDobBBogTmrKqG13XkqmMvvgHvczflAfeUCrXwcpa_Ba6FBET9A9hODOb0vI5mk1pGX3-Z_gH8FdLGSjugGs_wPq_IvPh4_yn8AfK9KU9
CitedBy_id crossref_primary_10_1038_s41592_023_01990_0
crossref_primary_10_12688_f1000research_110385_1
crossref_primary_10_12688_f1000research_110385_2
crossref_primary_10_1016_j_ijbiomac_2023_128547
crossref_primary_10_1016_j_radphyschem_2023_110999
crossref_primary_10_1088_1361_6552_acfebf
crossref_primary_10_1161_CIRCRESAHA_123_323679
crossref_primary_10_1093_plphys_kiad352
crossref_primary_10_7554_eLife_84710
crossref_primary_10_3390_epigenomes6040034
crossref_primary_10_1177_23259671221113832
crossref_primary_10_21603_2074_9414_2023_3_2448
crossref_primary_10_1186_s12870_023_04417_2
crossref_primary_10_3390_bioengineering10050530
crossref_primary_10_3390_agronomy12112647
crossref_primary_10_1021_acsnano_3c12539
crossref_primary_10_3390_brainsci12121671
crossref_primary_10_1016_j_jallcom_2023_170579
crossref_primary_10_1038_s41598_024_54320_5
crossref_primary_10_1093_plphys_kiad236
crossref_primary_10_1111_pbi_14244
crossref_primary_10_1021_acschembio_1c00745
crossref_primary_10_1177_15330338241242635
crossref_primary_10_15701_kcgs_2021_27_4_1
crossref_primary_10_1016_j_jmapro_2022_01_056
crossref_primary_10_1038_s41401_023_01202_7
crossref_primary_10_3390_ijms22179291
crossref_primary_10_1096_fj_202201368RR
crossref_primary_10_1002_smtd_202300224
crossref_primary_10_1002_cpz1_204
crossref_primary_10_1016_j_cej_2023_144724
crossref_primary_10_3390_nu15122641
crossref_primary_10_1109_JPHOT_2024_3402070
crossref_primary_10_4103_jmau_jmau_53_22
crossref_primary_10_1016_j_omtm_2021_06_005
crossref_primary_10_3390_medicines8070034
crossref_primary_10_1002_pro_4916
crossref_primary_10_1017_S2633903X2300017X
crossref_primary_10_3390_min13020156
crossref_primary_10_1021_acsami_3c19298
crossref_primary_10_1016_j_joen_2024_06_005
crossref_primary_10_1016_j_wneu_2022_08_056
crossref_primary_10_1016_j_jrras_2024_100910
crossref_primary_10_3389_fneur_2023_1328184
crossref_primary_10_1186_s12886_024_03431_8
crossref_primary_10_1093_bioinformatics_btac794
crossref_primary_10_1016_j_jcis_2024_05_106
crossref_primary_10_1038_s41594_024_01261_2
crossref_primary_10_3390_ijms241914689
crossref_primary_10_33925_1683_3759_2023_825
crossref_primary_10_3390_nu14235048
crossref_primary_10_3390_ph14070662
crossref_primary_10_1007_s10725_023_01078_x
crossref_primary_10_1002_app_53309
crossref_primary_10_3390_pharmaceutics16030363
crossref_primary_10_1111_jmi_13284
crossref_primary_10_1038_s41592_021_01262_9
crossref_primary_10_3390_ijms24119446
crossref_primary_10_3390_app14072839
crossref_primary_10_3390_cancers14153833
crossref_primary_10_1016_j_jclepro_2022_134698
crossref_primary_10_1016_j_powtec_2024_119494
crossref_primary_10_1021_acssensors_2c01200
crossref_primary_10_1002_sstr_202300204
crossref_primary_10_3390_plants12112228
crossref_primary_10_1016_j_marpolbul_2023_114920
crossref_primary_10_1016_j_envres_2023_117218
crossref_primary_10_1186_s12870_024_05162_w
crossref_primary_10_3390_met13121968
crossref_primary_10_1371_journal_pone_0299549
crossref_primary_10_1073_pnas_2320859121
crossref_primary_10_1111_tpj_16434
crossref_primary_10_1117_1_JBO_27_5_056005
crossref_primary_10_1002_ece3_8302
crossref_primary_10_3390_ijms24044201
crossref_primary_10_1002_arch_21963
crossref_primary_10_1002_cpz1_224
crossref_primary_10_1371_journal_ppat_1012296
crossref_primary_10_1016_j_biopha_2023_115766
crossref_primary_10_1111_2041_210X_13787
crossref_primary_10_1038_s41598_024_55711_4
crossref_primary_10_1002_jdn_10337
crossref_primary_10_3389_fcimb_2021_823403
crossref_primary_10_3390_ijms25137438
crossref_primary_10_1083_jcb_202208005
crossref_primary_10_1016_j_chemgeo_2024_121997
crossref_primary_10_1016_j_lwt_2023_115293
crossref_primary_10_1038_s43586_022_00168_w
crossref_primary_10_3390_ma16145097
Cites_doi 10.3389/fcell.2019.00107
10.1109/ISBI.2016.7493463
10.3847/1538-3881/153/2/77
10.1038/nmeth.2929
10.1101/2020.08.17.253625
10.1038/s41592-019-0501-0
10.1007/978-1-4939-9686-5_3
10.1038/s41551-019-0362-y
10.1016/j.media.2016.06.037
10.1007/978-1-4939-7051-3_10
10.1109/CVPR.2019.00223
10.1083/jcb.201004104
10.1038/nmeth.1586
10.1371/journal.pone.0207982
10.1007/978-3-540-71331-9_2
10.1016/j.zemedi.2018.12.003
10.1152/jn.00048.2017
10.1038/nmeth.2089
10.1038/nmeth.2507
10.1016/j.compbiomed.2017.03.027
10.1016/bs.mcb.2019.04.007
10.1038/s41592-018-0216-7
10.1016/B978-0-12-420138-5.00011-2
10.1126/science.1124618
10.1038/nmeth.3392
10.1371/journal.pone.0180540
10.1186/s12859-016-1383-0
10.1038/nmeth.1237
10.1186/s12859-018-2087-4
10.1038/nature14539
10.1002/0471143030.cb0429s67
10.1016/j.ymeth.2016.09.016
10.1371/journal.pbio.3000340
10.1007/978-3-030-00934-2_30
10.1371/journal.pone.0038011
10.1038/nmeth.2808
10.1038/nbt899
10.1038/nmeth0610-418
10.1016/bs.mcb.2014.10.008
10.1073/pnas.89.4.1271
10.1016/j.ab.2014.12.007
10.1016/j.mex.2019.10.014
10.1007/978-1-4939-9012-2_26
10.3390/mps1040043
10.1093/bioinformatics/btx180
10.1186/1471-2105-11-274
10.1186/s12859-017-1934-z
10.1186/s12868-018-0409-0
10.21037/qims-19-1090
10.7554/eLife.34410.031
10.1109/MSP.2012.2204190
10.1093/bioinformatics/btaa846
10.3389/fncel.2015.00435
10.1145/1656274.1656278
10.1038/nmeth.3372
10.1021/cr900343z
10.1002/jpen.1036
10.1038/s41592-019-0356-4
10.1016/j.tice.2015.05.004
10.1364/AO.43.005173
10.1101/799270
10.1038/nmeth.2082
10.1016/j.compbiomed.2017.10.027
10.1093/bioinformatics/bts543
10.1038/nmeth.2084
10.1007/978-1-4939-9686-5_2
10.5194/isprsarchives-XLI-B5-287-2016
10.1038/nrm.2017.71
10.1007/s10278-016-9910-0
10.1038/nmeth.2019
10.1002/wdev.260
10.1038/s41592-018-0239-0
ContentType Journal Article
Copyright 2020 The Protein Society
2020 The Protein Society.
2021 The Protein Society
Copyright_xml – notice: 2020 The Protein Society
– notice: 2020 The Protein Society.
– notice: 2021 The Protein Society
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QO
7T5
7TM
7U9
8FD
FR3
H94
K9.
P64
RC3
7X8
5PM
DOI 10.1002/pro.3993
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Biotechnology Research Abstracts
Immunology Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Technology Research Database
Engineering Research Database
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Genetics Abstracts
Virology and AIDS Abstracts
Biotechnology Research Abstracts
Technology Research Database
Nucleic Acids Abstracts
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Immunology Abstracts
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE
Genetics Abstracts
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: ECM
  name: MEDLINE
  url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
DocumentTitleAlternate Schroeder et al
EISSN 1469-896X
EndPage 249
ExternalDocumentID 10_1002_pro_3993
33166005
PRO3993
Genre article
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: German Federal Ministry of Research and Education
  funderid: 01IS18026C; 031L0102
– fundername: Retina Research Foundation Walter H. Helmerich Professorship
– fundername: Chan Zuckerberg Initiative
– fundername: Deutsche Forschungsgemeinschaft
  funderid: JU 3110/1‐1; TO563/8‐1
– fundername: National Institute of General Medical Sciences
  funderid: P41‐GM135019
– fundername: Morgridge Institute for Research
– fundername: European Regional Development Fund
  funderid: CZ.02.1.01/0.0/0.0/16_013/0001791
– fundername: NIGMS NIH HHS
  grantid: P41 GM135019
– fundername: NIGMS NIH HHS
  grantid: P41-GM135019
– fundername: German Federal Ministry of Research and Education
  grantid: 01IS18026C; 031L0102
– fundername: ;
  grantid: CZ.02.1.01/0.0/0.0/16_013/0001791
– fundername: ;
  grantid: P41‐GM135019
– fundername: ;
  grantid: JU 3110/1‐1; TO563/8‐1
GroupedDBID ---
.GJ
05W
0R~
123
1L6
1OC
24P
29P
2WC
31~
33P
3SF
3WU
4.4
52U
53G
5RE
6TJ
8-0
8-1
8UM
A00
A8Z
AAESR
AAEVG
AAHHS
AAIHA
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCUV
ABGDZ
ABLJU
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACIWK
ACPOU
ACPRK
ACQPF
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHMBA
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
AOIJS
ATUGU
AUFTA
AZVAB
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
C1A
C45
CAG
COF
CS3
DCZOG
DIK
DRFUL
DRSTM
DU5
E3Z
EBD
EBS
EJD
EMOBN
ESTFP
F5P
G-S
GODZA
GX1
HGLYW
HH5
HYE
HZ~
IH2
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
NNB
O66
O9-
OIG
OK1
OVD
P2P
P2W
P4E
PQQKQ
QRW
RCA
RIG
ROL
RPM
RWI
SJN
SUPJJ
SV3
TEORI
TR2
WBKPD
WIH
WIK
WIN
WNSPC
WOHZO
WOQ
WXSBR
WYISQ
WYJ
XV2
Y6R
YKV
ZGI
ZXP
ZZTAW
~02
~S-
CGR
CUY
CVF
ECM
EIF
NPM
AAMNL
AAYXX
CITATION
7QO
7T5
7TM
7U9
8FD
FR3
H94
K9.
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c5043-e8b9d96a069c7950ec4ac97ccfbb2627949c716215fdde6da33ed9679b30ba7b3
IEDL.DBID RPM
ISSN 0961-8368
IngestDate Tue Sep 17 20:54:21 EDT 2024
Sat Aug 17 05:39:52 EDT 2024
Tue Nov 19 04:44:15 EST 2024
Thu Nov 21 22:26:19 EST 2024
Sat Nov 02 12:29:00 EDT 2024
Sat Aug 24 01:05:58 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords ImageJ
microscopy
Fiji
open source software
image analysis
imaging
Language English
License 2020 The Protein Society.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5043-e8b9d96a069c7950ec4ac97ccfbb2627949c716215fdde6da33ed9679b30ba7b3
Notes Funding information
Chan Zuckerberg Initiative; Deutsche Forschungsgemeinschaft, Grant/Award Numbers: JU 3110/1‐1, TO563/8‐1; European Regional Development Fund, Grant/Award Number: CZ.02.1.01/0.0/0.0/16_013/0001791; German Federal Ministry of Research and Education, Grant/Award Numbers: 01IS18026C, 031L0102; Morgridge Institute for Research; National Institute of General Medical Sciences, Grant/Award Number: P41‐GM135019; Retina Research Foundation Walter H. Helmerich Professorship
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Funding information Chan Zuckerberg Initiative; Deutsche Forschungsgemeinschaft, Grant/Award Numbers: JU 3110/1‐1, TO563/8‐1; European Regional Development Fund, Grant/Award Number: CZ.02.1.01/0.0/0.0/16_013/0001791; German Federal Ministry of Research and Education, Grant/Award Numbers: 01IS18026C, 031L0102; Morgridge Institute for Research; National Institute of General Medical Sciences, Grant/Award Number: P41‐GM135019; Retina Research Foundation Walter H. Helmerich Professorship
ORCID 0000-0001-8678-670X
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/pro.3993
PMID 33166005
PQID 2470020253
PQPubID 1016442
PageCount 16
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7737784
proquest_miscellaneous_2458955607
proquest_journals_2470020253
crossref_primary_10_1002_pro_3993
pubmed_primary_33166005
wiley_primary_10_1002_pro_3993_PRO3993
PublicationCentury 2000
PublicationDate January 2021
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: January 2021
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: United States
– name: Bethesda
PublicationTitle Protein science
PublicationTitleAlternate Protein Sci
PublicationYear 2021
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2017; 84
2018; 120
2017; 6
2019; 1922
2016; XLI‐B5
2010; 189
2019; 17
2019; 16
2008; 5
2017; 153
2020; 10
2018; 42
2017; 115
2016; 33
2009; 11
2015; 47
2017; 30
2018; 138
2013; 10
2018; 1
2017; 33
2018; 136
2010; 110
2019; 29
2012; 29
2012; 28
1982
2019; 152
1992; 89
2010; 7
2014; 11
2014; 123
2004; 43
2019; 7
2015; 12
2019; 3
2019; 6
2010
2015; 521
2015; 125
2007
2016; 17
2015; 9
2011; 8
2019; 188
2006; 312
2018; 24
2018; 19
2015; 67
2020
2015; 473
2017; 12
2017; 1618
2018; 92
2019
2018
2017
2016
2017; 18
2019; 2040
2012; 7
2003; 21
2018; 15
2012; 9
2018; 13
e_1_2_7_3_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_83_1
e_1_2_7_100_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_87_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_68_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_90_1
e_1_2_7_94_1
e_1_2_7_71_1
e_1_2_7_52_1
e_1_2_7_98_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_75_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_79_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_101_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_82_1
Ballard DH (e_1_2_7_85_1) 1982
e_1_2_7_63_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_86_1
e_1_2_7_67_1
e_1_2_7_48_1
e_1_2_7_29_1
e_1_2_7_51_1
e_1_2_7_70_1
e_1_2_7_93_1
Bi Q (e_1_2_7_84_1) 2019; 188
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_74_1
e_1_2_7_97_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_78_1
e_1_2_7_5_1
e_1_2_7_9_1
e_1_2_7_102_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_81_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_66_1
e_1_2_7_47_1
e_1_2_7_89_1
e_1_2_7_28_1
e_1_2_7_73_1
e_1_2_7_92_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_77_1
e_1_2_7_54_1
e_1_2_7_96_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_58_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_80_1
Young K (e_1_2_7_15_1) 2018; 136
e_1_2_7_18_1
e_1_2_7_61_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_88_1
e_1_2_7_65_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_69_1
e_1_2_7_27_1
e_1_2_7_91_1
Brazill JM (e_1_2_7_50_1) 2018; 138
e_1_2_7_72_1
e_1_2_7_95_1
e_1_2_7_30_1
e_1_2_7_76_1
e_1_2_7_99_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_38_1
Lormand C (e_1_2_7_53_1) 2018; 24
References_xml – volume: 115
  start-page: 80
  year: 2017
  end-page: 90
  article-title: TrackMate: An open and extensible platform for single‐particle tracking
  publication-title: Methods
– volume: 138
  year: 2018
  article-title: Quantitative cell biology of neurodegeneration in drosophila through unbiased analysis of fluorescently tagged proteins using ImageJ
  publication-title: J. Vis. Exp.
– volume: 10
  start-page: 598
  year: 2013
  end-page: 599
  article-title: OpenSPIM: An open‐access light‐sheet microscopy platform
  publication-title: Nat Methods
– volume: 152
  start-page: 261
  year: 2019
  end-page: 276
  article-title: Computational methods for stitching, alignment, and artifact correction of serial section data
  publication-title: Methods Cell Biol
– volume: 43
  start-page: 5173
  year: 2004
  end-page: 5182
  article-title: Simultaneous two‐photon spectral and lifetime fluorescence microscopy
  publication-title: Appl Optics
– volume: 2040
  start-page: 41
  year: 2019
  end-page: 50
  article-title: Proximity ligation assay image analysis protocol: Addressing receptor‐receptor interactions
  publication-title: Methods Mol Biol
– volume: 10
  start-page: 1275
  year: 2020
  end-page: 1285
  article-title: Dense‐UNet: A novel multiphoton in vivo cellular image segmentation model based on a convolutional neural network
  publication-title: Quant Imaging Med Surg
– volume: 30
  start-page: 615
  year: 2017
  end-page: 621
  article-title: Machine learning Interface for medical image analysis
  publication-title: J Digit Imaging
– volume: XLI‐B5
  start-page: 287
  year: 2016
  end-page: 291
  article-title: Inspection of a medieval WOOD sculpture using computer TOMOGRAPHY
  publication-title: Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci.
– volume: 15
  start-page: 1090
  year: 2018
  end-page: 1097
  article-title: Content‐aware image restoration: Pushing the limits of fluorescence microscopy
  publication-title: Nat Methods
– year: 2018
– volume: 16
  start-page: 103
  year: 2019
  end-page: 110
  article-title: Deep learning enables cross‐modality super‐resolution in fluorescence microscopy
  publication-title: Nat Methods
– volume: 67
  start-page: 4.29.1
  year: 2015
  end-page: 4.29.13
  article-title: Polarized fluorescence microscopy to study cytoskeleton assembly and organization in live cells
  publication-title: Curr Protoc Cell Biol
– volume: 9
  start-page: 661
  year: 2012
  end-page: 665
  article-title: Current challenges in open‐source bioimage informatics
  publication-title: Nat Methods
– volume: 47
  start-page: 343
  year: 2015
  end-page: 348
  article-title: ImageJ analysis of dentin tubule distribution in human teeth
  publication-title: Tissue Cell
– volume: 89
  start-page: 1271
  year: 1992
  end-page: 1275
  article-title: Fluorescence lifetime imaging of free and protein‐bound NADH
  publication-title: Proc Natl Acad Sci U S A
– volume: 12
  start-page: 480
  year: 2015
  end-page: 481
  article-title: ClearVolume: Open‐source live 3D visualization for light‐sheet microscopy
  publication-title: Nat Methods
– year: 1982
– volume: 1
  year: 2018
  article-title: Segmentation of total cell area in brightfield microscopy images
  publication-title: Methods Protoc
– volume: 11
  start-page: 645
  year: 2014
  end-page: 648
  article-title: Efficient Bayesian‐based multiview deconvolution
  publication-title: Nat Methods
– volume: 9
  start-page: 435
  year: 2015
  article-title: Automated measurement of fast mitochondrial transport in neurons
  publication-title: Front Cell Neurosci
– volume: 7
  year: 2019
  article-title: In vitro cell migration, invasion, and adhesion assays: From cell imaging to data analysis
  publication-title: Front Cell Dev Biol
– volume: 7
  start-page: 418
  year: 2010
  end-page: 419
  article-title: Software for bead‐based registration of selective plane illumination microscopy data
  publication-title: Nat Methods
– volume: 123
  start-page: 193
  year: 2014
  end-page: 215
  article-title: Light sheet microscopy
  publication-title: Methods Cell Biol
– volume: 125
  start-page: 269
  year: 2015
  end-page: 287
  article-title: Measurement of cell traction forces with ImageJ
  publication-title: Methods Cell Biol
– volume: 21
  start-page: 1369
  year: 2003
  end-page: 1377
  article-title: Nonlinear magic: Multiphoton microscopy in the biosciences
  publication-title: Nat Biotechnol
– volume: 1618
  start-page: 95
  year: 2017
  end-page: 123
  article-title: Hierarchical cluster analysis to aid diagnostic image data visualization of MS and other medical imaging modalities
  publication-title: Methods Mol. Biol.
– volume: 312
  start-page: 217
  year: 2006
  end-page: 224
  article-title: The fluorescent toolbox for assessing protein location and function
  publication-title: Science
– volume: 17
  year: 2019
  article-title: Scientific community image forum: A discussion forum for scientific image software
  publication-title: PLoS Biol
– volume: 5
  start-page: 695
  year: 2008
  end-page: 702
  article-title: Robust single particle tracking in live cell time‐lapse sequences
  publication-title: Nat Methods
– start-page: 45
  year: 2007
  end-page: 70
– volume: 19
  start-page: 8
  year: 2018
  article-title: AxonTracer: A novel ImageJ plugin for automated quantification of axon regeneration in spinal cord tissue
  publication-title: BMC Neurosci
– year: 2019
– volume: 9
  start-page: 697
  year: 2012
  end-page: 710
  article-title: Biological imaging software tools
  publication-title: Nat Methods
– volume: 28
  start-page: 3009
  year: 2012
  end-page: 3011
  article-title: ImgLib2—Generic image processing in Java
  publication-title: Bioinformatics
– volume: 153
  start-page: 77
  year: 2017
  article-title: ASTROIMAGEJ: Image processing and photometric extraction for ultra‐precise astronomical light curves
  publication-title: Astron J
– volume: 120
  start-page: 23
  year: 2018
  end-page: 36
  article-title: Computer‐aided neurophysiology and imaging with open‐source PhysImage
  publication-title: J Neurophysiol
– volume: 7
  year: 2012
  article-title: TrakEM2 software for neural circuit reconstruction
  publication-title: PLoS One
– volume: 13
  year: 2018
  article-title: A deep learning model for the detection of both advanced and early glaucoma using fundus photography
  publication-title: PLoS One
– volume: 29
  start-page: 86
  year: 2019
  end-page: 101
  article-title: A gentle introduction to deep learning in medical image processing
  publication-title: Z Für Med Phys
– volume: 24
  start-page: 667
  year: 2018
  end-page: 675
  article-title: Weka trainable segmentation plugin in ImageJ: A semi‐automatic tool applied to crystal size distributions of Microlites in volcanic rocks
  publication-title: Microsc Microanal Off J Microsc Soc Am Microbeam Anal Soc Microsc Soc Can
– volume: 11
  start-page: 281
  year: 2014
  end-page: 289
  article-title: Objective comparison of particle tracking methods
  publication-title: Nat Methods
– volume: 3
  start-page: 466
  year: 2019
  end-page: 477
  article-title: Virtual histological staining of unlabelled tissue‐autofluorescence images via deep learning
  publication-title: Nat Biomed Eng
– volume: 33
  start-page: 2424
  year: 2017
  end-page: 2426
  article-title: Trainable Weka segmentation: A machine learning tool for microscopy pixel classification
  publication-title: Bioinf Oxf Engl
– volume: 188
  start-page: 2222
  year: 2019
  end-page: 2239
  article-title: What is machine learning? A primer for the epidemiologist
  publication-title: Am J Epidemiol
– volume: 92
  start-page: 22
  year: 2018
  end-page: 41
  article-title: Image processing for precise three‐dimensional registration and stitching of thick high‐resolution laser‐scanning microscopy image stacks
  publication-title: Comput Biol Med
– year: 2016
– volume: 18
  start-page: 685
  year: 2017
  end-page: 701
  article-title: Fluorescence nanoscopy in cell biology
  publication-title: Nat Rev Mol Cell Biol
– volume: 6
  start-page: 2468
  year: 2019
  end-page: 2475
  article-title: Label free, quantitative single‐cell fate tracking of time‐lapse movies
  publication-title: MethodsX
– year: 2010
– start-page: 23
  year: 2019
  end-page: 37
– volume: 521
  start-page: 436
  year: 2015
  end-page: 444
  article-title: Deep learning
  publication-title: Nature
– volume: 9
  start-page: 671
  year: 2012
  end-page: 675
  article-title: NIH image to ImageJ: 25 years of image analysis
  publication-title: Nat Methods
– volume: 18
  start-page: 529
  year: 2017
  article-title: ImageJ2: ImageJ for the next generation of scientific image data
  publication-title: BMC Bioinf
– volume: 6
  year: 2017
  article-title: Quantitating the cell: Turning images into numbers with ImageJ
  publication-title: WIREs Dev Biol
– volume: 29
  start-page: 140
  year: 2012
  end-page: 145
  article-title: Cell segmentation: 50 years down the road [life sciences]
  publication-title: IEEE Signal Process Mag
– volume: 8
  start-page: 417
  year: 2011
  end-page: 423
  article-title: Rapid three‐dimensional isotropic imaging of living cells using Bessel beam plane illumination
  publication-title: Nat Methods
– volume: 11
  start-page: 10
  year: 2009
  end-page: 18
  article-title: The WEKA data mining software: An update
  publication-title: ACM SIGKDD Explor Newslett
– volume: 189
  start-page: 777
  year: 2010
  end-page: 782
  article-title: Metadata matters: Access to image data in the real world
  publication-title: J Cell Biol
– volume: 473
  start-page: 63
  year: 2015
  end-page: 65
  article-title: Automatic cell counting with ImageJ
  publication-title: Anal Biochem
– volume: 9
  start-page: 676
  year: 2012
  end-page: 682
  article-title: Fiji: An open‐source platform for biological‐image analysis
  publication-title: Nat Methods
– volume: 17
  start-page: 521
  year: 2016
  article-title: SCIFIO: An extensible framework to support scientific image formats
  publication-title: BMC Bioinf
– volume: 16
  start-page: 351
  year: 2019
  article-title: Author correction: U‐net: Deep learning for cell counting, detection, and morphometry
  publication-title: Nat Methods
– volume: 16
  start-page: 870
  year: 2019
  end-page: 874
  article-title: BigStitcher: Reconstructing high‐resolution image datasets of cleared and expanded samples
  publication-title: Nat Methods
– volume: 136
  year: 2018
  article-title: Quantifying microglia morphology from photomicrographs of immunohistochemistry prepared tissue using ImageJ
  publication-title: J. Vis. Exp.
– year: 2020
– volume: 12
  start-page: 481
  year: 2015
  end-page: 483
  article-title: BigDataViewer: Visualization and processing for large image data sets
  publication-title: Nat Methods
– volume: 110
  start-page: 2641
  year: 2010
  end-page: 2684
  article-title: Fluorescence lifetime measurements and biological imaging
  publication-title: Chem Rev
– volume: 42
  start-page: 933
  year: 2018
  end-page: 941
  article-title: Impact of software selection and ImageJ tutorial corrigendum on skeletal muscle measures at the third lumbar vertebra on computed Tomography scans in clinical populations
  publication-title: JPEN J Parenter Enteral Nutr
– volume: 12
  year: 2017
  article-title: SlideJ: An ImageJ plugin for automated processing of whole slide images
  publication-title: PLoS One
– volume: 84
  start-page: 189
  year: 2017
  end-page: 194
  article-title: IJ‐OpenCV: Combining ImageJ and OpenCV for processing images in biomedicine
  publication-title: Comput Biol Med
– year: 2020
  article-title: Fijiyama: A registration tool for 3D multimodal time‐lapse imaging
  publication-title: Bioinformatics
– year: 2017
– volume: 33
  start-page: 170
  year: 2016
  end-page: 175
  article-title: Image analysis and machine learning in digital pathology: Challenges and opportunities
  publication-title: Med Image Anal
– volume: 1922
  start-page: 267
  year: 2019
  end-page: 291
  article-title: Using ImageJ (Fiji) to analyze and present X‐ray CT images of enamel
  publication-title: Methods Mol. Biol.
– ident: e_1_2_7_13_1
  doi: 10.3389/fcell.2019.00107
– ident: e_1_2_7_33_1
  doi: 10.1109/ISBI.2016.7493463
– ident: e_1_2_7_54_1
  doi: 10.3847/1538-3881/153/2/77
– ident: e_1_2_7_73_1
– ident: e_1_2_7_17_1
  doi: 10.1038/nmeth.2929
– ident: e_1_2_7_87_1
– ident: e_1_2_7_39_1
  doi: 10.1101/2020.08.17.253625
– ident: e_1_2_7_32_1
  doi: 10.1038/s41592-019-0501-0
– ident: e_1_2_7_10_1
  doi: 10.1007/978-1-4939-9686-5_3
– ident: e_1_2_7_96_1
  doi: 10.1038/s41551-019-0362-y
– ident: e_1_2_7_18_1
  doi: 10.1016/j.media.2016.06.037
– ident: e_1_2_7_20_1
  doi: 10.1007/978-1-4939-7051-3_10
– ident: e_1_2_7_93_1
  doi: 10.1109/CVPR.2019.00223
– ident: e_1_2_7_34_1
  doi: 10.1083/jcb.201004104
– ident: e_1_2_7_5_1
  doi: 10.1038/nmeth.1586
– ident: e_1_2_7_60_1
– ident: e_1_2_7_90_1
  doi: 10.1371/journal.pone.0207982
– ident: e_1_2_7_23_1
  doi: 10.1007/978-3-540-71331-9_2
– ident: e_1_2_7_94_1
  doi: 10.1016/j.zemedi.2018.12.003
– ident: e_1_2_7_52_1
  doi: 10.1152/jn.00048.2017
– volume: 24
  start-page: 667
  year: 2018
  ident: e_1_2_7_53_1
  article-title: Weka trainable segmentation plugin in ImageJ: A semi‐automatic tool applied to crystal size distributions of Microlites in volcanic rocks
  publication-title: Microsc Microanal Off J Microsc Soc Am Microbeam Anal Soc Microsc Soc Can
  contributor:
    fullname: Lormand C
– ident: e_1_2_7_24_1
  doi: 10.1038/nmeth.2089
– volume: 136
  start-page: 57648
  year: 2018
  ident: e_1_2_7_15_1
  article-title: Quantifying microglia morphology from photomicrographs of immunohistochemistry prepared tissue using ImageJ
  publication-title: J. Vis. Exp.
  contributor:
    fullname: Young K
– ident: e_1_2_7_101_1
  doi: 10.1038/nmeth.2507
– ident: e_1_2_7_22_1
  doi: 10.1016/j.compbiomed.2017.03.027
– ident: e_1_2_7_66_1
  doi: 10.1016/bs.mcb.2019.04.007
– ident: e_1_2_7_36_1
  doi: 10.1038/s41592-018-0216-7
– ident: e_1_2_7_6_1
  doi: 10.1016/B978-0-12-420138-5.00011-2
– ident: e_1_2_7_7_1
  doi: 10.1126/science.1124618
– ident: e_1_2_7_31_1
  doi: 10.1038/nmeth.3392
– ident: e_1_2_7_102_1
– ident: e_1_2_7_29_1
– ident: e_1_2_7_45_1
– ident: e_1_2_7_14_1
  doi: 10.1371/journal.pone.0180540
– ident: e_1_2_7_43_1
  doi: 10.1186/s12859-016-1383-0
– ident: e_1_2_7_67_1
– ident: e_1_2_7_70_1
  doi: 10.1038/nmeth.1237
– ident: e_1_2_7_86_1
  doi: 10.1186/s12859-018-2087-4
– ident: e_1_2_7_92_1
  doi: 10.1038/nature14539
– ident: e_1_2_7_100_1
  doi: 10.1002/0471143030.cb0429s67
– ident: e_1_2_7_55_1
– ident: e_1_2_7_71_1
  doi: 10.1016/j.ymeth.2016.09.016
– ident: e_1_2_7_58_1
  doi: 10.1371/journal.pbio.3000340
– ident: e_1_2_7_99_1
  doi: 10.1007/978-3-030-00934-2_30
– volume-title: Computer Vision
  year: 1982
  ident: e_1_2_7_85_1
  contributor:
    fullname: Ballard DH
– ident: e_1_2_7_72_1
  doi: 10.1371/journal.pone.0038011
– ident: e_1_2_7_68_1
  doi: 10.1038/nmeth.2808
– ident: e_1_2_7_77_1
– ident: e_1_2_7_80_1
– ident: e_1_2_7_8_1
  doi: 10.1038/nbt899
– ident: e_1_2_7_61_1
– ident: e_1_2_7_16_1
  doi: 10.1038/nmeth0610-418
– ident: e_1_2_7_49_1
  doi: 10.1016/bs.mcb.2014.10.008
– ident: e_1_2_7_42_1
– ident: e_1_2_7_26_1
– ident: e_1_2_7_82_1
  doi: 10.1073/pnas.89.4.1271
– ident: e_1_2_7_12_1
  doi: 10.1016/j.ab.2014.12.007
– ident: e_1_2_7_11_1
  doi: 10.1016/j.mex.2019.10.014
– ident: e_1_2_7_79_1
– ident: e_1_2_7_21_1
  doi: 10.1007/978-1-4939-9012-2_26
– ident: e_1_2_7_48_1
  doi: 10.1371/journal.pone.0038011
– ident: e_1_2_7_63_1
  doi: 10.3390/mps1040043
– ident: e_1_2_7_78_1
– ident: e_1_2_7_46_1
  doi: 10.1093/bioinformatics/btx180
– ident: e_1_2_7_74_1
  doi: 10.1186/1471-2105-11-274
– ident: e_1_2_7_28_1
  doi: 10.1186/s12859-017-1934-z
– ident: e_1_2_7_51_1
  doi: 10.1186/s12868-018-0409-0
– ident: e_1_2_7_91_1
  doi: 10.21037/qims-19-1090
– ident: e_1_2_7_41_1
  doi: 10.7554/eLife.34410.031
– ident: e_1_2_7_69_1
  doi: 10.1109/MSP.2012.2204190
– ident: e_1_2_7_38_1
  doi: 10.1093/bioinformatics/btaa846
– ident: e_1_2_7_64_1
  doi: 10.3389/fncel.2015.00435
– volume: 188
  start-page: 2222
  year: 2019
  ident: e_1_2_7_84_1
  article-title: What is machine learning? A primer for the epidemiologist
  publication-title: Am J Epidemiol
  contributor:
    fullname: Bi Q
– ident: e_1_2_7_47_1
  doi: 10.1145/1656274.1656278
– ident: e_1_2_7_76_1
– volume: 138
  start-page: 58041
  year: 2018
  ident: e_1_2_7_50_1
  article-title: Quantitative cell biology of neurodegeneration in drosophila through unbiased analysis of fluorescently tagged proteins using ImageJ
  publication-title: J. Vis. Exp.
  contributor:
    fullname: Brazill JM
– ident: e_1_2_7_62_1
– ident: e_1_2_7_98_1
– ident: e_1_2_7_35_1
  doi: 10.1038/nmeth.3372
– ident: e_1_2_7_59_1
– ident: e_1_2_7_81_1
  doi: 10.1021/cr900343z
– ident: e_1_2_7_40_1
– ident: e_1_2_7_19_1
  doi: 10.1002/jpen.1036
– ident: e_1_2_7_97_1
  doi: 10.1038/s41592-019-0356-4
– ident: e_1_2_7_57_1
  doi: 10.1016/j.tice.2015.05.004
– ident: e_1_2_7_83_1
  doi: 10.1364/AO.43.005173
– ident: e_1_2_7_37_1
  doi: 10.1101/799270
– ident: e_1_2_7_2_1
  doi: 10.1038/nmeth.2082
– ident: e_1_2_7_44_1
– ident: e_1_2_7_65_1
  doi: 10.1016/j.compbiomed.2017.10.027
– ident: e_1_2_7_27_1
  doi: 10.1093/bioinformatics/bts543
– ident: e_1_2_7_75_1
– ident: e_1_2_7_88_1
– ident: e_1_2_7_9_1
  doi: 10.1038/nmeth.2084
– ident: e_1_2_7_3_1
  doi: 10.1007/978-1-4939-9686-5_2
– ident: e_1_2_7_56_1
  doi: 10.5194/isprsarchives-XLI-B5-287-2016
– ident: e_1_2_7_4_1
  doi: 10.1038/nrm.2017.71
– ident: e_1_2_7_89_1
  doi: 10.1007/s10278-016-9910-0
– ident: e_1_2_7_25_1
  doi: 10.1038/nmeth.2019
– ident: e_1_2_7_30_1
  doi: 10.1002/wdev.260
– ident: e_1_2_7_95_1
  doi: 10.1038/s41592-018-0239-0
SSID ssj0004123
Score 2.6443279
Snippet For decades, biologists have relied on software to visualize and interpret imaging data. As techniques for acquiring images increase in complexity, resulting...
SourceID pubmedcentral
proquest
crossref
pubmed
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 234
SubjectTerms Adaptation
Artificial Intelligence
Collaboration
Complexity
Computer programs
Data acquisition
Datasets
Ecosystems
Environmental changes
Fiji
Image acquisition
Image analysis
Image enhancement
Image processing
Image Processing, Computer-Assisted
Image segmentation
ImageJ
imaging
Interoperability
microscopy
Open source software
Software
Tools for Protein Science
Visualization
SummonAdditionalLinks – databaseName: Wiley-Blackwell
  dbid: 33P
  link: http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwEB4VLvQCFAosLJWRKk4EEju2470hCqIcKIJW6qmR7XjFHsgiwoK48Qg8I0_C2N4sXaFKlThEUeKJYmV-_NnxfAPwFUGny9B6k9z2dZJznSaGF1ViFBOp4xXLWShieyFPfxffDj1NTq_NhYn8EJMFN-8ZIV57B9em2XslDcUAs-tHVwy_OEkI2Rvs7DUlMqOxirzIkoKJouWdTele--D0SPQGXr7dJfk3eg3Dz9HCezq-CPNj0En2o5V8gg-uXoLl_Ron3FcPZJuEbaBhfX0J5g7aEnDL8AeNiHy_wpBzQnCaGlmfe8RvQnl-fIrr_qTBQH6vbxxB-EsGXpjcDRqfqxkzPHfIdUxGwEFyh-i6wiMSoXyGX0eHPw-Ok3FBhsR6orPEFUZVSuhUKCsVT53NtVXS2r4xVFB0bbyfCUQRfYyaotKMOZSXyrDUaGnYCszWw9qtATG-MmhBGTdc50ZrRXHeZqVkXNo-wooObLXKKa8j70YZGZYpXg9L_wE70G21Vo49rylpLj0EphybtybN-N38jxBdu-HIy_BCccR6sgOrUcmTlzCWCQSBvANySv0TAc_HPd1SDy4DLzf2XsoCu74d1P_Pfpdn5z_8ef1_BTfgI_VbacLKTxdmb29GbhNmmmr0JVj9C_I9B4Q
  priority: 102
  providerName: Wiley-Blackwell
Title The ImageJ ecosystem: Open‐source software for image visualization, processing, and analysis
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpro.3993
https://www.ncbi.nlm.nih.gov/pubmed/33166005
https://www.proquest.com/docview/2470020253
https://search.proquest.com/docview/2458955607
https://pubmed.ncbi.nlm.nih.gov/PMC7737784
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Pb9MwFH-iO8AuCDb-BMbkSWinpU3s2I65Td0mmMSoGEiciGzHFZVoWq0UtNs-Ap-RT8KzXVerJi4ckiixJVt-z34_O-_9HsBrBJ2uRO3NKzvWecV1kRtet7lRTBSOt6xiIYntpbz4Up-cepocnmJhgtO-NZN-933a7ybfgm_lfGoHyU9sMHo_lJJJWVeDHvQQG6YtegqGLGnMHy_KvGaiToyzBfXBbX1vkLfhPmOlQFvPN83RHYx511XyNoQNNujsETxcgUdyHDv5GO65bgd2jzvcOE-vySEJ7pzhnHwHHgxTKrdd-IrKQN5Ncek4J7jdjOzNb4h3Jvlz8zue35MFLsi_9JUjCGPJxFcmPycLH3MZIzWPyDwGFaCxOyK6a_GKhCZP4PPZ6afh23yVWCG3nrAsd7VRrRK6EMpKxQtnK22VtHZsDBUUpyh-LwWigTGufqLVjDmsL5VhhdHSsKew1c069xyI8Rk-a8q44boyWiuK-y-LAuLSjhEeZHCQxreZR_6MJjIlU3yfNV4cGeylgW9WM2jR0Ep6KEs5Fh-si3Hc_A8N3bnZ0tfhteKI2WQGz6Kc1o0kAWcgNyS4ruB5tTdLUN0Cv_ZKvTI4DLL-Z7-b0ccP_vniv5t4CdvU-8iEI5092PpxtXSvoLdol_vQY2y0H1Qb75fnF38BdKX_Ow
link.rule.ids 230,315,729,782,786,887,1408,27933,27934,46064,46488,53800,53802
linkProvider National Library of Medicine
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fTxQxEJ8IPuCLKPjnELUkhidWdtttu9UnghBQRKKY-MSm7fbiPbBHOE_DGx-Bz8gncaa9PbwQExMfNpvdzmabnc7019nObwBeIegMBY7erPR9m5XS5pmTVZM5I1QeZCNKEYvYftGH36p3O0ST87bLhUn8ENOAG1lG9Ndk4BSQ3rxhDUUP85qm1zm4Wyoch5S_IY5ukiILnurIqyKrhKo65tmcb3ZPzs5FtwDm7X2Sf-LXOAHtLv5X1x_A_QnuZFtpoDyEO6FdguWtFtfcpxdsncWdoDHEvgQL210VuGU4wXHE9k_R67xnuFJNxM9vGO1Dub68SqF_NkJf_sueB4YImA1ImP0cjChdMyV5brCzlI-A8-QGs22DR-JCeQRfd3eOt_eySU2GzBPXWRYqZxqjbK6M10bmwZfWG-193zmuOFo33i8UAok-Ok7VWCECymvjRO6sduIxzLfDNjwF5qg4aMWFdNKWzlrDcenmtRZS-z4iix6sddqpzxL1Rp1IljleD2v6gD1Y7dRWT4xvVPNSEwrmEpvXps343ehfiG3DcEwysjIS4Z7uwZOk5elLhCgU4kDZAz2j_6kAUXLPtrSD75GaG3uvdYVdX4_6_2u_66PPn-i88q-CL2Fh7_jjQX2wf_jhGdzjtLMmBoJWYf7H-Tg8h7lRM34RTeA3fFELrA
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RIgEXHi2PhQKuhHpqaGLHdtxb1XZFAZUVD4kTke04Yg_NrrosiBs_gd_IL2HG3mxZVUhIHKIo8UQZZTzjz47nG4BnCDpDgb03K31rs1LaPHOyajJnhMqDbEQpYhHbd_r0Y3V0TDQ5-30uTOKHWC64kWfEeE0OPm3avQvSUAwwz2l0XYOrJaJw4s0XYnSRE1nwVEZeFVklVNUTz-Z8r39ydSi6hC8vb5P8E77G8Wd46380vw03F6iTHaRucgeuhG4DNg86nHGffWc7LO4DjQvsG3D9sK8BtwmfsBexkzOMOS8ZzlMT7fM-o10ov378TAv_bIaR_Js9DwzxLxuTMPs6nlGyZkrx3GXTlI2Ao-Qus12DR2JCuQsfhsfvD19ki4oMmSemsyxUzjRG2VwZr43Mgy-tN9r71jmuOPo23i8UwogWw6ZqrBAB5bVxIndWO3EP1rtJFx4Ac1QatOJCOmlLZ63hOHHzWgupfYu4YgDbvXHqaSLeqBPFMsfrSU0fcABbvdXqhevNal5qwsBcYvP2shm_G_0JsV2YzElGVkYi2NMDuJ-MvHyJEIVCFCgHoFfMvxQgQu7Vlm78ORJzo_ZaV6j6TjT_X_WuR2_f0Pnhvwo-hWujo2H9-uT01SO4wWlbTVwF2oL1L-fz8BjWZs38SXSA30A4ClI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+ImageJ+ecosystem%3A+Open%E2%80%90source+software+for+image+visualization%2C+processing%2C+and+analysis&rft.jtitle=Protein+science&rft.au=Schroeder%2C+Alexandra+B.&rft.au=Dobson%2C+Ellen+T.+A.&rft.au=Rueden%2C+Curtis+T.&rft.au=Tomancak%2C+Pavel&rft.date=2021-01-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=0961-8368&rft.eissn=1469-896X&rft.volume=30&rft.issue=1&rft.spage=234&rft.epage=249&rft_id=info:doi/10.1002%2Fpro.3993&rft.externalDBID=10.1002%252Fpro.3993&rft.externalDocID=PRO3993
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0961-8368&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0961-8368&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0961-8368&client=summon