The ImageJ ecosystem: Open‐source software for image visualization, processing, and analysis
For decades, biologists have relied on software to visualize and interpret imaging data. As techniques for acquiring images increase in complexity, resulting in larger multidimensional datasets, imaging software must adapt. ImageJ is an open‐source image analysis software platform that has aided res...
Saved in:
Published in: | Protein science Vol. 30; no. 1; pp. 234 - 249 |
---|---|
Main Authors: | , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Hoboken, USA
John Wiley & Sons, Inc
01-01-2021
Wiley Subscription Services, Inc |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | For decades, biologists have relied on software to visualize and interpret imaging data. As techniques for acquiring images increase in complexity, resulting in larger multidimensional datasets, imaging software must adapt. ImageJ is an open‐source image analysis software platform that has aided researchers with a variety of image analysis applications, driven mainly by engaged and collaborative user and developer communities. The close collaboration between programmers and users has resulted in adaptations to accommodate new challenges in image analysis that address the needs of ImageJ's diverse user base. ImageJ consists of many components, some relevant primarily for developers and a vast collection of user‐centric plugins. It is available in many forms, including the widely used Fiji distribution. We refer to this entire ImageJ codebase and community as the ImageJ ecosystem. Here we review the core features of this ecosystem and highlight how ImageJ has responded to imaging technology advancements with new plugins and tools in recent years. These plugins and tools have been developed to address user needs in several areas such as visualization, segmentation, and tracking of biological entities in large, complex datasets. Moreover, new capabilities for deep learning are being added to ImageJ, reflecting a shift in the bioimage analysis community towards exploiting artificial intelligence. These new tools have been facilitated by profound architectural changes to the ImageJ core brought about by the ImageJ2 project. Therefore, we also discuss the contributions of ImageJ2 to enhancing multidimensional image processing and interoperability in the ImageJ ecosystem.
Highlights
ImageJ is an open‐source image analysis software with a large, diverse user base. ImageJ has several components and distributions such that we refer to the entirety as the ImageJ ecosystem. Recent developments have adapted to the needs of users and the demands of increasingly large, complex biological datasets accompanying technological advancements in imaging. This review highlights several new tools developed in the ImageJ ecosystem to address needs for improved visualization and analysis of biological features. |
---|---|
AbstractList | For decades, biologists have relied on software to visualize and interpret imaging data. As techniques for acquiring images increase in complexity, resulting in larger multidimensional datasets, imaging software must adapt. ImageJ is an open‐source image analysis software platform that has aided researchers with a variety of image analysis applications, driven mainly by engaged and collaborative user and developer communities. The close collaboration between programmers and users has resulted in adaptations to accommodate new challenges in image analysis that address the needs of ImageJ's diverse user base. ImageJ consists of many components, some relevant primarily for developers and a vast collection of user‐centric plugins. It is available in many forms, including the widely used Fiji distribution. We refer to this entire ImageJ codebase and community as the ImageJ ecosystem. Here we review the core features of this ecosystem and highlight how ImageJ has responded to imaging technology advancements with new plugins and tools in recent years. These plugins and tools have been developed to address user needs in several areas such as visualization, segmentation, and tracking of biological entities in large, complex datasets. Moreover, new capabilities for deep learning are being added to ImageJ, reflecting a shift in the bioimage analysis community towards exploiting artificial intelligence. These new tools have been facilitated by profound architectural changes to the ImageJ core brought about by the ImageJ2 project. Therefore, we also discuss the contributions of ImageJ2 to enhancing multidimensional image processing and interoperability in the ImageJ ecosystem.
ImageJ is an open‐source image analysis software with a large, diverse user base. ImageJ has several components and distributions such that we refer to the entirety as the ImageJ ecosystem. Recent developments have adapted to the needs of users and the demands of increasingly large, complex biological datasets accompanying technological advancements in imaging. This review highlights several new tools developed in the ImageJ ecosystem to address needs for improved visualization and analysis of biological features. For decades, biologists have relied on software to visualize and interpret imaging data. As techniques for acquiring images increase in complexity, resulting in larger multidimensional datasets, imaging software must adapt. ImageJ is an open-source image analysis software platform that has aided researchers with a variety of image analysis applications, driven mainly by engaged and collaborative user and developer communities. The close collaboration between programmers and users has resulted in adaptations to accommodate new challenges in image analysis that address the needs of ImageJ's diverse user base. ImageJ consists of many components, some relevant primarily for developers and a vast collection of user-centric plugins. It is available in many forms, including the widely used Fiji distribution. We refer to this entire ImageJ codebase and community as the ImageJ ecosystem. Here we review the core features of this ecosystem and highlight how ImageJ has responded to imaging technology advancements with new plugins and tools in recent years. These plugins and tools have been developed to address user needs in several areas such as visualization, segmentation, and tracking of biological entities in large, complex datasets. Moreover, new capabilities for deep learning are being added to ImageJ, reflecting a shift in the bioimage analysis community towards exploiting artificial intelligence. These new tools have been facilitated by profound architectural changes to the ImageJ core brought about by the ImageJ2 project. Therefore, we also discuss the contributions of ImageJ2 to enhancing multidimensional image processing and interoperability in the ImageJ ecosystem. For decades, biologists have relied on software to visualize and interpret imaging data. As techniques for acquiring images increase in complexity, resulting in larger multidimensional datasets, imaging software must adapt. ImageJ is an open‐source image analysis software platform that has aided researchers with a variety of image analysis applications, driven mainly by engaged and collaborative user and developer communities. The close collaboration between programmers and users has resulted in adaptations to accommodate new challenges in image analysis that address the needs of ImageJ's diverse user base. ImageJ consists of many components, some relevant primarily for developers and a vast collection of user‐centric plugins. It is available in many forms, including the widely used Fiji distribution. We refer to this entire ImageJ codebase and community as the ImageJ ecosystem. Here we review the core features of this ecosystem and highlight how ImageJ has responded to imaging technology advancements with new plugins and tools in recent years. These plugins and tools have been developed to address user needs in several areas such as visualization, segmentation, and tracking of biological entities in large, complex datasets. Moreover, new capabilities for deep learning are being added to ImageJ, reflecting a shift in the bioimage analysis community towards exploiting artificial intelligence. These new tools have been facilitated by profound architectural changes to the ImageJ core brought about by the ImageJ2 project. Therefore, we also discuss the contributions of ImageJ2 to enhancing multidimensional image processing and interoperability in the ImageJ ecosystem. Highlights ImageJ is an open‐source image analysis software with a large, diverse user base. ImageJ has several components and distributions such that we refer to the entirety as the ImageJ ecosystem. Recent developments have adapted to the needs of users and the demands of increasingly large, complex biological datasets accompanying technological advancements in imaging. This review highlights several new tools developed in the ImageJ ecosystem to address needs for improved visualization and analysis of biological features. |
Author | Jug, Florian Tomancak, Pavel Eliceiri, Kevin W. Schroeder, Alexandra B. Dobson, Ellen T. A. Rueden, Curtis T. |
AuthorAffiliation | 3 Department of Medical Physics University of Wisconsin at Madison Madison Wisconsin USA 6 Center for Systems Biology Dresden Dresden Germany 2 Morgridge Institute for Research Madison Wisconsin USA 4 Max Planck Institute of Molecular Cell Biology and Genetics Dresden Germany 8 Department of Biomedical Engineering University of Wisconsin at Madison Madison Wisconsin USA 5 IT4Innovations, VŠB – Technical University of Ostrava Ostrava Czech Republic 1 Laboratory for Optical and Computational Instrumentation, Center for Quantitative Cell Imaging University of Wisconsin at Madison Madison Wisconsin USA 7 Fondazione Human Technopole Milan Italy |
AuthorAffiliation_xml | – name: 5 IT4Innovations, VŠB – Technical University of Ostrava Ostrava Czech Republic – name: 4 Max Planck Institute of Molecular Cell Biology and Genetics Dresden Germany – name: 2 Morgridge Institute for Research Madison Wisconsin USA – name: 8 Department of Biomedical Engineering University of Wisconsin at Madison Madison Wisconsin USA – name: 6 Center for Systems Biology Dresden Dresden Germany – name: 3 Department of Medical Physics University of Wisconsin at Madison Madison Wisconsin USA – name: 1 Laboratory for Optical and Computational Instrumentation, Center for Quantitative Cell Imaging University of Wisconsin at Madison Madison Wisconsin USA – name: 7 Fondazione Human Technopole Milan Italy |
Author_xml | – sequence: 1 givenname: Alexandra B. surname: Schroeder fullname: Schroeder, Alexandra B. organization: University of Wisconsin at Madison – sequence: 2 givenname: Ellen T. A. surname: Dobson fullname: Dobson, Ellen T. A. organization: University of Wisconsin at Madison – sequence: 3 givenname: Curtis T. surname: Rueden fullname: Rueden, Curtis T. organization: University of Wisconsin at Madison – sequence: 4 givenname: Pavel surname: Tomancak fullname: Tomancak, Pavel organization: IT4Innovations, VŠB – Technical University of Ostrava – sequence: 5 givenname: Florian surname: Jug fullname: Jug, Florian organization: Fondazione Human Technopole – sequence: 6 givenname: Kevin W. orcidid: 0000-0001-8678-670X surname: Eliceiri fullname: Eliceiri, Kevin W. email: eliceiri@wisc.edu organization: University of Wisconsin at Madison |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33166005$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kd1qFDEYhoO02G0VvAIJeOJBpyaTmWTigSDF_khhRSp4ZMhkvtmmzCZrvpmW9aiX0Gv0SszaWn_AgxCSPDy8X95dshViAEKecXbAGStfrVI8EFqLR2TGK6mLRsvPW2TGtORFI2SzQ3YRLxljFS_FY7IjBJeSsXpGvpxfAD1d2gW8p-AirnGE5Ws6X0H4fnOLcUoOKMZ-vLYJaB8T9RuYXnmc7OC_2dHHsE9zAAeIPiz2qQ1dXnZYo8cnZLu3A8LT-32PfDp6d354UpzNj08P354VrmaVKKBpdaelZVI7pWsGrrJOK-f6ti1lqXSV77ksed13HcjOCgGZV7oVrLWqFXvkzZ13NbVL6ByEMdnBrFJOm9YmWm_-fgn-wizilVFKKNVUWfDyXpDi1wlwNEuPDobBBogTmrKqG13XkqmMvvgHvczflAfeUCrXwcpa_Ba6FBET9A9hODOb0vI5mk1pGX3-Z_gH8FdLGSjugGs_wPq_IvPh4_yn8AfK9KU9 |
CitedBy_id | crossref_primary_10_1038_s41592_023_01990_0 crossref_primary_10_12688_f1000research_110385_1 crossref_primary_10_12688_f1000research_110385_2 crossref_primary_10_1016_j_ijbiomac_2023_128547 crossref_primary_10_1016_j_radphyschem_2023_110999 crossref_primary_10_1088_1361_6552_acfebf crossref_primary_10_1161_CIRCRESAHA_123_323679 crossref_primary_10_1093_plphys_kiad352 crossref_primary_10_7554_eLife_84710 crossref_primary_10_3390_epigenomes6040034 crossref_primary_10_1177_23259671221113832 crossref_primary_10_21603_2074_9414_2023_3_2448 crossref_primary_10_1186_s12870_023_04417_2 crossref_primary_10_3390_bioengineering10050530 crossref_primary_10_3390_agronomy12112647 crossref_primary_10_1021_acsnano_3c12539 crossref_primary_10_3390_brainsci12121671 crossref_primary_10_1016_j_jallcom_2023_170579 crossref_primary_10_1038_s41598_024_54320_5 crossref_primary_10_1093_plphys_kiad236 crossref_primary_10_1111_pbi_14244 crossref_primary_10_1021_acschembio_1c00745 crossref_primary_10_1177_15330338241242635 crossref_primary_10_15701_kcgs_2021_27_4_1 crossref_primary_10_1016_j_jmapro_2022_01_056 crossref_primary_10_1038_s41401_023_01202_7 crossref_primary_10_3390_ijms22179291 crossref_primary_10_1096_fj_202201368RR crossref_primary_10_1002_smtd_202300224 crossref_primary_10_1002_cpz1_204 crossref_primary_10_1016_j_cej_2023_144724 crossref_primary_10_3390_nu15122641 crossref_primary_10_1109_JPHOT_2024_3402070 crossref_primary_10_4103_jmau_jmau_53_22 crossref_primary_10_1016_j_omtm_2021_06_005 crossref_primary_10_3390_medicines8070034 crossref_primary_10_1002_pro_4916 crossref_primary_10_1017_S2633903X2300017X crossref_primary_10_3390_min13020156 crossref_primary_10_1021_acsami_3c19298 crossref_primary_10_1016_j_joen_2024_06_005 crossref_primary_10_1016_j_wneu_2022_08_056 crossref_primary_10_1016_j_jrras_2024_100910 crossref_primary_10_3389_fneur_2023_1328184 crossref_primary_10_1186_s12886_024_03431_8 crossref_primary_10_1093_bioinformatics_btac794 crossref_primary_10_1016_j_jcis_2024_05_106 crossref_primary_10_1038_s41594_024_01261_2 crossref_primary_10_3390_ijms241914689 crossref_primary_10_33925_1683_3759_2023_825 crossref_primary_10_3390_nu14235048 crossref_primary_10_3390_ph14070662 crossref_primary_10_1007_s10725_023_01078_x crossref_primary_10_1002_app_53309 crossref_primary_10_3390_pharmaceutics16030363 crossref_primary_10_1111_jmi_13284 crossref_primary_10_1038_s41592_021_01262_9 crossref_primary_10_3390_ijms24119446 crossref_primary_10_3390_app14072839 crossref_primary_10_3390_cancers14153833 crossref_primary_10_1016_j_jclepro_2022_134698 crossref_primary_10_1016_j_powtec_2024_119494 crossref_primary_10_1021_acssensors_2c01200 crossref_primary_10_1002_sstr_202300204 crossref_primary_10_3390_plants12112228 crossref_primary_10_1016_j_marpolbul_2023_114920 crossref_primary_10_1016_j_envres_2023_117218 crossref_primary_10_1186_s12870_024_05162_w crossref_primary_10_3390_met13121968 crossref_primary_10_1371_journal_pone_0299549 crossref_primary_10_1073_pnas_2320859121 crossref_primary_10_1111_tpj_16434 crossref_primary_10_1117_1_JBO_27_5_056005 crossref_primary_10_1002_ece3_8302 crossref_primary_10_3390_ijms24044201 crossref_primary_10_1002_arch_21963 crossref_primary_10_1002_cpz1_224 crossref_primary_10_1371_journal_ppat_1012296 crossref_primary_10_1016_j_biopha_2023_115766 crossref_primary_10_1111_2041_210X_13787 crossref_primary_10_1038_s41598_024_55711_4 crossref_primary_10_1002_jdn_10337 crossref_primary_10_3389_fcimb_2021_823403 crossref_primary_10_3390_ijms25137438 crossref_primary_10_1083_jcb_202208005 crossref_primary_10_1016_j_chemgeo_2024_121997 crossref_primary_10_1016_j_lwt_2023_115293 crossref_primary_10_1038_s43586_022_00168_w crossref_primary_10_3390_ma16145097 |
Cites_doi | 10.3389/fcell.2019.00107 10.1109/ISBI.2016.7493463 10.3847/1538-3881/153/2/77 10.1038/nmeth.2929 10.1101/2020.08.17.253625 10.1038/s41592-019-0501-0 10.1007/978-1-4939-9686-5_3 10.1038/s41551-019-0362-y 10.1016/j.media.2016.06.037 10.1007/978-1-4939-7051-3_10 10.1109/CVPR.2019.00223 10.1083/jcb.201004104 10.1038/nmeth.1586 10.1371/journal.pone.0207982 10.1007/978-3-540-71331-9_2 10.1016/j.zemedi.2018.12.003 10.1152/jn.00048.2017 10.1038/nmeth.2089 10.1038/nmeth.2507 10.1016/j.compbiomed.2017.03.027 10.1016/bs.mcb.2019.04.007 10.1038/s41592-018-0216-7 10.1016/B978-0-12-420138-5.00011-2 10.1126/science.1124618 10.1038/nmeth.3392 10.1371/journal.pone.0180540 10.1186/s12859-016-1383-0 10.1038/nmeth.1237 10.1186/s12859-018-2087-4 10.1038/nature14539 10.1002/0471143030.cb0429s67 10.1016/j.ymeth.2016.09.016 10.1371/journal.pbio.3000340 10.1007/978-3-030-00934-2_30 10.1371/journal.pone.0038011 10.1038/nmeth.2808 10.1038/nbt899 10.1038/nmeth0610-418 10.1016/bs.mcb.2014.10.008 10.1073/pnas.89.4.1271 10.1016/j.ab.2014.12.007 10.1016/j.mex.2019.10.014 10.1007/978-1-4939-9012-2_26 10.3390/mps1040043 10.1093/bioinformatics/btx180 10.1186/1471-2105-11-274 10.1186/s12859-017-1934-z 10.1186/s12868-018-0409-0 10.21037/qims-19-1090 10.7554/eLife.34410.031 10.1109/MSP.2012.2204190 10.1093/bioinformatics/btaa846 10.3389/fncel.2015.00435 10.1145/1656274.1656278 10.1038/nmeth.3372 10.1021/cr900343z 10.1002/jpen.1036 10.1038/s41592-019-0356-4 10.1016/j.tice.2015.05.004 10.1364/AO.43.005173 10.1101/799270 10.1038/nmeth.2082 10.1016/j.compbiomed.2017.10.027 10.1093/bioinformatics/bts543 10.1038/nmeth.2084 10.1007/978-1-4939-9686-5_2 10.5194/isprsarchives-XLI-B5-287-2016 10.1038/nrm.2017.71 10.1007/s10278-016-9910-0 10.1038/nmeth.2019 10.1002/wdev.260 10.1038/s41592-018-0239-0 |
ContentType | Journal Article |
Copyright | 2020 The Protein Society 2020 The Protein Society. 2021 The Protein Society |
Copyright_xml | – notice: 2020 The Protein Society – notice: 2020 The Protein Society. – notice: 2021 The Protein Society |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QO 7T5 7TM 7U9 8FD FR3 H94 K9. P64 RC3 7X8 5PM |
DOI | 10.1002/pro.3993 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Biotechnology Research Abstracts Immunology Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Technology Research Database Engineering Research Database AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Genetics Abstracts Virology and AIDS Abstracts Biotechnology Research Abstracts Technology Research Database Nucleic Acids Abstracts AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Immunology Abstracts Engineering Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE Genetics Abstracts MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: ECM name: MEDLINE url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry |
DocumentTitleAlternate | Schroeder et al |
EISSN | 1469-896X |
EndPage | 249 |
ExternalDocumentID | 10_1002_pro_3993 33166005 PRO3993 |
Genre | article Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: German Federal Ministry of Research and Education funderid: 01IS18026C; 031L0102 – fundername: Retina Research Foundation Walter H. Helmerich Professorship – fundername: Chan Zuckerberg Initiative – fundername: Deutsche Forschungsgemeinschaft funderid: JU 3110/1‐1; TO563/8‐1 – fundername: National Institute of General Medical Sciences funderid: P41‐GM135019 – fundername: Morgridge Institute for Research – fundername: European Regional Development Fund funderid: CZ.02.1.01/0.0/0.0/16_013/0001791 – fundername: NIGMS NIH HHS grantid: P41 GM135019 – fundername: NIGMS NIH HHS grantid: P41-GM135019 – fundername: German Federal Ministry of Research and Education grantid: 01IS18026C; 031L0102 – fundername: ; grantid: CZ.02.1.01/0.0/0.0/16_013/0001791 – fundername: ; grantid: P41‐GM135019 – fundername: ; grantid: JU 3110/1‐1; TO563/8‐1 |
GroupedDBID | --- .GJ 05W 0R~ 123 1L6 1OC 24P 29P 2WC 31~ 33P 3SF 3WU 4.4 52U 53G 5RE 6TJ 8-0 8-1 8UM A00 A8Z AAESR AAEVG AAHHS AAIHA AANLZ AAONW AASGY AAXRX AAZKR ABCUV ABGDZ ABLJU ACAHQ ACCFJ ACCZN ACFBH ACGFO ACGFS ACIWK ACPOU ACPRK ACQPF ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHMBA AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB AOIJS ATUGU AUFTA AZVAB BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI C1A C45 CAG COF CS3 DCZOG DIK DRFUL DRSTM DU5 E3Z EBD EBS EJD EMOBN ESTFP F5P G-S GODZA GX1 HGLYW HH5 HYE HZ~ IH2 LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ NNB O66 O9- OIG OK1 OVD P2P P2W P4E PQQKQ QRW RCA RIG ROL RPM RWI SJN SUPJJ SV3 TEORI TR2 WBKPD WIH WIK WIN WNSPC WOHZO WOQ WXSBR WYISQ WYJ XV2 Y6R YKV ZGI ZXP ZZTAW ~02 ~S- CGR CUY CVF ECM EIF NPM AAMNL AAYXX CITATION 7QO 7T5 7TM 7U9 8FD FR3 H94 K9. P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c5043-e8b9d96a069c7950ec4ac97ccfbb2627949c716215fdde6da33ed9679b30ba7b3 |
IEDL.DBID | RPM |
ISSN | 0961-8368 |
IngestDate | Tue Sep 17 20:54:21 EDT 2024 Sat Aug 17 05:39:52 EDT 2024 Tue Nov 19 04:44:15 EST 2024 Thu Nov 21 22:26:19 EST 2024 Sat Nov 02 12:29:00 EDT 2024 Sat Aug 24 01:05:58 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | ImageJ microscopy Fiji open source software image analysis imaging |
Language | English |
License | 2020 The Protein Society. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5043-e8b9d96a069c7950ec4ac97ccfbb2627949c716215fdde6da33ed9679b30ba7b3 |
Notes | Funding information Chan Zuckerberg Initiative; Deutsche Forschungsgemeinschaft, Grant/Award Numbers: JU 3110/1‐1, TO563/8‐1; European Regional Development Fund, Grant/Award Number: CZ.02.1.01/0.0/0.0/16_013/0001791; German Federal Ministry of Research and Education, Grant/Award Numbers: 01IS18026C, 031L0102; Morgridge Institute for Research; National Institute of General Medical Sciences, Grant/Award Number: P41‐GM135019; Retina Research Foundation Walter H. Helmerich Professorship ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Funding information Chan Zuckerberg Initiative; Deutsche Forschungsgemeinschaft, Grant/Award Numbers: JU 3110/1‐1, TO563/8‐1; European Regional Development Fund, Grant/Award Number: CZ.02.1.01/0.0/0.0/16_013/0001791; German Federal Ministry of Research and Education, Grant/Award Numbers: 01IS18026C, 031L0102; Morgridge Institute for Research; National Institute of General Medical Sciences, Grant/Award Number: P41‐GM135019; Retina Research Foundation Walter H. Helmerich Professorship |
ORCID | 0000-0001-8678-670X |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/pro.3993 |
PMID | 33166005 |
PQID | 2470020253 |
PQPubID | 1016442 |
PageCount | 16 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7737784 proquest_miscellaneous_2458955607 proquest_journals_2470020253 crossref_primary_10_1002_pro_3993 pubmed_primary_33166005 wiley_primary_10_1002_pro_3993_PRO3993 |
PublicationCentury | 2000 |
PublicationDate | January 2021 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – month: 01 year: 2021 text: January 2021 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken, USA |
PublicationPlace_xml | – name: Hoboken, USA – name: United States – name: Bethesda |
PublicationTitle | Protein science |
PublicationTitleAlternate | Protein Sci |
PublicationYear | 2021 |
Publisher | John Wiley & Sons, Inc Wiley Subscription Services, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley Subscription Services, Inc |
References | 2017; 84 2018; 120 2017; 6 2019; 1922 2016; XLI‐B5 2010; 189 2019; 17 2019; 16 2008; 5 2017; 153 2020; 10 2018; 42 2017; 115 2016; 33 2009; 11 2015; 47 2017; 30 2018; 138 2013; 10 2018; 1 2017; 33 2018; 136 2010; 110 2019; 29 2012; 29 2012; 28 1982 2019; 152 1992; 89 2010; 7 2014; 11 2014; 123 2004; 43 2019; 7 2015; 12 2019; 3 2019; 6 2010 2015; 521 2015; 125 2007 2016; 17 2015; 9 2011; 8 2019; 188 2006; 312 2018; 24 2018; 19 2015; 67 2020 2015; 473 2017; 12 2017; 1618 2018; 92 2019 2018 2017 2016 2017; 18 2019; 2040 2012; 7 2003; 21 2018; 15 2012; 9 2018; 13 e_1_2_7_3_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_83_1 e_1_2_7_100_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_87_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_68_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_90_1 e_1_2_7_94_1 e_1_2_7_71_1 e_1_2_7_52_1 e_1_2_7_98_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_75_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_79_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_101_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_82_1 Ballard DH (e_1_2_7_85_1) 1982 e_1_2_7_63_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_86_1 e_1_2_7_67_1 e_1_2_7_48_1 e_1_2_7_29_1 e_1_2_7_51_1 e_1_2_7_70_1 e_1_2_7_93_1 Bi Q (e_1_2_7_84_1) 2019; 188 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_74_1 e_1_2_7_97_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_78_1 e_1_2_7_5_1 e_1_2_7_9_1 e_1_2_7_102_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_81_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_66_1 e_1_2_7_47_1 e_1_2_7_89_1 e_1_2_7_28_1 e_1_2_7_73_1 e_1_2_7_92_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_77_1 e_1_2_7_54_1 e_1_2_7_96_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_58_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_80_1 Young K (e_1_2_7_15_1) 2018; 136 e_1_2_7_18_1 e_1_2_7_61_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_88_1 e_1_2_7_65_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_69_1 e_1_2_7_27_1 e_1_2_7_91_1 Brazill JM (e_1_2_7_50_1) 2018; 138 e_1_2_7_72_1 e_1_2_7_95_1 e_1_2_7_30_1 e_1_2_7_76_1 e_1_2_7_99_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_38_1 Lormand C (e_1_2_7_53_1) 2018; 24 |
References_xml | – volume: 115 start-page: 80 year: 2017 end-page: 90 article-title: TrackMate: An open and extensible platform for single‐particle tracking publication-title: Methods – volume: 138 year: 2018 article-title: Quantitative cell biology of neurodegeneration in drosophila through unbiased analysis of fluorescently tagged proteins using ImageJ publication-title: J. Vis. Exp. – volume: 10 start-page: 598 year: 2013 end-page: 599 article-title: OpenSPIM: An open‐access light‐sheet microscopy platform publication-title: Nat Methods – volume: 152 start-page: 261 year: 2019 end-page: 276 article-title: Computational methods for stitching, alignment, and artifact correction of serial section data publication-title: Methods Cell Biol – volume: 43 start-page: 5173 year: 2004 end-page: 5182 article-title: Simultaneous two‐photon spectral and lifetime fluorescence microscopy publication-title: Appl Optics – volume: 2040 start-page: 41 year: 2019 end-page: 50 article-title: Proximity ligation assay image analysis protocol: Addressing receptor‐receptor interactions publication-title: Methods Mol Biol – volume: 10 start-page: 1275 year: 2020 end-page: 1285 article-title: Dense‐UNet: A novel multiphoton in vivo cellular image segmentation model based on a convolutional neural network publication-title: Quant Imaging Med Surg – volume: 30 start-page: 615 year: 2017 end-page: 621 article-title: Machine learning Interface for medical image analysis publication-title: J Digit Imaging – volume: XLI‐B5 start-page: 287 year: 2016 end-page: 291 article-title: Inspection of a medieval WOOD sculpture using computer TOMOGRAPHY publication-title: Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. – volume: 15 start-page: 1090 year: 2018 end-page: 1097 article-title: Content‐aware image restoration: Pushing the limits of fluorescence microscopy publication-title: Nat Methods – year: 2018 – volume: 16 start-page: 103 year: 2019 end-page: 110 article-title: Deep learning enables cross‐modality super‐resolution in fluorescence microscopy publication-title: Nat Methods – volume: 67 start-page: 4.29.1 year: 2015 end-page: 4.29.13 article-title: Polarized fluorescence microscopy to study cytoskeleton assembly and organization in live cells publication-title: Curr Protoc Cell Biol – volume: 9 start-page: 661 year: 2012 end-page: 665 article-title: Current challenges in open‐source bioimage informatics publication-title: Nat Methods – volume: 47 start-page: 343 year: 2015 end-page: 348 article-title: ImageJ analysis of dentin tubule distribution in human teeth publication-title: Tissue Cell – volume: 89 start-page: 1271 year: 1992 end-page: 1275 article-title: Fluorescence lifetime imaging of free and protein‐bound NADH publication-title: Proc Natl Acad Sci U S A – volume: 12 start-page: 480 year: 2015 end-page: 481 article-title: ClearVolume: Open‐source live 3D visualization for light‐sheet microscopy publication-title: Nat Methods – year: 1982 – volume: 1 year: 2018 article-title: Segmentation of total cell area in brightfield microscopy images publication-title: Methods Protoc – volume: 11 start-page: 645 year: 2014 end-page: 648 article-title: Efficient Bayesian‐based multiview deconvolution publication-title: Nat Methods – volume: 9 start-page: 435 year: 2015 article-title: Automated measurement of fast mitochondrial transport in neurons publication-title: Front Cell Neurosci – volume: 7 year: 2019 article-title: In vitro cell migration, invasion, and adhesion assays: From cell imaging to data analysis publication-title: Front Cell Dev Biol – volume: 7 start-page: 418 year: 2010 end-page: 419 article-title: Software for bead‐based registration of selective plane illumination microscopy data publication-title: Nat Methods – volume: 123 start-page: 193 year: 2014 end-page: 215 article-title: Light sheet microscopy publication-title: Methods Cell Biol – volume: 125 start-page: 269 year: 2015 end-page: 287 article-title: Measurement of cell traction forces with ImageJ publication-title: Methods Cell Biol – volume: 21 start-page: 1369 year: 2003 end-page: 1377 article-title: Nonlinear magic: Multiphoton microscopy in the biosciences publication-title: Nat Biotechnol – volume: 1618 start-page: 95 year: 2017 end-page: 123 article-title: Hierarchical cluster analysis to aid diagnostic image data visualization of MS and other medical imaging modalities publication-title: Methods Mol. Biol. – volume: 312 start-page: 217 year: 2006 end-page: 224 article-title: The fluorescent toolbox for assessing protein location and function publication-title: Science – volume: 17 year: 2019 article-title: Scientific community image forum: A discussion forum for scientific image software publication-title: PLoS Biol – volume: 5 start-page: 695 year: 2008 end-page: 702 article-title: Robust single particle tracking in live cell time‐lapse sequences publication-title: Nat Methods – start-page: 45 year: 2007 end-page: 70 – volume: 19 start-page: 8 year: 2018 article-title: AxonTracer: A novel ImageJ plugin for automated quantification of axon regeneration in spinal cord tissue publication-title: BMC Neurosci – year: 2019 – volume: 9 start-page: 697 year: 2012 end-page: 710 article-title: Biological imaging software tools publication-title: Nat Methods – volume: 28 start-page: 3009 year: 2012 end-page: 3011 article-title: ImgLib2—Generic image processing in Java publication-title: Bioinformatics – volume: 153 start-page: 77 year: 2017 article-title: ASTROIMAGEJ: Image processing and photometric extraction for ultra‐precise astronomical light curves publication-title: Astron J – volume: 120 start-page: 23 year: 2018 end-page: 36 article-title: Computer‐aided neurophysiology and imaging with open‐source PhysImage publication-title: J Neurophysiol – volume: 7 year: 2012 article-title: TrakEM2 software for neural circuit reconstruction publication-title: PLoS One – volume: 13 year: 2018 article-title: A deep learning model for the detection of both advanced and early glaucoma using fundus photography publication-title: PLoS One – volume: 29 start-page: 86 year: 2019 end-page: 101 article-title: A gentle introduction to deep learning in medical image processing publication-title: Z Für Med Phys – volume: 24 start-page: 667 year: 2018 end-page: 675 article-title: Weka trainable segmentation plugin in ImageJ: A semi‐automatic tool applied to crystal size distributions of Microlites in volcanic rocks publication-title: Microsc Microanal Off J Microsc Soc Am Microbeam Anal Soc Microsc Soc Can – volume: 11 start-page: 281 year: 2014 end-page: 289 article-title: Objective comparison of particle tracking methods publication-title: Nat Methods – volume: 3 start-page: 466 year: 2019 end-page: 477 article-title: Virtual histological staining of unlabelled tissue‐autofluorescence images via deep learning publication-title: Nat Biomed Eng – volume: 33 start-page: 2424 year: 2017 end-page: 2426 article-title: Trainable Weka segmentation: A machine learning tool for microscopy pixel classification publication-title: Bioinf Oxf Engl – volume: 188 start-page: 2222 year: 2019 end-page: 2239 article-title: What is machine learning? A primer for the epidemiologist publication-title: Am J Epidemiol – volume: 92 start-page: 22 year: 2018 end-page: 41 article-title: Image processing for precise three‐dimensional registration and stitching of thick high‐resolution laser‐scanning microscopy image stacks publication-title: Comput Biol Med – year: 2016 – volume: 18 start-page: 685 year: 2017 end-page: 701 article-title: Fluorescence nanoscopy in cell biology publication-title: Nat Rev Mol Cell Biol – volume: 6 start-page: 2468 year: 2019 end-page: 2475 article-title: Label free, quantitative single‐cell fate tracking of time‐lapse movies publication-title: MethodsX – year: 2010 – start-page: 23 year: 2019 end-page: 37 – volume: 521 start-page: 436 year: 2015 end-page: 444 article-title: Deep learning publication-title: Nature – volume: 9 start-page: 671 year: 2012 end-page: 675 article-title: NIH image to ImageJ: 25 years of image analysis publication-title: Nat Methods – volume: 18 start-page: 529 year: 2017 article-title: ImageJ2: ImageJ for the next generation of scientific image data publication-title: BMC Bioinf – volume: 6 year: 2017 article-title: Quantitating the cell: Turning images into numbers with ImageJ publication-title: WIREs Dev Biol – volume: 29 start-page: 140 year: 2012 end-page: 145 article-title: Cell segmentation: 50 years down the road [life sciences] publication-title: IEEE Signal Process Mag – volume: 8 start-page: 417 year: 2011 end-page: 423 article-title: Rapid three‐dimensional isotropic imaging of living cells using Bessel beam plane illumination publication-title: Nat Methods – volume: 11 start-page: 10 year: 2009 end-page: 18 article-title: The WEKA data mining software: An update publication-title: ACM SIGKDD Explor Newslett – volume: 189 start-page: 777 year: 2010 end-page: 782 article-title: Metadata matters: Access to image data in the real world publication-title: J Cell Biol – volume: 473 start-page: 63 year: 2015 end-page: 65 article-title: Automatic cell counting with ImageJ publication-title: Anal Biochem – volume: 9 start-page: 676 year: 2012 end-page: 682 article-title: Fiji: An open‐source platform for biological‐image analysis publication-title: Nat Methods – volume: 17 start-page: 521 year: 2016 article-title: SCIFIO: An extensible framework to support scientific image formats publication-title: BMC Bioinf – volume: 16 start-page: 351 year: 2019 article-title: Author correction: U‐net: Deep learning for cell counting, detection, and morphometry publication-title: Nat Methods – volume: 16 start-page: 870 year: 2019 end-page: 874 article-title: BigStitcher: Reconstructing high‐resolution image datasets of cleared and expanded samples publication-title: Nat Methods – volume: 136 year: 2018 article-title: Quantifying microglia morphology from photomicrographs of immunohistochemistry prepared tissue using ImageJ publication-title: J. Vis. Exp. – year: 2020 – volume: 12 start-page: 481 year: 2015 end-page: 483 article-title: BigDataViewer: Visualization and processing for large image data sets publication-title: Nat Methods – volume: 110 start-page: 2641 year: 2010 end-page: 2684 article-title: Fluorescence lifetime measurements and biological imaging publication-title: Chem Rev – volume: 42 start-page: 933 year: 2018 end-page: 941 article-title: Impact of software selection and ImageJ tutorial corrigendum on skeletal muscle measures at the third lumbar vertebra on computed Tomography scans in clinical populations publication-title: JPEN J Parenter Enteral Nutr – volume: 12 year: 2017 article-title: SlideJ: An ImageJ plugin for automated processing of whole slide images publication-title: PLoS One – volume: 84 start-page: 189 year: 2017 end-page: 194 article-title: IJ‐OpenCV: Combining ImageJ and OpenCV for processing images in biomedicine publication-title: Comput Biol Med – year: 2020 article-title: Fijiyama: A registration tool for 3D multimodal time‐lapse imaging publication-title: Bioinformatics – year: 2017 – volume: 33 start-page: 170 year: 2016 end-page: 175 article-title: Image analysis and machine learning in digital pathology: Challenges and opportunities publication-title: Med Image Anal – volume: 1922 start-page: 267 year: 2019 end-page: 291 article-title: Using ImageJ (Fiji) to analyze and present X‐ray CT images of enamel publication-title: Methods Mol. Biol. – ident: e_1_2_7_13_1 doi: 10.3389/fcell.2019.00107 – ident: e_1_2_7_33_1 doi: 10.1109/ISBI.2016.7493463 – ident: e_1_2_7_54_1 doi: 10.3847/1538-3881/153/2/77 – ident: e_1_2_7_73_1 – ident: e_1_2_7_17_1 doi: 10.1038/nmeth.2929 – ident: e_1_2_7_87_1 – ident: e_1_2_7_39_1 doi: 10.1101/2020.08.17.253625 – ident: e_1_2_7_32_1 doi: 10.1038/s41592-019-0501-0 – ident: e_1_2_7_10_1 doi: 10.1007/978-1-4939-9686-5_3 – ident: e_1_2_7_96_1 doi: 10.1038/s41551-019-0362-y – ident: e_1_2_7_18_1 doi: 10.1016/j.media.2016.06.037 – ident: e_1_2_7_20_1 doi: 10.1007/978-1-4939-7051-3_10 – ident: e_1_2_7_93_1 doi: 10.1109/CVPR.2019.00223 – ident: e_1_2_7_34_1 doi: 10.1083/jcb.201004104 – ident: e_1_2_7_5_1 doi: 10.1038/nmeth.1586 – ident: e_1_2_7_60_1 – ident: e_1_2_7_90_1 doi: 10.1371/journal.pone.0207982 – ident: e_1_2_7_23_1 doi: 10.1007/978-3-540-71331-9_2 – ident: e_1_2_7_94_1 doi: 10.1016/j.zemedi.2018.12.003 – ident: e_1_2_7_52_1 doi: 10.1152/jn.00048.2017 – volume: 24 start-page: 667 year: 2018 ident: e_1_2_7_53_1 article-title: Weka trainable segmentation plugin in ImageJ: A semi‐automatic tool applied to crystal size distributions of Microlites in volcanic rocks publication-title: Microsc Microanal Off J Microsc Soc Am Microbeam Anal Soc Microsc Soc Can contributor: fullname: Lormand C – ident: e_1_2_7_24_1 doi: 10.1038/nmeth.2089 – volume: 136 start-page: 57648 year: 2018 ident: e_1_2_7_15_1 article-title: Quantifying microglia morphology from photomicrographs of immunohistochemistry prepared tissue using ImageJ publication-title: J. Vis. Exp. contributor: fullname: Young K – ident: e_1_2_7_101_1 doi: 10.1038/nmeth.2507 – ident: e_1_2_7_22_1 doi: 10.1016/j.compbiomed.2017.03.027 – ident: e_1_2_7_66_1 doi: 10.1016/bs.mcb.2019.04.007 – ident: e_1_2_7_36_1 doi: 10.1038/s41592-018-0216-7 – ident: e_1_2_7_6_1 doi: 10.1016/B978-0-12-420138-5.00011-2 – ident: e_1_2_7_7_1 doi: 10.1126/science.1124618 – ident: e_1_2_7_31_1 doi: 10.1038/nmeth.3392 – ident: e_1_2_7_102_1 – ident: e_1_2_7_29_1 – ident: e_1_2_7_45_1 – ident: e_1_2_7_14_1 doi: 10.1371/journal.pone.0180540 – ident: e_1_2_7_43_1 doi: 10.1186/s12859-016-1383-0 – ident: e_1_2_7_67_1 – ident: e_1_2_7_70_1 doi: 10.1038/nmeth.1237 – ident: e_1_2_7_86_1 doi: 10.1186/s12859-018-2087-4 – ident: e_1_2_7_92_1 doi: 10.1038/nature14539 – ident: e_1_2_7_100_1 doi: 10.1002/0471143030.cb0429s67 – ident: e_1_2_7_55_1 – ident: e_1_2_7_71_1 doi: 10.1016/j.ymeth.2016.09.016 – ident: e_1_2_7_58_1 doi: 10.1371/journal.pbio.3000340 – ident: e_1_2_7_99_1 doi: 10.1007/978-3-030-00934-2_30 – volume-title: Computer Vision year: 1982 ident: e_1_2_7_85_1 contributor: fullname: Ballard DH – ident: e_1_2_7_72_1 doi: 10.1371/journal.pone.0038011 – ident: e_1_2_7_68_1 doi: 10.1038/nmeth.2808 – ident: e_1_2_7_77_1 – ident: e_1_2_7_80_1 – ident: e_1_2_7_8_1 doi: 10.1038/nbt899 – ident: e_1_2_7_61_1 – ident: e_1_2_7_16_1 doi: 10.1038/nmeth0610-418 – ident: e_1_2_7_49_1 doi: 10.1016/bs.mcb.2014.10.008 – ident: e_1_2_7_42_1 – ident: e_1_2_7_26_1 – ident: e_1_2_7_82_1 doi: 10.1073/pnas.89.4.1271 – ident: e_1_2_7_12_1 doi: 10.1016/j.ab.2014.12.007 – ident: e_1_2_7_11_1 doi: 10.1016/j.mex.2019.10.014 – ident: e_1_2_7_79_1 – ident: e_1_2_7_21_1 doi: 10.1007/978-1-4939-9012-2_26 – ident: e_1_2_7_48_1 doi: 10.1371/journal.pone.0038011 – ident: e_1_2_7_63_1 doi: 10.3390/mps1040043 – ident: e_1_2_7_78_1 – ident: e_1_2_7_46_1 doi: 10.1093/bioinformatics/btx180 – ident: e_1_2_7_74_1 doi: 10.1186/1471-2105-11-274 – ident: e_1_2_7_28_1 doi: 10.1186/s12859-017-1934-z – ident: e_1_2_7_51_1 doi: 10.1186/s12868-018-0409-0 – ident: e_1_2_7_91_1 doi: 10.21037/qims-19-1090 – ident: e_1_2_7_41_1 doi: 10.7554/eLife.34410.031 – ident: e_1_2_7_69_1 doi: 10.1109/MSP.2012.2204190 – ident: e_1_2_7_38_1 doi: 10.1093/bioinformatics/btaa846 – ident: e_1_2_7_64_1 doi: 10.3389/fncel.2015.00435 – volume: 188 start-page: 2222 year: 2019 ident: e_1_2_7_84_1 article-title: What is machine learning? A primer for the epidemiologist publication-title: Am J Epidemiol contributor: fullname: Bi Q – ident: e_1_2_7_47_1 doi: 10.1145/1656274.1656278 – ident: e_1_2_7_76_1 – volume: 138 start-page: 58041 year: 2018 ident: e_1_2_7_50_1 article-title: Quantitative cell biology of neurodegeneration in drosophila through unbiased analysis of fluorescently tagged proteins using ImageJ publication-title: J. Vis. Exp. contributor: fullname: Brazill JM – ident: e_1_2_7_62_1 – ident: e_1_2_7_98_1 – ident: e_1_2_7_35_1 doi: 10.1038/nmeth.3372 – ident: e_1_2_7_59_1 – ident: e_1_2_7_81_1 doi: 10.1021/cr900343z – ident: e_1_2_7_40_1 – ident: e_1_2_7_19_1 doi: 10.1002/jpen.1036 – ident: e_1_2_7_97_1 doi: 10.1038/s41592-019-0356-4 – ident: e_1_2_7_57_1 doi: 10.1016/j.tice.2015.05.004 – ident: e_1_2_7_83_1 doi: 10.1364/AO.43.005173 – ident: e_1_2_7_37_1 doi: 10.1101/799270 – ident: e_1_2_7_2_1 doi: 10.1038/nmeth.2082 – ident: e_1_2_7_44_1 – ident: e_1_2_7_65_1 doi: 10.1016/j.compbiomed.2017.10.027 – ident: e_1_2_7_27_1 doi: 10.1093/bioinformatics/bts543 – ident: e_1_2_7_75_1 – ident: e_1_2_7_88_1 – ident: e_1_2_7_9_1 doi: 10.1038/nmeth.2084 – ident: e_1_2_7_3_1 doi: 10.1007/978-1-4939-9686-5_2 – ident: e_1_2_7_56_1 doi: 10.5194/isprsarchives-XLI-B5-287-2016 – ident: e_1_2_7_4_1 doi: 10.1038/nrm.2017.71 – ident: e_1_2_7_89_1 doi: 10.1007/s10278-016-9910-0 – ident: e_1_2_7_25_1 doi: 10.1038/nmeth.2019 – ident: e_1_2_7_30_1 doi: 10.1002/wdev.260 – ident: e_1_2_7_95_1 doi: 10.1038/s41592-018-0239-0 |
SSID | ssj0004123 |
Score | 2.6443279 |
Snippet | For decades, biologists have relied on software to visualize and interpret imaging data. As techniques for acquiring images increase in complexity, resulting... |
SourceID | pubmedcentral proquest crossref pubmed wiley |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 234 |
SubjectTerms | Adaptation Artificial Intelligence Collaboration Complexity Computer programs Data acquisition Datasets Ecosystems Environmental changes Fiji Image acquisition Image analysis Image enhancement Image processing Image Processing, Computer-Assisted Image segmentation ImageJ imaging Interoperability microscopy Open source software Software Tools for Protein Science Visualization |
SummonAdditionalLinks | – databaseName: Wiley-Blackwell dbid: 33P link: http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwEB4VLvQCFAosLJWRKk4EEju2470hCqIcKIJW6qmR7XjFHsgiwoK48Qg8I0_C2N4sXaFKlThEUeKJYmV-_NnxfAPwFUGny9B6k9z2dZJznSaGF1ViFBOp4xXLWShieyFPfxffDj1NTq_NhYn8EJMFN-8ZIV57B9em2XslDcUAs-tHVwy_OEkI2Rvs7DUlMqOxirzIkoKJouWdTele--D0SPQGXr7dJfk3eg3Dz9HCezq-CPNj0En2o5V8gg-uXoLl_Ron3FcPZJuEbaBhfX0J5g7aEnDL8AeNiHy_wpBzQnCaGlmfe8RvQnl-fIrr_qTBQH6vbxxB-EsGXpjcDRqfqxkzPHfIdUxGwEFyh-i6wiMSoXyGX0eHPw-Ok3FBhsR6orPEFUZVSuhUKCsVT53NtVXS2r4xVFB0bbyfCUQRfYyaotKMOZSXyrDUaGnYCszWw9qtATG-MmhBGTdc50ZrRXHeZqVkXNo-wooObLXKKa8j70YZGZYpXg9L_wE70G21Vo49rylpLj0EphybtybN-N38jxBdu-HIy_BCccR6sgOrUcmTlzCWCQSBvANySv0TAc_HPd1SDy4DLzf2XsoCu74d1P_Pfpdn5z_8ef1_BTfgI_VbacLKTxdmb29GbhNmmmr0JVj9C_I9B4Q priority: 102 providerName: Wiley-Blackwell |
Title | The ImageJ ecosystem: Open‐source software for image visualization, processing, and analysis |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpro.3993 https://www.ncbi.nlm.nih.gov/pubmed/33166005 https://www.proquest.com/docview/2470020253 https://search.proquest.com/docview/2458955607 https://pubmed.ncbi.nlm.nih.gov/PMC7737784 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Pb9MwFH-iO8AuCDb-BMbkSWinpU3s2I65Td0mmMSoGEiciGzHFZVoWq0UtNs-Ap-RT8KzXVerJi4ckiixJVt-z34_O-_9HsBrBJ2uRO3NKzvWecV1kRtet7lRTBSOt6xiIYntpbz4Up-cepocnmJhgtO-NZN-933a7ybfgm_lfGoHyU9sMHo_lJJJWVeDHvQQG6YtegqGLGnMHy_KvGaiToyzBfXBbX1vkLfhPmOlQFvPN83RHYx511XyNoQNNujsETxcgUdyHDv5GO65bgd2jzvcOE-vySEJ7pzhnHwHHgxTKrdd-IrKQN5Ncek4J7jdjOzNb4h3Jvlz8zue35MFLsi_9JUjCGPJxFcmPycLH3MZIzWPyDwGFaCxOyK6a_GKhCZP4PPZ6afh23yVWCG3nrAsd7VRrRK6EMpKxQtnK22VtHZsDBUUpyh-LwWigTGufqLVjDmsL5VhhdHSsKew1c069xyI8Rk-a8q44boyWiuK-y-LAuLSjhEeZHCQxreZR_6MJjIlU3yfNV4cGeylgW9WM2jR0Ep6KEs5Fh-si3Hc_A8N3bnZ0tfhteKI2WQGz6Kc1o0kAWcgNyS4ruB5tTdLUN0Cv_ZKvTI4DLL-Z7-b0ccP_vniv5t4CdvU-8iEI5092PpxtXSvoLdol_vQY2y0H1Qb75fnF38BdKX_Ow |
link.rule.ids | 230,315,729,782,786,887,1408,27933,27934,46064,46488,53800,53802 |
linkProvider | National Library of Medicine |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fTxQxEJ8IPuCLKPjnELUkhidWdtttu9UnghBQRKKY-MSm7fbiPbBHOE_DGx-Bz8gncaa9PbwQExMfNpvdzmabnc7019nObwBeIegMBY7erPR9m5XS5pmTVZM5I1QeZCNKEYvYftGH36p3O0ST87bLhUn8ENOAG1lG9Ndk4BSQ3rxhDUUP85qm1zm4Wyoch5S_IY5ukiILnurIqyKrhKo65tmcb3ZPzs5FtwDm7X2Sf-LXOAHtLv5X1x_A_QnuZFtpoDyEO6FdguWtFtfcpxdsncWdoDHEvgQL210VuGU4wXHE9k_R67xnuFJNxM9vGO1Dub68SqF_NkJf_sueB4YImA1ImP0cjChdMyV5brCzlI-A8-QGs22DR-JCeQRfd3eOt_eySU2GzBPXWRYqZxqjbK6M10bmwZfWG-193zmuOFo33i8UAok-Ok7VWCECymvjRO6sduIxzLfDNjwF5qg4aMWFdNKWzlrDcenmtRZS-z4iix6sddqpzxL1Rp1IljleD2v6gD1Y7dRWT4xvVPNSEwrmEpvXps343ehfiG3DcEwysjIS4Z7uwZOk5elLhCgU4kDZAz2j_6kAUXLPtrSD75GaG3uvdYVdX4_6_2u_66PPn-i88q-CL2Fh7_jjQX2wf_jhGdzjtLMmBoJWYf7H-Tg8h7lRM34RTeA3fFELrA |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RIgEXHi2PhQKuhHpqaGLHdtxb1XZFAZUVD4kTke04Yg_NrrosiBs_gd_IL2HG3mxZVUhIHKIo8UQZZTzjz47nG4BnCDpDgb03K31rs1LaPHOyajJnhMqDbEQpYhHbd_r0Y3V0TDQ5-30uTOKHWC64kWfEeE0OPm3avQvSUAwwz2l0XYOrJaJw4s0XYnSRE1nwVEZeFVklVNUTz-Z8r39ydSi6hC8vb5P8E77G8Wd46380vw03F6iTHaRucgeuhG4DNg86nHGffWc7LO4DjQvsG3D9sK8BtwmfsBexkzOMOS8ZzlMT7fM-o10ov378TAv_bIaR_Js9DwzxLxuTMPs6nlGyZkrx3GXTlI2Ao-Qus12DR2JCuQsfhsfvD19ki4oMmSemsyxUzjRG2VwZr43Mgy-tN9r71jmuOPo23i8UwogWw6ZqrBAB5bVxIndWO3EP1rtJFx4Ac1QatOJCOmlLZ63hOHHzWgupfYu4YgDbvXHqaSLeqBPFMsfrSU0fcABbvdXqhevNal5qwsBcYvP2shm_G_0JsV2YzElGVkYi2NMDuJ-MvHyJEIVCFCgHoFfMvxQgQu7Vlm78ORJzo_ZaV6j6TjT_X_WuR2_f0Pnhvwo-hWujo2H9-uT01SO4wWlbTVwF2oL1L-fz8BjWZs38SXSA30A4ClI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+ImageJ+ecosystem%3A+Open%E2%80%90source+software+for+image+visualization%2C+processing%2C+and+analysis&rft.jtitle=Protein+science&rft.au=Schroeder%2C+Alexandra+B.&rft.au=Dobson%2C+Ellen+T.+A.&rft.au=Rueden%2C+Curtis+T.&rft.au=Tomancak%2C+Pavel&rft.date=2021-01-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=0961-8368&rft.eissn=1469-896X&rft.volume=30&rft.issue=1&rft.spage=234&rft.epage=249&rft_id=info:doi/10.1002%2Fpro.3993&rft.externalDBID=10.1002%252Fpro.3993&rft.externalDocID=PRO3993 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0961-8368&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0961-8368&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0961-8368&client=summon |