Maize Canopy Temperature Extracted From UAV Thermal and RGB Imagery and Its Application in Water Stress Monitoring

To identify drought-tolerant crop cultivars or achieve a balance between water use and yield, accurate measurements of crop water stress are needed. In this study, the canopy temperature (Tc) of maize at the late vegetative stage was extracted from high-resolution red–green–blue (RGB, 1.25 cm) and t...

Full description

Saved in:
Bibliographic Details
Published in:Frontiers in plant science Vol. 10; p. 1270
Main Authors: Zhang, Liyuan, Niu, Yaxiao, Zhang, Huihui, Han, Wenting, Li, Guang, Tang, Jiandong, Peng, Xingshuo
Format: Journal Article
Language:English
Published: Frontiers Media S.A 09-10-2019
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract To identify drought-tolerant crop cultivars or achieve a balance between water use and yield, accurate measurements of crop water stress are needed. In this study, the canopy temperature (Tc) of maize at the late vegetative stage was extracted from high-resolution red–green–blue (RGB, 1.25 cm) and thermal (7.8 cm) images taken by an unmanned aerial vehicle (UAV). To reduce the number of parameters for crop water stress monitoring, four simple methods that require only Tc were identified: Tc, degrees above non-stress, standard deviation of Tc, and variation coefficient of Tc. The ground-truth temperatures obtained using a handheld infrared thermometer were used to calibrate the temperature obtained from the UAV thermal images and to evaluate the Tc extraction results. Measured leaf stomatal conductance values were used to evaluate the performance of the four Tc-based crop water stress indicators. The results showed a strong correlation between ground-truth Tc and Tc extracted by the red–green ratio index (RGRI)-Otsu method proposed in this study, with a coefficient of determination of 0.94 ( n = 15) and root mean square error value of 0.7°C. The RGRI-Otsu method was most accurate for estimating temperatures around 32.9°C, but the magnitude of residuals increased above and below this value. This phenomenon may be attributable to changes in canopy cover (leaf curling) under water stress, resulting in changes in the proportion of exposed sunlit soil in UAV thermal orthophotographs. Therefore, to improve the accuracy of maize canopy detection and extraction, optimal methods and better strategies for eliminating mixed pixels are needed. This study demonstrates the potential of using high-resolution UAV RGB images to supplement UAV thermal images for the accurate extraction of maize Tc.
AbstractList To identify drought-tolerant crop cultivars or achieve a balance between water use and yield, accurate measurements of crop water stress are needed. In this study, the canopy temperature (Tc) of maize at the late vegetative stage was extracted from high-resolution red–green–blue (RGB, 1.25 cm) and thermal (7.8 cm) images taken by an unmanned aerial vehicle (UAV). To reduce the number of parameters for crop water stress monitoring, four simple methods that require only Tc were identified: Tc, degrees above non-stress, standard deviation of Tc, and variation coefficient of Tc. The ground-truth temperatures obtained using a handheld infrared thermometer were used to calibrate the temperature obtained from the UAV thermal images and to evaluate the Tc extraction results. Measured leaf stomatal conductance values were used to evaluate the performance of the four Tc-based crop water stress indicators. The results showed a strong correlation between ground-truth Tc and Tc extracted by the red–green ratio index (RGRI)-Otsu method proposed in this study, with a coefficient of determination of 0.94 (n = 15) and root mean square error value of 0.7°C. The RGRI-Otsu method was most accurate for estimating temperatures around 32.9°C, but the magnitude of residuals increased above and below this value. This phenomenon may be attributable to changes in canopy cover (leaf curling) under water stress, resulting in changes in the proportion of exposed sunlit soil in UAV thermal orthophotographs. Therefore, to improve the accuracy of maize canopy detection and extraction, optimal methods and better strategies for eliminating mixed pixels are needed. This study demonstrates the potential of using high-resolution UAV RGB images to supplement UAV thermal images for the accurate extraction of maize Tc.
To identify drought-tolerant crop cultivars or achieve a balance between water use and yield, accurate measurements of crop water stress are needed. In this study, the canopy temperature (Tc) of maize at the late vegetative stage was extracted from high-resolution red–green–blue (RGB, 1.25 cm) and thermal (7.8 cm) images taken by an unmanned aerial vehicle (UAV). To reduce the number of parameters for crop water stress monitoring, four simple methods that require only Tc were identified: Tc, degrees above non-stress, standard deviation of Tc, and variation coefficient of Tc. The ground-truth temperatures obtained using a handheld infrared thermometer were used to calibrate the temperature obtained from the UAV thermal images and to evaluate the Tc extraction results. Measured leaf stomatal conductance values were used to evaluate the performance of the four Tc-based crop water stress indicators. The results showed a strong correlation between ground-truth Tc and Tc extracted by the red–green ratio index (RGRI)-Otsu method proposed in this study, with a coefficient of determination of 0.94 ( n = 15) and root mean square error value of 0.7°C. The RGRI-Otsu method was most accurate for estimating temperatures around 32.9°C, but the magnitude of residuals increased above and below this value. This phenomenon may be attributable to changes in canopy cover (leaf curling) under water stress, resulting in changes in the proportion of exposed sunlit soil in UAV thermal orthophotographs. Therefore, to improve the accuracy of maize canopy detection and extraction, optimal methods and better strategies for eliminating mixed pixels are needed. This study demonstrates the potential of using high-resolution UAV RGB images to supplement UAV thermal images for the accurate extraction of maize Tc.
Author Zhang, Liyuan
Tang, Jiandong
Li, Guang
Zhang, Huihui
Han, Wenting
Peng, Xingshuo
Niu, Yaxiao
AuthorAffiliation 2 Key Laboratory of Agricultural Internet of Things, Ministry of Agriculture, Yangling, China
4 Institute of Soil and Water Conservation, Northwest A&F University, Yangling, China
3 Water Management and Systems Research Unit, USDA-ARS, Fort Collins, CO, United States
1 College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, China
5 College of Resources and Architectural Engineering, Northwest A&F University, Yangling, China
AuthorAffiliation_xml – name: 2 Key Laboratory of Agricultural Internet of Things, Ministry of Agriculture, Yangling, China
– name: 5 College of Resources and Architectural Engineering, Northwest A&F University, Yangling, China
– name: 4 Institute of Soil and Water Conservation, Northwest A&F University, Yangling, China
– name: 3 Water Management and Systems Research Unit, USDA-ARS, Fort Collins, CO, United States
– name: 1 College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, China
Author_xml – sequence: 1
  givenname: Liyuan
  surname: Zhang
  fullname: Zhang, Liyuan
– sequence: 2
  givenname: Yaxiao
  surname: Niu
  fullname: Niu, Yaxiao
– sequence: 3
  givenname: Huihui
  surname: Zhang
  fullname: Zhang, Huihui
– sequence: 4
  givenname: Wenting
  surname: Han
  fullname: Han, Wenting
– sequence: 5
  givenname: Guang
  surname: Li
  fullname: Li, Guang
– sequence: 6
  givenname: Jiandong
  surname: Tang
  fullname: Tang, Jiandong
– sequence: 7
  givenname: Xingshuo
  surname: Peng
  fullname: Peng, Xingshuo
BookMark eNpVkc9v0zAUxyM0xMbYmauPXNq9xI4dX5BKtY1Km5CgA26W4zx3nhI72O5E-etJ2wmxd3k_9flK7_u2OPHBY1G8L2FOaSMv7dineQWlnENZCXhVnJWcsxnj1c-T_-rT4iKlR5iiBpBSvClOacmZFGV9VsQ77f4gWWofxh1Z4zBi1HkbkVz9zlGbjB25jmEg94vvZP2AcdA90b4jX28-kdWgNxh3h36VE1mMY--Mzi544jz5oTNG8i1HTIncBe9yiM5v3hWvre4TXjzn8-L--mq9_Dy7_XKzWi5uZ6aGKs9qy1qsDS2tkILVwgDWLbOVECAklrzjQjSV1NOsM5Y30lpBdQtad7wDaOl5sTpyu6Af1RjdoONOBe3UYRDiRumYnelRAZpWgKVNN0mAhaZquUDJBCC1grGJ9fHIGrftgJ1BPz2nfwF9ufHuQW3Ck-JCMg5yAnx4BsTwa4spq8Elg32vPYZtUhUFyRomq3I6vTyemhhSimj_yZSg9sarvfFqb7w6GE__Allzows
CitedBy_id crossref_primary_10_1111_nph_17742
crossref_primary_10_3390_rs13020273
crossref_primary_10_3390_w12092359
crossref_primary_10_1016_j_biosystemseng_2022_03_004
crossref_primary_10_1093_jxb_erac291
crossref_primary_10_3390_drones6070169
crossref_primary_10_1016_j_buildenv_2022_109521
crossref_primary_10_5194_hess_27_4317_2023
crossref_primary_10_1016_j_agwat_2021_106866
crossref_primary_10_1016_j_rsase_2021_100583
crossref_primary_10_3934_era_2022218
crossref_primary_10_1016_j_compag_2021_106551
crossref_primary_10_3390_rs13204091
crossref_primary_10_1016_j_heliyon_2023_e21650
crossref_primary_10_3390_rs13173517
crossref_primary_10_3390_plants11233344
crossref_primary_10_1016_j_agwat_2022_107664
crossref_primary_10_1016_j_envres_2021_111853
crossref_primary_10_1016_j_isprsjprs_2022_08_018
crossref_primary_10_3390_rs12091491
crossref_primary_10_34133_plantphenomics_0169
crossref_primary_10_3390_rs13173482
crossref_primary_10_3390_rs15051470
crossref_primary_10_3390_s20247098
crossref_primary_10_1111_nph_17720
crossref_primary_10_3390_rs14215608
crossref_primary_10_1007_s11738_023_03604_w
crossref_primary_10_3390_su15065487
crossref_primary_10_1007_s40999_021_00665_1
crossref_primary_10_3390_s21248466
crossref_primary_10_3390_drones8020061
crossref_primary_10_1016_j_agwat_2022_108064
crossref_primary_10_3390_rs15040875
crossref_primary_10_3390_rs13142775
crossref_primary_10_1016_j_eja_2022_126589
crossref_primary_10_1016_j_compag_2020_105344
crossref_primary_10_1016_j_compag_2021_106174
crossref_primary_10_3390_rs13112088
crossref_primary_10_1016_j_agrformet_2021_108477
crossref_primary_10_3390_agriculture13071292
crossref_primary_10_1007_s12517_023_11198_3
crossref_primary_10_1002_agg2_20449
crossref_primary_10_3390_rs15184400
crossref_primary_10_3390_su13147719
crossref_primary_10_1016_j_compag_2023_108433
crossref_primary_10_3390_rs13214476
crossref_primary_10_1007_s40725_023_00207_z
crossref_primary_10_55761_abclima_v34i20_17655
crossref_primary_10_1002_agg2_20392
crossref_primary_10_3390_rs13142706
crossref_primary_10_1029_2021JG006617
crossref_primary_10_3390_rs13193976
crossref_primary_10_1016_j_eja_2021_126337
crossref_primary_10_3390_rs13245028
crossref_primary_10_3390_plants9070817
crossref_primary_10_3390_rs14246334
crossref_primary_10_3390_hydrology8030131
crossref_primary_10_1016_j_compag_2024_109176
crossref_primary_10_1098_rsob_210353
crossref_primary_10_1016_j_biosystemseng_2024_04_003
crossref_primary_10_3390_rs13163255
crossref_primary_10_15835_nbha50112572
crossref_primary_10_55761_abclima_v34i20_17653
crossref_primary_10_1016_j_agwat_2022_107506
crossref_primary_10_1016_j_compag_2021_106193
crossref_primary_10_1002_fes3_424
crossref_primary_10_1016_j_jag_2021_102467
crossref_primary_10_1016_j_jhydrol_2023_129086
crossref_primary_10_3390_rs15051429
crossref_primary_10_3390_plants12112081
crossref_primary_10_1007_s13762_022_03958_7
crossref_primary_10_48130_grares_0024_0009
crossref_primary_10_1016_j_scitotenv_2023_166201
crossref_primary_10_1016_j_jafr_2024_100967
crossref_primary_10_3390_rs13142721
crossref_primary_10_1016_j_compag_2023_107812
crossref_primary_10_3390_plants13091262
crossref_primary_10_1016_j_rsase_2021_100514
crossref_primary_10_1016_j_jia_2024_03_042
crossref_primary_10_3390_agriculture14030456
crossref_primary_10_1007_s13762_021_03195_4
crossref_primary_10_1007_s12524_020_01302_5
crossref_primary_10_1016_j_foreco_2024_121979
crossref_primary_10_1002_ldr_4445
crossref_primary_10_1016_j_compag_2023_108064
crossref_primary_10_1117_1_JRS_17_046506
crossref_primary_10_3389_fpls_2021_734944
crossref_primary_10_3390_agriengineering3040059
crossref_primary_10_1016_j_rsase_2023_101093
crossref_primary_10_3390_app12094372
crossref_primary_10_1007_s11119_021_09795_x
crossref_primary_10_1016_j_jclepro_2022_133041
crossref_primary_10_1270_jsbbs_21069
crossref_primary_10_1029_2021WR029925
crossref_primary_10_3390_rs12213591
crossref_primary_10_1590_1983_40632023v5375742
crossref_primary_10_3390_agronomy14040729
crossref_primary_10_1007_s12145_024_01363_x
crossref_primary_10_1016_j_cj_2022_04_005
crossref_primary_10_1109_ACCESS_2023_3320048
crossref_primary_10_3390_s23041827
crossref_primary_10_1093_plphys_kiab301
crossref_primary_10_2166_ws_2020_270
Cites_doi 10.1007/s00271-006-0031-2
10.1016/j.agwat.2015.03.023
10.3390/rs10071139
10.13031/2013.2305
10.1111/jac.12259
10.1016/j.agwat.2013.11.010
10.3390/rs4051392
10.11975/j.issn.1002-6819.2018.15.010
10.1016/B978-0-12-024301-3.50008-3
10.1016/j.agwat.2018.02.030
10.1016/j.agwat.2015.01.020
10.2134/jpa1992.0466
10.3389/fpls.2017.01681
10.2134/agronj1963.00021962005500020043x
10.1016/j.agwat.2010.06.014
10.1007/s11119-016-9484-3
10.1146/annurev.pp.19.060168.001235
10.1016/j.biosystemseng.2017.08.013
10.3390/rs11030330
10.3390/rs11060605
10.1016/j.agwat.2014.06.003
10.11975/j.issn.1002-6819.2018.17.010
10.1016/j.agwat.2016.08.031
10.3390/rs10101615
10.1029/WR017i004p01133
10.1016/j.isprsjprs.2017.10.011
10.1016/j.agrformet.2014.08.003
10.1111/j.1439-037X.2012.00537.x
10.1016/j.jvolgeores.2016.06.014
10.6041/j.issn.1000-1298.2018.10.028
10.1007/s11119-014-9378-1
10.3390/rs9090961
10.1007/s00271-014-0456-y
10.1080/01431161.2013.793873
10.1016/0002-1571(81)90032-7
10.1007/s11119-009-9153-x
10.3390/rs9080828
10.1007/s11947-010-0333-5
10.1016/j.rse.2007.11.001
10.13031/2013.39320
10.1016/j.jag.2012.09.010
10.2134/agronj2000.9261221x
10.1061/(ASCE)IR.1943-4774.0000492
10.1016/j.agwat.2016.08.026
10.1007/s002710050059
10.3390/rs5052327
10.6041/j.issn.1000-1298.2018.05.027
10.1007/s00271-012-0382-9
10.1016/j.agwat.2012.12.004
10.1016/j.compag.2017.07.026
10.3390/s18020397
10.3390/s17102173
10.1007/s11119-014-9351-z
10.1016/j.agwat.2008.09.015
10.1016/j.rse.2009.06.018
10.1007/s11119-016-9470-9
10.1016/j.agrformet.2016.07.017
10.1002/9781119312994.apr0651
10.1016/j.biosystemseng.2006.11.006
10.3390/rs11030267
10.3390/s17071499
10.1016/j.rse.2013.07.024
10.1016/j.agwat.2017.04.016
10.1016/j.biosystemseng.2012.08.009
10.3390/s17051104
10.3390/agronomy4030380
ContentType Journal Article
Copyright Copyright © 2019 Zhang, Niu, Zhang, Han, Li, Tang and Peng 2019 Zhang, Niu, Zhang, Han, Li, Tang and Peng
Copyright_xml – notice: Copyright © 2019 Zhang, Niu, Zhang, Han, Li, Tang and Peng 2019 Zhang, Niu, Zhang, Han, Li, Tang and Peng
DBID AAYXX
CITATION
7X8
5PM
DOA
DOI 10.3389/fpls.2019.01270
DatabaseName CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: http://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1664-462X
EndPage 1270
ExternalDocumentID oai_doaj_org_article_0ecb70f38d5b40f082b67e9470e3f744
10_3389_fpls_2019_01270
GroupedDBID 5VS
9T4
AAFWJ
AAKDD
AAYXX
ACGFO
ACGFS
ACXDI
ADBBV
ADRAZ
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
CITATION
EBD
ECGQY
GROUPED_DOAJ
GX1
HYE
IAO
IEA
IGS
ISR
KQ8
M48
M~E
OK1
PGMZT
RNS
RPM
7X8
5PM
ID FETCH-LOGICAL-c502t-5f4be5c31f797457c0e5b4f277079e16d677829ab4fdcf689ff73ab0aad6d00b3
IEDL.DBID RPM
ISSN 1664-462X
IngestDate Tue Oct 22 15:05:31 EDT 2024
Tue Sep 17 20:59:16 EDT 2024
Sat Oct 05 06:39:41 EDT 2024
Thu Sep 26 15:35:23 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c502t-5f4be5c31f797457c0e5b4f277079e16d677829ab4fdcf689ff73ab0aad6d00b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Reviewed by: Lav R. Khot, Washington State University, United States; Yafit Cohen, Agricultural Research Organization (ARO), Israel
Edited by: Duke Pauli, University of Arizona, United States
This article was submitted to Technical Advances in Plant Science, a section of the journal Frontiers in Plant Science
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6794609/
PMID 31649715
PQID 2309484921
PQPubID 23479
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_0ecb70f38d5b40f082b67e9470e3f744
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6794609
proquest_miscellaneous_2309484921
crossref_primary_10_3389_fpls_2019_01270
PublicationCentury 2000
PublicationDate 2019-10-09
PublicationDateYYYYMMDD 2019-10-09
PublicationDate_xml – month: 10
  year: 2019
  text: 2019-10-09
  day: 09
PublicationDecade 2010
PublicationTitle Frontiers in plant science
PublicationYear 2019
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Wang (B61) 2010; 97
Zhang (B68) 2018; 49
Torres-Rua (B56) 2017; 17
Du (B17) 2013; 23
Gerhards (B23) 2018; 10
Payero (B45) 2005; 48
Poblete (B46) 2018; 18
Agam (B1) 2013; 34
Sagan (B51) 2019; 11
Gates (B22) 1968; 19
Santesteban (B52) 2017; 183
Turner (B57) 2012; 4
Atkinson (B4) 2018; 1
Ludovisi (B37) 2017; 8
Bai (B6) 2018; 204
Campbell (B13) 1982; 1
Irmak (B32) 2000; 92
Zhang (B67) 2018; 34
Han (B25) 2016; 177
Taghvaeian (B54) 2014; 144
Gago (B20) 2015; 153
Gonzalez-Dugo (B24) 2014; 198
Vadivambal (B58) 2011; 4
Yang (B62) 2018; 34
Zia (B69) 2013; 199
Verrelst (B59) 2008; 112
Cohen (B14) 2017; 18
Zhang (B66) 2019; 11
Espinoza (B18) 2017; 9
Harvey (B27) 2016; 325
Bellvert (B9) 2014
Paltineanu (B42) 2013; 139
Payero (B44) 2006; 25
Evett (B19) 2000
Berni (B10) 2009; 113
Heermann (B28) 1968; 11
Mulla (B41) 2013; 114
Allen (B3) 1998
Ihuoma (B31) 2017; 141
Jackson (B33) 1981; 17
Han (B26) 2018; 203
Bellvert (B8) 2015; 33
Meron (B40) 2010; 11
Quebrajo (B48) 2018; 165
Helman (B29) 2018; 10
Park (B43) 2017; 9
Idso (B30) 1981; 24
Gardner (B21) 1993; 5
Pou (B47) 2014; 134
Zarco-Tejada (B64) 2013; 138
Sugiura (B53) 2007; 96
Zolnier (B70) 2001; 44
Li (B35) 2010; 97
Aubrecht (B5) 2016
Tanner (B55) 1963; 55
Rud (B50) 2014; 15
Cohen (B15) 2015; 16
Ribeiro-Gomes (B49) 2017; 17
Yazar (B63) 1999; 18
Li (B36) 2018; 28
Veysi (B60) 2017; 189
Baluja (B7) 2012; 30
Maimaitijiang (B38) 2017; 134
Jones (B34) 2014; 4
Martínez (B39) 2016; 18
Calera (B12) 2017; 17
Bian (B11) 2019; 11
DeJonge (B16) 2015; 156
Zhang (B65) 2018; 49
Agam (B2) 2013; 118
References_xml – volume: 25
  start-page: 21
  year: 2006
  ident: B44
  article-title: Variable upper and lower crop water stress index baselines for corn and soybean
  publication-title: Irrig. Sci.
  doi: 10.1007/s00271-006-0031-2
  contributor:
    fullname: Payero
– volume: 156
  start-page: 51
  year: 2015
  ident: B16
  article-title: Comparison of canopy temperature-based water stress indices for maize
  publication-title: Agric. Water Manage.
  doi: 10.1016/j.agwat.2015.03.023
  contributor:
    fullname: DeJonge
– volume: 10
  start-page: 1139
  year: 2018
  ident: B23
  article-title: Analysis of airborne optical and thermal imagery for detection of water stress symptoms
  publication-title: Remote Sens.
  doi: 10.3390/rs10071139
  contributor:
    fullname: Gerhards
– volume: 44
  start-page: 137
  year: 2001
  ident: B70
  article-title: Non-water-stressed baseline as a tool for dynamic control of a misting system for propagation of poinsettias
  publication-title: Trans. ASAE
  doi: 10.13031/2013.2305
  contributor:
    fullname: Zolnier
– volume: 204
  start-page: 243
  year: 2018
  ident: B6
  article-title: Aerial canopy temperature differences between fast- and slow-wilting soya bean genotypes
  publication-title: J. Agron. Crop Sci.
  doi: 10.1111/jac.12259
  contributor:
    fullname: Bai
– volume: 134
  start-page: 60
  year: 2014
  ident: B47
  article-title: Validation of thermal indices for water status identification in grapevine
  publication-title: Agric. Water Manage.
  doi: 10.1016/j.agwat.2013.11.010
  contributor:
    fullname: Pou
– volume: 4
  start-page: 1392
  year: 2012
  ident: B57
  article-title: An automated technique for generating georectified mosaics from ultra-high resolution unmanned aerial vehicle (UAV) imagery, based on structure from motion (SfM) point clouds
  publication-title: Remote Sens.
  doi: 10.3390/rs4051392
  contributor:
    fullname: Turner
– volume: 34
  start-page: 77
  year: 2018
  ident: B67
  article-title: Cotton moisture stress diagnosis based on canopy temperature characteristics calculated from UAV thermal infrared image
  publication-title: Nongye Gongcheng Xuebao/Tran. Chin. Soc. Agri. Eng.
  doi: 10.11975/j.issn.1002-6819.2018.15.010
  contributor:
    fullname: Zhang
– volume: 1
  start-page: 25
  year: 1982
  ident: B13
  article-title: Irrigation scheduling using soil moisture measurements: theory and practice
  publication-title: Adv. Irrig.
  doi: 10.1016/B978-0-12-024301-3.50008-3
  contributor:
    fullname: Campbell
– volume: 203
  start-page: 366
  year: 2018
  ident: B26
  article-title: Comparison of three crop water stress index models with sap flow measurements in maize
  publication-title: Agric. Water Manage.
  doi: 10.1016/j.agwat.2018.02.030
  contributor:
    fullname: Han
– volume-title: Automatic drip irrigation of corn and soybean
  year: 2000
  ident: B19
  contributor:
    fullname: Evett
– volume: 153
  start-page: 9
  year: 2015
  ident: B20
  article-title: UAVs challenge to assess water stress for sustainable agriculture
  publication-title: Agric. Water Manage.
  doi: 10.1016/j.agwat.2015.01.020
  contributor:
    fullname: Gago
– volume: 5
  start-page: 466
  year: 1993
  ident: B21
  article-title: Infrared thermometry and the crop water stress index. II. Sampling procedures and interpretation
  publication-title: J. Prod. Agric.
  doi: 10.2134/jpa1992.0466
  contributor:
    fullname: Gardner
– volume: 8
  start-page: 18
  year: 2017
  ident: B37
  article-title: UAV-based thermal imaging for high-throughput field phenotyping of black poplar response to drought
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2017.01681
  contributor:
    fullname: Ludovisi
– volume: 55
  start-page: 210
  year: 1963
  ident: B55
  article-title: Plant temperatures
  publication-title: Agron. J.
  doi: 10.2134/agronj1963.00021962005500020043x
  contributor:
    fullname: Tanner
– volume: 97
  start-page: 1787
  year: 2010
  ident: B61
  article-title: Infrared canopy temperature of early-ripening peach trees under postharvest deficit irrigation
  publication-title: Agric. Water Manage.
  doi: 10.1016/j.agwat.2010.06.014
  contributor:
    fullname: Wang
– volume: 18
  start-page: 801
  year: 2017
  ident: B14
  article-title: Mapping water status based on aerial thermal imagery: comparison of methodologies for upscaling from a single leaf to commercial fields
  publication-title: PRECIS. AGRIC.
  doi: 10.1007/s11119-016-9484-3
  contributor:
    fullname: Cohen
– volume: 19
  start-page: 211
  year: 1968
  ident: B22
  article-title: Transpiration and leaf temperature
  publication-title: Annu. Rev. Plant Physiol.
  doi: 10.1146/annurev.pp.19.060168.001235
  contributor:
    fullname: Gates
– volume: 165
  start-page: 77
  year: 2018
  ident: B48
  article-title: Linking thermal imaging and soil remote sensing to enhance irrigation management of sugar beet
  publication-title: Biosyst. Eng.
  doi: 10.1016/j.biosystemseng.2017.08.013
  contributor:
    fullname: Quebrajo
– volume-title: Crop evapotranspiration—Guidelines for computing crop water requirements—FAO Irrigation and drainage paper 56.
  year: 1998
  ident: B3
  contributor:
    fullname: Allen
– volume: 11
  start-page: 330
  year: 2019
  ident: B51
  article-title: UAV-based high resolution thermal imaging for vegetation monitoring, and plant phenotyping using ICI 8640 P, FLIR Vue Pro R 640, and thermoMap cameras
  publication-title: Remote Sens.
  doi: 10.3390/rs11030330
  contributor:
    fullname: Sagan
– volume: 28
  year: 2018
  ident: B36
  article-title: Evaluating the water application uniformity of center pivot irrigation systems in Northern China
  publication-title: Int. Agric. Eng. J. Under Rev.
  contributor:
    fullname: Li
– volume: 11
  start-page: 605
  year: 2019
  ident: B66
  article-title: Mapping maize water stress based on UAV multispectral remote sensing
  publication-title: Remote Sens.
  doi: 10.3390/rs11060605
  contributor:
    fullname: Zhang
– volume: 144
  start-page: 69
  year: 2014
  ident: B54
  article-title: Conventional and simplified canopy temperature indices predict water stress in sunflower
  publication-title: Agric. Water Manage.
  doi: 10.1016/j.agwat.2014.06.003
  contributor:
    fullname: Taghvaeian
– volume: 34
  start-page: 68
  year: 2018
  ident: B62
  article-title: Monitoring of canopy temperature of maize based on UAV thermal infrared imagery and digital imagery
  publication-title: Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering
  doi: 10.11975/j.issn.1002-6819.2018.17.010
  contributor:
    fullname: Yang
– volume: 177
  start-page: 400
  year: 2016
  ident: B25
  article-title: Estimating maize water stress by standard deviation of canopy temperature in thermal imagery
  publication-title: Agric. Water Manage.
  doi: 10.1016/j.agwat.2016.08.031
  contributor:
    fullname: Han
– volume: 10
  start-page: 1615
  year: 2018
  ident: B29
  article-title: Using time series of high-resolution planet satellite images to monitor grapevine stem water potential in commercial vineyards
  publication-title: Remote Sens.
  doi: 10.3390/rs10101615
  contributor:
    fullname: Helman
– volume: 17
  start-page: 1133
  year: 1981
  ident: B33
  article-title: Canopy temperature as a crop water stress indicator
  publication-title: Water Resour Res.
  doi: 10.1029/WR017i004p01133
  contributor:
    fullname: Jackson
– volume: 134
  start-page: 43
  year: 2017
  ident: B38
  article-title: Unmanned aerial system (UAS)-based phenotyping of soybean using multi-sensor data fusion and extreme learning machine
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2017.10.011
  contributor:
    fullname: Maimaitijiang
– volume: 198
  start-page: 94
  year: 2014
  ident: B24
  article-title: Applicability and limitations of using the crop water stress index as an indicator of water deficits in citrus orchards
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2014.08.003
  contributor:
    fullname: Gonzalez-Dugo
– volume: 199
  start-page: 75
  year: 2013
  ident: B69
  article-title: Infrared thermal imaging as a rapid tool for identifying water-stress tolerant maize genotypes of different phenology
  publication-title: J. Agron. Crop Sci.
  doi: 10.1111/j.1439-037X.2012.00537.x
  contributor:
    fullname: Zia
– volume: 325
  start-page: 61
  year: 2016
  ident: B27
  article-title: Drone with thermal infrared camera provides high resolution georeferenced imagery of the Waikite geothermal area, New Zealand
  publication-title: J. Volcanol. Geoth. Res.
  doi: 10.1016/j.jvolgeores.2016.06.014
  contributor:
    fullname: Harvey
– volume: 49
  start-page: 250
  year: 2018
  ident: B68
  article-title: Diagnosis of cotton water stress using unmanned aerial vehicle thermal infrared remote sensing after removing soil
  publication-title: Nongye Jixie Xuebao/Transactions of the Chinese Society for Agricultural Machinery
  doi: 10.6041/j.issn.1000-1298.2018.10.028
  contributor:
    fullname: Zhang
– volume: 16
  start-page: 311
  year: 2015
  ident: B15
  article-title: Crop water status estimation using thermography: multi-year model development using ground-based thermal images
  publication-title: PRECIS. AGRIC.
  doi: 10.1007/s11119-014-9378-1
  contributor:
    fullname: Cohen
– volume: 9
  start-page: 961
  year: 2017
  ident: B18
  article-title: High resolution multispectral and thermal remote sensing-based water stress assessment in subsurface irrigated grapevines
  publication-title: Remote Sens.
  doi: 10.3390/rs9090961
  contributor:
    fullname: Espinoza
– volume: 33
  start-page: 81
  year: 2015
  ident: B8
  article-title: Seasonal evolution of crop water stress index in grapevine varieties determined with high-resolution remote sensing thermal imagery
  publication-title: Irrig. Sci.
  doi: 10.1007/s00271-014-0456-y
  contributor:
    fullname: Bellvert
– volume: 34
  start-page: 6109
  year: 2013
  ident: B1
  article-title: How sensitive is the CWSI to changes in solar radiation
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2013.793873
  contributor:
    fullname: Agam
– volume: 24
  start-page: 45
  year: 1981
  ident: B30
  article-title: Normalizing the stress-degree-day parameter for environmental variability
  publication-title: Agric. Meteorol.
  doi: 10.1016/0002-1571(81)90032-7
  contributor:
    fullname: Idso
– volume: 11
  start-page: 148
  year: 2010
  ident: B40
  article-title: Crop water stress mapping for site-specific irrigation by thermal imagery and artificial reference surfaces
  publication-title: PRECIS. AGRIC.
  doi: 10.1007/s11119-009-9153-x
  contributor:
    fullname: Meron
– volume: 9
  start-page: 828
  year: 2017
  ident: B43
  article-title: Adaptive estimation of crop water stress in nectarine and peach orchards using high-resolution imagery from an unmanned aerial vehicle (UAV)
  publication-title: Remote Sens.
  doi: 10.3390/rs9080828
  contributor:
    fullname: Park
– volume: 4
  start-page: 186
  year: 2011
  ident: B58
  article-title: Applications of thermal imaging in agriculture and food industry—a review
  publication-title: Food Bioprocess Technol.
  doi: 10.1007/s11947-010-0333-5
  contributor:
    fullname: Vadivambal
– volume: 112
  start-page: 2341
  year: 2008
  ident: B59
  article-title: Angular sensitivity analysis of vegetation indices derived from CHRIS/PROBA data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2007.11.001
  contributor:
    fullname: Verrelst
– volume: 11
  start-page: 11
  year: 1968
  ident: B28
  article-title: Performance characteristics of self-propelled center-pivot sprinkler irrigation system
  publication-title: Trans. ASAE
  doi: 10.13031/2013.39320
  contributor:
    fullname: Heermann
– volume: 23
  start-page: 245
  year: 2013
  ident: B17
  article-title: A comprehensive drought monitoring method integrating MODIS and TRMM data
  publication-title: Int. J. Appl. Earth Obs. Geoinformation
  doi: 10.1016/j.jag.2012.09.010
  contributor:
    fullname: Du
– volume: 92
  start-page: 1221
  year: 2000
  ident: B32
  article-title: Determination of crop water stress index for irrigation timing and yield estimation of corn
  publication-title: Agron. J.
  doi: 10.2134/agronj2000.9261221x
  contributor:
    fullname: Irmak
– volume: 139
  start-page: 20
  year: 2013
  ident: B42
  article-title: Crop water stress in peach orchards and relationships with soil moisture content in a chernozem of Dobrogea
  publication-title: J. Irrig. Drain. Eng.
  doi: 10.1061/(ASCE)IR.1943-4774.0000492
  contributor:
    fullname: Paltineanu
– volume: 183
  start-page: 49
  year: 2017
  ident: B52
  article-title: High-resolution UAV-based thermal imaging to estimate the instantaneous and seasonal variability of plant water status within a vineyard
  publication-title: Agric. Water Manage.
  doi: 10.1016/j.agwat.2016.08.026
  contributor:
    fullname: Santesteban
– volume: 18
  start-page: 171
  year: 1999
  ident: B63
  article-title: Evaluation of crop water stress index for LEPA irrigated corn
  publication-title: Irrig. Sci.
  doi: 10.1007/s002710050059
  contributor:
    fullname: Yazar
– volume: 48
  start-page: 653
  year: 2005
  ident: B45
  article-title: Non-water-stressed baselines for calculating crop water stress index (CWSI) for alfalfa and tall fescue grass
  publication-title: Trans. ASAE
  doi: 10.3390/rs5052327
  contributor:
    fullname: Payero
– volume: 49
  start-page: 233
  year: 2018
  ident: B65
  article-title: Establishing method of crop water stress index empirical model of field maize
  publication-title: Nongye Jixie Xuebao/Tran. Chin. Soc. Agri. Machin.
  doi: 10.6041/j.issn.1000-1298.2018.05.027
  contributor:
    fullname: Zhang
– volume: 30
  start-page: 511
  year: 2012
  ident: B7
  article-title: Assessment of vineyard water status variability by thermal and multispectral imagery using an unmanned aerial vehicle (UAV)
  publication-title: Irrig. Sci.
  doi: 10.1007/s00271-012-0382-9
  contributor:
    fullname: Baluja
– volume: 118
  start-page: 79
  year: 2013
  ident: B2
  article-title: An insight to the performance of crop water stress index for olive trees
  publication-title: Agric. Water Manage.
  doi: 10.1016/j.agwat.2012.12.004
  contributor:
    fullname: Agam
– volume: 141
  start-page: 267
  year: 2017
  ident: B31
  article-title: Recent advances in crop water stress detection
  publication-title: COMPUT. ELECTRON. AGR.
  doi: 10.1016/j.compag.2017.07.026
  contributor:
    fullname: Ihuoma
– volume: 18
  start-page: 397
  year: 2018
  ident: B46
  article-title: Automatic coregistration algorithm to remove canopy shaded pixels in UAV-borne thermal images to improve the estimation of crop water stress index of a drip-irrigated Cabernet Sauvignon vineyard
  publication-title: Sensors
  doi: 10.3390/s18020397
  contributor:
    fullname: Poblete
– volume: 17
  start-page: 2173
  year: 2017
  ident: B49
  article-title: Uncooled thermal camera calibration and optimization of the photogrammetry process for UAV applications in agriculture
  publication-title: Sensors
  doi: 10.3390/s17102173
  contributor:
    fullname: Ribeiro-Gomes
– volume: 15
  start-page: 273
  year: 2014
  ident: B50
  article-title: Crop water stress index derived from multi-year ground and aerial thermal images as an indicator of potato water status
  publication-title: PRECIS. AGRIC.
  doi: 10.1007/s11119-014-9351-z
  contributor:
    fullname: Rud
– volume: 97
  start-page: 1146
  year: 2010
  ident: B35
  article-title: Evaluating the crop water stress index and its correlation with latent heat and CO2 fluxes over winter wheat and maize in the North China plain
  publication-title: Agric. Water Manage.
  doi: 10.1016/j.agwat.2008.09.015
  contributor:
    fullname: Li
– volume: 113
  start-page: 2380
  year: 2009
  ident: B10
  article-title: Mapping canopy conductance and CWSI in olive orchards using high resolution thermal remote sensing imagery
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2009.06.018
  contributor:
    fullname: Berni
– volume: 18
  start-page: 95
  year: 2016
  ident: B39
  article-title: A cost-effective canopy temperature measurement system for precision agriculture: a case study on sugar beet
  publication-title: PRECIS. AGRIC.
  doi: 10.1007/s11119-016-9470-9
  contributor:
    fullname: Martínez
– start-page: 315
  year: 2016
  ident: B5
  article-title: Continuous, long-term, high-frequency thermal imaging of vegetation: uncertainties and recommended best practices
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2016.07.017
  contributor:
    fullname: Aubrecht
– volume: 1
  start-page: 1
  year: 2018
  ident: B4
  article-title: Field phenotyping for the future
  publication-title: Annu. Plant Rev. Online
  doi: 10.1002/9781119312994.apr0651
  contributor:
    fullname: Atkinson
– volume: 96
  start-page: 301
  year: 2007
  ident: B53
  article-title: Correction of low-altitude thermal images applied to estimating soil water status
  publication-title: Biosyst. Eng.
  doi: 10.1016/j.biosystemseng.2006.11.006
  contributor:
    fullname: Sugiura
– volume: 11
  start-page: 267
  year: 2019
  ident: B11
  article-title: Simplified evaluation of cotton water stress using high resolution unmanned aerial vehicle thermal imagery
  publication-title: Remote Sens.
  doi: 10.3390/rs11030267
  contributor:
    fullname: Bian
– volume: 17
  start-page: 1499
  year: 2017
  ident: B56
  article-title: Vicarious calibration of sUAS microbolometer temperature imagery for estimation of radiometric land surface temperature
  publication-title: Sensors (Basel)
  doi: 10.3390/s17071499
  contributor:
    fullname: Torres-Rua
– start-page: 25
  volume-title: A tool for detecting crop water status using airborne high-resolution thermal imagery.
  year: 2014
  ident: B9
  article-title: Sustainable irrigation and drainage V
  contributor:
    fullname: Bellvert
– volume: 138
  start-page: 38
  year: 2013
  ident: B64
  article-title: A PRI-based water stress index combining structural and chlorophyll effects: assessment using diurnal narrow-band airborne imagery and the CWSI thermal index
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2013.07.024
  contributor:
    fullname: Zarco-Tejada
– volume: 189
  start-page: 70
  year: 2017
  ident: B60
  article-title: A satellite based crop water stress index for irrigation scheduling in sugarcane fields
  publication-title: Agric. Water Manage.
  doi: 10.1016/j.agwat.2017.04.016
  contributor:
    fullname: Veysi
– volume: 114
  start-page: 358
  year: 2013
  ident: B41
  article-title: Twenty five years of remote sensing in precision agriculture: key advances and remaining knowledge gaps
  publication-title: Biosyst. Eng.
  doi: 10.1016/j.biosystemseng.2012.08.009
  contributor:
    fullname: Mulla
– volume: 17
  start-page: 1104
  year: 2017
  ident: B12
  article-title: Remote sensing for crop water management: from ET modelling to services for the end users
  publication-title: Sensors
  doi: 10.3390/s17051104
  contributor:
    fullname: Calera
– volume: 4
  start-page: 380
  year: 2014
  ident: B34
  article-title: Scaling of thermal images at different spatial resolution: the mixed pixel problem
  publication-title: Agronomy
  doi: 10.3390/agronomy4030380
  contributor:
    fullname: Jones
SSID ssj0000500997
Score 2.5866673
Snippet To identify drought-tolerant crop cultivars or achieve a balance between water use and yield, accurate measurements of crop water stress are needed. In this...
SourceID doaj
pubmedcentral
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
StartPage 1270
SubjectTerms leaf area index
nearest neighbor algorithm
Otsu algorithm
Plant Science
red-green ratio index
soil water content
stomatal conductance
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ27b9swEIeJNuiQpWiaBnVeYIEMXZTQkiiSo53YtYdmiPPaBL6EGkgkw7GBOn997kgnsaYuHUUKIvU7Urzj4xMhJ7awkKNNwpS0CXjEPjGFZonTMk8dRLlZOB49mojLe3kxQEzO26--cE9YxANH4c6Yt0awKpOOm5xVMGKZQniVC-azSuSRBMrkRjAVqd7o-ojI8oEoTJ1Vswekc3fVaVhsbQ1DgdbfcjHbGyQ3RpzhF_J57SrSXqziDvng66_kU78Bd261S-a_9fTZ03NdN7MVvfbg_kY8Mh38XQQGs6PDefNIb3q3FBoDfIAfqK4dvfrVp-NHRFeswvV48UR778vYdFrTO3BA53QSjpHQ2Otx-u8buRkOrs9HyfoHConlLF0kvMqN5zbrVgLCBi4s8yBilQrE4vlu4ZAelyoNac5WhcT520wbprUrHGMm2yNbdVP774QyLaVPmeaOs9wobjJu4ZnKc-VzJ1SH_HzVs5xFTkYJ8QVKX6L0JUpfBuk7pI96v92GgOuQAGYv12Yv_2X2Dvnxaq0SOgSucujaN0soKIOIVeYq7XaIaJmxVWI7p57-CWjtAnn7TO3_jyoekG186bDzTx2SrcV86Y_Ixye3PA6N9QVoj_DH
  priority: 102
  providerName: Directory of Open Access Journals
Title Maize Canopy Temperature Extracted From UAV Thermal and RGB Imagery and Its Application in Water Stress Monitoring
URI https://search.proquest.com/docview/2309484921
https://pubmed.ncbi.nlm.nih.gov/PMC6794609
https://doaj.org/article/0ecb70f38d5b40f082b67e9470e3f744
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFH6iE0K7IH6KMpiMxIFLWje24_jYlpbtMITYBtwi_wpUapMqa6WVv55np4XmyjF2Ejt-z_H32c-fAd7bzGKONglVuU0QEfvEZJomTuc8dchyWdwefXEtP__IP86CTI447IWJQfvWLAbVcjWoFr9ibOV6ZYeHOLHhl6tpFlTRqRr2oIfY8Iiit4LeAfXIVsYHCZgalutlEOYeqUFcZz2FRwxJgpLhKNyjwShq9neAZjdM8mjcmT-Bx3vASMZtxZ7CA189g4eTGkHd7jk0V3rx25Oprur1jtx4BMGtSDKZ3W-iErMj86ZekdvxN4Iugb_hJdGVI18_TcjlKghY7OL15eaOjP8tZpNFRb4jDG3IddxMQtq-HyYBX8DtfHYzvUj2xygkVtB0k4iSGy8sG5USyYOQlnpheJnKII7nR5kLGnKp0pjmbJnlYRaXaUO1dpmj1LCXcFLVlX8FhOo89ynVwgnKjRKGCYvvVF4oz51UffhwaM9i3aplFMgyghWKYIUiWKGIVujDJLT339uCzHVMqJufxd7YBfXWSFqy3GGNaYlwxWTSKy6pZ6XkvA_vDtYqsFuEtQ5d-XqLBTHkrTlX6agPsmPGTondHPS3KLC996_X__3kGZyGL41Bf-oNnGyarX8LvTu3PY-k_zy67B8ogPKM
link.rule.ids 230,315,729,782,786,866,887,2108,27935,27936,53803,53805
linkProvider National Library of Medicine
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwEB6xC4K98EaUp5E4cEnrxnEcH9vS0ortCrFd4Bb5FajUJlW2lSi_nrHTQnvdY-wkdvL58Y098xngvUkN5igdUZmZCBmxi3SqaGRVlsQWrVwWwqPHl-LiR_Zx6GVy-D4WJjjtGz1vl4tlu5z_Cr6Vq6Xp7P3EOl-mg9SrolPZOYHb2F8pOzDSG0lvz3tEI-SDJpjsFKuFl-buynbYaT2DuwzNBCn8YbgH01FQ7T-imseOkgczz-jBDev8EO7vqCbpNdmP4JYrH8OdfoV0cPsE6qma_3FkoMpqtSUzh_S5kVcmw9_roOFsyaiuluSq941gY8IBfEFUacnXT30yWXrpi224nqyvSe__NjiZl-Q7EtiaXIYwFNKMGn758ClcjYazwTjaHcAQGU7jdcSLRDtuWLcQaHZwYajjOili4WX1XDe1Xn0ulgrTrCnSzK__MqWpUja1lGr2DE7LqnTPgVCVZS6miltOEy25ZtzgO6Xj0iVWyBZ82OOQrxqdjRztE49e7tHLPXp5QK8FfY_Tv9u8QHZIqOqf-e6X59QZLWjBMos1pgUSHZ0KJxNBHStEkrTg3R7lHDuU3yVRpas2WBBDizdLZNxtgTiC_6jE4xxEPUhz71B-ceMn38K98Wx6np9PLj6_hDP_1cF1UL6C03W9ca_h5Npu3oQG_xcW1wc6
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFD5iA0174Y4oVyPxwEsaN4nj-LHtWlbBpoltwFvkW6BSm0RZK1F-PcdOO5pXeIztxHY-X75jH38GeK9TjTFSBVRkOkBGbAOVShoYmSWRQSs39sejTy_5-ffsZOJkcm6v-vJO-1rN--Vi2S_nP71vZb3U4c5PLLw4G6dOFZ2KsDZFeAB3sc9Stmeot7LejvvwVswHzTARFvXCyXMPRN_vth7DUYymguDuQty9Kckr93foZtdZcm_2mT74j3I_hPtbykmGbZJHcMeWj-HeqEJauHkCzZmc_7ZkLMuq3pArizS6lVkmk18rr-VsyLSpluR6-JVgo8KBfEFkaciXjyMyWzoJjI1_nq1uyPDvdjiZl-QbEtmGXPrjKKQdPdwy4lO4nk6uxqfB9iKGQDMarQJWJMoyHQ8KjuYH45pappIi4k5ezw5S41ToIiExzOgizdw6cCwVldKkhlIVP4PDsirtcyBUZpmNqGSG0UQJpmKm8ZvCMmETw0UPPuywyOtWbyNHO8UhmDsEc4dg7hHswchhdZvMCWX7gKr5kW9_e06tVpwWcWawxLRAwqNSbkXCqY0LniQ9eLdDOseO5XZLZGmrNWYUo-WbJSIa9IB3mkAnx24MIu8lurdIv_jnN9_C0cXJNP88O__0Eo5dpb0HoXgFh6tmbV_DwY1Zv_Ft_g9XRwm6
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Maize+Canopy+Temperature+Extracted+From+UAV+Thermal+and+RGB+Imagery+and+Its+Application+in+Water+Stress+Monitoring&rft.jtitle=Frontiers+in+plant+science&rft.au=Zhang%2C+Liyuan&rft.au=Niu%2C+Yaxiao&rft.au=Zhang%2C+Huihui&rft.au=Han%2C+Wenting&rft.date=2019-10-09&rft.issn=1664-462X&rft.eissn=1664-462X&rft.volume=10&rft.spage=1270&rft.epage=1270&rft_id=info:doi/10.3389%2Ffpls.2019.01270&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-462X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-462X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-462X&client=summon