Maize Canopy Temperature Extracted From UAV Thermal and RGB Imagery and Its Application in Water Stress Monitoring
To identify drought-tolerant crop cultivars or achieve a balance between water use and yield, accurate measurements of crop water stress are needed. In this study, the canopy temperature (Tc) of maize at the late vegetative stage was extracted from high-resolution red–green–blue (RGB, 1.25 cm) and t...
Saved in:
Published in: | Frontiers in plant science Vol. 10; p. 1270 |
---|---|
Main Authors: | , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Frontiers Media S.A
09-10-2019
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | To identify drought-tolerant crop cultivars or achieve a balance between water use and yield, accurate measurements of crop water stress are needed. In this study, the canopy temperature (Tc) of maize at the late vegetative stage was extracted from high-resolution red–green–blue (RGB, 1.25 cm) and thermal (7.8 cm) images taken by an unmanned aerial vehicle (UAV). To reduce the number of parameters for crop water stress monitoring, four simple methods that require only Tc were identified: Tc, degrees above non-stress, standard deviation of Tc, and variation coefficient of Tc. The ground-truth temperatures obtained using a handheld infrared thermometer were used to calibrate the temperature obtained from the UAV thermal images and to evaluate the Tc extraction results. Measured leaf stomatal conductance values were used to evaluate the performance of the four Tc-based crop water stress indicators. The results showed a strong correlation between ground-truth Tc and Tc extracted by the red–green ratio index (RGRI)-Otsu method proposed in this study, with a coefficient of determination of 0.94 (
n
= 15) and root mean square error value of 0.7°C. The RGRI-Otsu method was most accurate for estimating temperatures around 32.9°C, but the magnitude of residuals increased above and below this value. This phenomenon may be attributable to changes in canopy cover (leaf curling) under water stress, resulting in changes in the proportion of exposed sunlit soil in UAV thermal orthophotographs. Therefore, to improve the accuracy of maize canopy detection and extraction, optimal methods and better strategies for eliminating mixed pixels are needed. This study demonstrates the potential of using high-resolution UAV RGB images to supplement UAV thermal images for the accurate extraction of maize Tc. |
---|---|
AbstractList | To identify drought-tolerant crop cultivars or achieve a balance between water use and yield, accurate measurements of crop water stress are needed. In this study, the canopy temperature (Tc) of maize at the late vegetative stage was extracted from high-resolution red–green–blue (RGB, 1.25 cm) and thermal (7.8 cm) images taken by an unmanned aerial vehicle (UAV). To reduce the number of parameters for crop water stress monitoring, four simple methods that require only Tc were identified: Tc, degrees above non-stress, standard deviation of Tc, and variation coefficient of Tc. The ground-truth temperatures obtained using a handheld infrared thermometer were used to calibrate the temperature obtained from the UAV thermal images and to evaluate the Tc extraction results. Measured leaf stomatal conductance values were used to evaluate the performance of the four Tc-based crop water stress indicators. The results showed a strong correlation between ground-truth Tc and Tc extracted by the red–green ratio index (RGRI)-Otsu method proposed in this study, with a coefficient of determination of 0.94 (n = 15) and root mean square error value of 0.7°C. The RGRI-Otsu method was most accurate for estimating temperatures around 32.9°C, but the magnitude of residuals increased above and below this value. This phenomenon may be attributable to changes in canopy cover (leaf curling) under water stress, resulting in changes in the proportion of exposed sunlit soil in UAV thermal orthophotographs. Therefore, to improve the accuracy of maize canopy detection and extraction, optimal methods and better strategies for eliminating mixed pixels are needed. This study demonstrates the potential of using high-resolution UAV RGB images to supplement UAV thermal images for the accurate extraction of maize Tc. To identify drought-tolerant crop cultivars or achieve a balance between water use and yield, accurate measurements of crop water stress are needed. In this study, the canopy temperature (Tc) of maize at the late vegetative stage was extracted from high-resolution red–green–blue (RGB, 1.25 cm) and thermal (7.8 cm) images taken by an unmanned aerial vehicle (UAV). To reduce the number of parameters for crop water stress monitoring, four simple methods that require only Tc were identified: Tc, degrees above non-stress, standard deviation of Tc, and variation coefficient of Tc. The ground-truth temperatures obtained using a handheld infrared thermometer were used to calibrate the temperature obtained from the UAV thermal images and to evaluate the Tc extraction results. Measured leaf stomatal conductance values were used to evaluate the performance of the four Tc-based crop water stress indicators. The results showed a strong correlation between ground-truth Tc and Tc extracted by the red–green ratio index (RGRI)-Otsu method proposed in this study, with a coefficient of determination of 0.94 ( n = 15) and root mean square error value of 0.7°C. The RGRI-Otsu method was most accurate for estimating temperatures around 32.9°C, but the magnitude of residuals increased above and below this value. This phenomenon may be attributable to changes in canopy cover (leaf curling) under water stress, resulting in changes in the proportion of exposed sunlit soil in UAV thermal orthophotographs. Therefore, to improve the accuracy of maize canopy detection and extraction, optimal methods and better strategies for eliminating mixed pixels are needed. This study demonstrates the potential of using high-resolution UAV RGB images to supplement UAV thermal images for the accurate extraction of maize Tc. |
Author | Zhang, Liyuan Tang, Jiandong Li, Guang Zhang, Huihui Han, Wenting Peng, Xingshuo Niu, Yaxiao |
AuthorAffiliation | 2 Key Laboratory of Agricultural Internet of Things, Ministry of Agriculture, Yangling, China 4 Institute of Soil and Water Conservation, Northwest A&F University, Yangling, China 3 Water Management and Systems Research Unit, USDA-ARS, Fort Collins, CO, United States 1 College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, China 5 College of Resources and Architectural Engineering, Northwest A&F University, Yangling, China |
AuthorAffiliation_xml | – name: 2 Key Laboratory of Agricultural Internet of Things, Ministry of Agriculture, Yangling, China – name: 5 College of Resources and Architectural Engineering, Northwest A&F University, Yangling, China – name: 4 Institute of Soil and Water Conservation, Northwest A&F University, Yangling, China – name: 3 Water Management and Systems Research Unit, USDA-ARS, Fort Collins, CO, United States – name: 1 College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, China |
Author_xml | – sequence: 1 givenname: Liyuan surname: Zhang fullname: Zhang, Liyuan – sequence: 2 givenname: Yaxiao surname: Niu fullname: Niu, Yaxiao – sequence: 3 givenname: Huihui surname: Zhang fullname: Zhang, Huihui – sequence: 4 givenname: Wenting surname: Han fullname: Han, Wenting – sequence: 5 givenname: Guang surname: Li fullname: Li, Guang – sequence: 6 givenname: Jiandong surname: Tang fullname: Tang, Jiandong – sequence: 7 givenname: Xingshuo surname: Peng fullname: Peng, Xingshuo |
BookMark | eNpVkc9v0zAUxyM0xMbYmauPXNq9xI4dX5BKtY1Km5CgA26W4zx3nhI72O5E-etJ2wmxd3k_9flK7_u2OPHBY1G8L2FOaSMv7dineQWlnENZCXhVnJWcsxnj1c-T_-rT4iKlR5iiBpBSvClOacmZFGV9VsQ77f4gWWofxh1Z4zBi1HkbkVz9zlGbjB25jmEg94vvZP2AcdA90b4jX28-kdWgNxh3h36VE1mMY--Mzi544jz5oTNG8i1HTIncBe9yiM5v3hWvre4TXjzn8-L--mq9_Dy7_XKzWi5uZ6aGKs9qy1qsDS2tkILVwgDWLbOVECAklrzjQjSV1NOsM5Y30lpBdQtad7wDaOl5sTpyu6Af1RjdoONOBe3UYRDiRumYnelRAZpWgKVNN0mAhaZquUDJBCC1grGJ9fHIGrftgJ1BPz2nfwF9ufHuQW3Ck-JCMg5yAnx4BsTwa4spq8Elg32vPYZtUhUFyRomq3I6vTyemhhSimj_yZSg9sarvfFqb7w6GE__Allzows |
CitedBy_id | crossref_primary_10_1111_nph_17742 crossref_primary_10_3390_rs13020273 crossref_primary_10_3390_w12092359 crossref_primary_10_1016_j_biosystemseng_2022_03_004 crossref_primary_10_1093_jxb_erac291 crossref_primary_10_3390_drones6070169 crossref_primary_10_1016_j_buildenv_2022_109521 crossref_primary_10_5194_hess_27_4317_2023 crossref_primary_10_1016_j_agwat_2021_106866 crossref_primary_10_1016_j_rsase_2021_100583 crossref_primary_10_3934_era_2022218 crossref_primary_10_1016_j_compag_2021_106551 crossref_primary_10_3390_rs13204091 crossref_primary_10_1016_j_heliyon_2023_e21650 crossref_primary_10_3390_rs13173517 crossref_primary_10_3390_plants11233344 crossref_primary_10_1016_j_agwat_2022_107664 crossref_primary_10_1016_j_envres_2021_111853 crossref_primary_10_1016_j_isprsjprs_2022_08_018 crossref_primary_10_3390_rs12091491 crossref_primary_10_34133_plantphenomics_0169 crossref_primary_10_3390_rs13173482 crossref_primary_10_3390_rs15051470 crossref_primary_10_3390_s20247098 crossref_primary_10_1111_nph_17720 crossref_primary_10_3390_rs14215608 crossref_primary_10_1007_s11738_023_03604_w crossref_primary_10_3390_su15065487 crossref_primary_10_1007_s40999_021_00665_1 crossref_primary_10_3390_s21248466 crossref_primary_10_3390_drones8020061 crossref_primary_10_1016_j_agwat_2022_108064 crossref_primary_10_3390_rs15040875 crossref_primary_10_3390_rs13142775 crossref_primary_10_1016_j_eja_2022_126589 crossref_primary_10_1016_j_compag_2020_105344 crossref_primary_10_1016_j_compag_2021_106174 crossref_primary_10_3390_rs13112088 crossref_primary_10_1016_j_agrformet_2021_108477 crossref_primary_10_3390_agriculture13071292 crossref_primary_10_1007_s12517_023_11198_3 crossref_primary_10_1002_agg2_20449 crossref_primary_10_3390_rs15184400 crossref_primary_10_3390_su13147719 crossref_primary_10_1016_j_compag_2023_108433 crossref_primary_10_3390_rs13214476 crossref_primary_10_1007_s40725_023_00207_z crossref_primary_10_55761_abclima_v34i20_17655 crossref_primary_10_1002_agg2_20392 crossref_primary_10_3390_rs13142706 crossref_primary_10_1029_2021JG006617 crossref_primary_10_3390_rs13193976 crossref_primary_10_1016_j_eja_2021_126337 crossref_primary_10_3390_rs13245028 crossref_primary_10_3390_plants9070817 crossref_primary_10_3390_rs14246334 crossref_primary_10_3390_hydrology8030131 crossref_primary_10_1016_j_compag_2024_109176 crossref_primary_10_1098_rsob_210353 crossref_primary_10_1016_j_biosystemseng_2024_04_003 crossref_primary_10_3390_rs13163255 crossref_primary_10_15835_nbha50112572 crossref_primary_10_55761_abclima_v34i20_17653 crossref_primary_10_1016_j_agwat_2022_107506 crossref_primary_10_1016_j_compag_2021_106193 crossref_primary_10_1002_fes3_424 crossref_primary_10_1016_j_jag_2021_102467 crossref_primary_10_1016_j_jhydrol_2023_129086 crossref_primary_10_3390_rs15051429 crossref_primary_10_3390_plants12112081 crossref_primary_10_1007_s13762_022_03958_7 crossref_primary_10_48130_grares_0024_0009 crossref_primary_10_1016_j_scitotenv_2023_166201 crossref_primary_10_1016_j_jafr_2024_100967 crossref_primary_10_3390_rs13142721 crossref_primary_10_1016_j_compag_2023_107812 crossref_primary_10_3390_plants13091262 crossref_primary_10_1016_j_rsase_2021_100514 crossref_primary_10_1016_j_jia_2024_03_042 crossref_primary_10_3390_agriculture14030456 crossref_primary_10_1007_s13762_021_03195_4 crossref_primary_10_1007_s12524_020_01302_5 crossref_primary_10_1016_j_foreco_2024_121979 crossref_primary_10_1002_ldr_4445 crossref_primary_10_1016_j_compag_2023_108064 crossref_primary_10_1117_1_JRS_17_046506 crossref_primary_10_3389_fpls_2021_734944 crossref_primary_10_3390_agriengineering3040059 crossref_primary_10_1016_j_rsase_2023_101093 crossref_primary_10_3390_app12094372 crossref_primary_10_1007_s11119_021_09795_x crossref_primary_10_1016_j_jclepro_2022_133041 crossref_primary_10_1270_jsbbs_21069 crossref_primary_10_1029_2021WR029925 crossref_primary_10_3390_rs12213591 crossref_primary_10_1590_1983_40632023v5375742 crossref_primary_10_3390_agronomy14040729 crossref_primary_10_1007_s12145_024_01363_x crossref_primary_10_1016_j_cj_2022_04_005 crossref_primary_10_1109_ACCESS_2023_3320048 crossref_primary_10_3390_s23041827 crossref_primary_10_1093_plphys_kiab301 crossref_primary_10_2166_ws_2020_270 |
Cites_doi | 10.1007/s00271-006-0031-2 10.1016/j.agwat.2015.03.023 10.3390/rs10071139 10.13031/2013.2305 10.1111/jac.12259 10.1016/j.agwat.2013.11.010 10.3390/rs4051392 10.11975/j.issn.1002-6819.2018.15.010 10.1016/B978-0-12-024301-3.50008-3 10.1016/j.agwat.2018.02.030 10.1016/j.agwat.2015.01.020 10.2134/jpa1992.0466 10.3389/fpls.2017.01681 10.2134/agronj1963.00021962005500020043x 10.1016/j.agwat.2010.06.014 10.1007/s11119-016-9484-3 10.1146/annurev.pp.19.060168.001235 10.1016/j.biosystemseng.2017.08.013 10.3390/rs11030330 10.3390/rs11060605 10.1016/j.agwat.2014.06.003 10.11975/j.issn.1002-6819.2018.17.010 10.1016/j.agwat.2016.08.031 10.3390/rs10101615 10.1029/WR017i004p01133 10.1016/j.isprsjprs.2017.10.011 10.1016/j.agrformet.2014.08.003 10.1111/j.1439-037X.2012.00537.x 10.1016/j.jvolgeores.2016.06.014 10.6041/j.issn.1000-1298.2018.10.028 10.1007/s11119-014-9378-1 10.3390/rs9090961 10.1007/s00271-014-0456-y 10.1080/01431161.2013.793873 10.1016/0002-1571(81)90032-7 10.1007/s11119-009-9153-x 10.3390/rs9080828 10.1007/s11947-010-0333-5 10.1016/j.rse.2007.11.001 10.13031/2013.39320 10.1016/j.jag.2012.09.010 10.2134/agronj2000.9261221x 10.1061/(ASCE)IR.1943-4774.0000492 10.1016/j.agwat.2016.08.026 10.1007/s002710050059 10.3390/rs5052327 10.6041/j.issn.1000-1298.2018.05.027 10.1007/s00271-012-0382-9 10.1016/j.agwat.2012.12.004 10.1016/j.compag.2017.07.026 10.3390/s18020397 10.3390/s17102173 10.1007/s11119-014-9351-z 10.1016/j.agwat.2008.09.015 10.1016/j.rse.2009.06.018 10.1007/s11119-016-9470-9 10.1016/j.agrformet.2016.07.017 10.1002/9781119312994.apr0651 10.1016/j.biosystemseng.2006.11.006 10.3390/rs11030267 10.3390/s17071499 10.1016/j.rse.2013.07.024 10.1016/j.agwat.2017.04.016 10.1016/j.biosystemseng.2012.08.009 10.3390/s17051104 10.3390/agronomy4030380 |
ContentType | Journal Article |
Copyright | Copyright © 2019 Zhang, Niu, Zhang, Han, Li, Tang and Peng 2019 Zhang, Niu, Zhang, Han, Li, Tang and Peng |
Copyright_xml | – notice: Copyright © 2019 Zhang, Niu, Zhang, Han, Li, Tang and Peng 2019 Zhang, Niu, Zhang, Han, Li, Tang and Peng |
DBID | AAYXX CITATION 7X8 5PM DOA |
DOI | 10.3389/fpls.2019.01270 |
DatabaseName | CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: http://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 1664-462X |
EndPage | 1270 |
ExternalDocumentID | oai_doaj_org_article_0ecb70f38d5b40f082b67e9470e3f744 10_3389_fpls_2019_01270 |
GroupedDBID | 5VS 9T4 AAFWJ AAKDD AAYXX ACGFO ACGFS ACXDI ADBBV ADRAZ AENEX AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BCNDV CITATION EBD ECGQY GROUPED_DOAJ GX1 HYE IAO IEA IGS ISR KQ8 M48 M~E OK1 PGMZT RNS RPM 7X8 5PM |
ID | FETCH-LOGICAL-c502t-5f4be5c31f797457c0e5b4f277079e16d677829ab4fdcf689ff73ab0aad6d00b3 |
IEDL.DBID | RPM |
ISSN | 1664-462X |
IngestDate | Tue Oct 22 15:05:31 EDT 2024 Tue Sep 17 20:59:16 EDT 2024 Sat Oct 05 06:39:41 EDT 2024 Thu Sep 26 15:35:23 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c502t-5f4be5c31f797457c0e5b4f277079e16d677829ab4fdcf689ff73ab0aad6d00b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Reviewed by: Lav R. Khot, Washington State University, United States; Yafit Cohen, Agricultural Research Organization (ARO), Israel Edited by: Duke Pauli, University of Arizona, United States This article was submitted to Technical Advances in Plant Science, a section of the journal Frontiers in Plant Science |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6794609/ |
PMID | 31649715 |
PQID | 2309484921 |
PQPubID | 23479 |
PageCount | 1 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_0ecb70f38d5b40f082b67e9470e3f744 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6794609 proquest_miscellaneous_2309484921 crossref_primary_10_3389_fpls_2019_01270 |
PublicationCentury | 2000 |
PublicationDate | 2019-10-09 |
PublicationDateYYYYMMDD | 2019-10-09 |
PublicationDate_xml | – month: 10 year: 2019 text: 2019-10-09 day: 09 |
PublicationDecade | 2010 |
PublicationTitle | Frontiers in plant science |
PublicationYear | 2019 |
Publisher | Frontiers Media S.A |
Publisher_xml | – name: Frontiers Media S.A |
References | Wang (B61) 2010; 97 Zhang (B68) 2018; 49 Torres-Rua (B56) 2017; 17 Du (B17) 2013; 23 Gerhards (B23) 2018; 10 Payero (B45) 2005; 48 Poblete (B46) 2018; 18 Agam (B1) 2013; 34 Sagan (B51) 2019; 11 Gates (B22) 1968; 19 Santesteban (B52) 2017; 183 Turner (B57) 2012; 4 Atkinson (B4) 2018; 1 Ludovisi (B37) 2017; 8 Bai (B6) 2018; 204 Campbell (B13) 1982; 1 Irmak (B32) 2000; 92 Zhang (B67) 2018; 34 Han (B25) 2016; 177 Taghvaeian (B54) 2014; 144 Gago (B20) 2015; 153 Gonzalez-Dugo (B24) 2014; 198 Vadivambal (B58) 2011; 4 Yang (B62) 2018; 34 Zia (B69) 2013; 199 Verrelst (B59) 2008; 112 Cohen (B14) 2017; 18 Zhang (B66) 2019; 11 Espinoza (B18) 2017; 9 Harvey (B27) 2016; 325 Bellvert (B9) 2014 Paltineanu (B42) 2013; 139 Payero (B44) 2006; 25 Evett (B19) 2000 Berni (B10) 2009; 113 Heermann (B28) 1968; 11 Mulla (B41) 2013; 114 Allen (B3) 1998 Ihuoma (B31) 2017; 141 Jackson (B33) 1981; 17 Han (B26) 2018; 203 Bellvert (B8) 2015; 33 Meron (B40) 2010; 11 Quebrajo (B48) 2018; 165 Helman (B29) 2018; 10 Park (B43) 2017; 9 Idso (B30) 1981; 24 Gardner (B21) 1993; 5 Pou (B47) 2014; 134 Zarco-Tejada (B64) 2013; 138 Sugiura (B53) 2007; 96 Zolnier (B70) 2001; 44 Li (B35) 2010; 97 Aubrecht (B5) 2016 Tanner (B55) 1963; 55 Rud (B50) 2014; 15 Cohen (B15) 2015; 16 Ribeiro-Gomes (B49) 2017; 17 Yazar (B63) 1999; 18 Li (B36) 2018; 28 Veysi (B60) 2017; 189 Baluja (B7) 2012; 30 Maimaitijiang (B38) 2017; 134 Jones (B34) 2014; 4 Martínez (B39) 2016; 18 Calera (B12) 2017; 17 Bian (B11) 2019; 11 DeJonge (B16) 2015; 156 Zhang (B65) 2018; 49 Agam (B2) 2013; 118 |
References_xml | – volume: 25 start-page: 21 year: 2006 ident: B44 article-title: Variable upper and lower crop water stress index baselines for corn and soybean publication-title: Irrig. Sci. doi: 10.1007/s00271-006-0031-2 contributor: fullname: Payero – volume: 156 start-page: 51 year: 2015 ident: B16 article-title: Comparison of canopy temperature-based water stress indices for maize publication-title: Agric. Water Manage. doi: 10.1016/j.agwat.2015.03.023 contributor: fullname: DeJonge – volume: 10 start-page: 1139 year: 2018 ident: B23 article-title: Analysis of airborne optical and thermal imagery for detection of water stress symptoms publication-title: Remote Sens. doi: 10.3390/rs10071139 contributor: fullname: Gerhards – volume: 44 start-page: 137 year: 2001 ident: B70 article-title: Non-water-stressed baseline as a tool for dynamic control of a misting system for propagation of poinsettias publication-title: Trans. ASAE doi: 10.13031/2013.2305 contributor: fullname: Zolnier – volume: 204 start-page: 243 year: 2018 ident: B6 article-title: Aerial canopy temperature differences between fast- and slow-wilting soya bean genotypes publication-title: J. Agron. Crop Sci. doi: 10.1111/jac.12259 contributor: fullname: Bai – volume: 134 start-page: 60 year: 2014 ident: B47 article-title: Validation of thermal indices for water status identification in grapevine publication-title: Agric. Water Manage. doi: 10.1016/j.agwat.2013.11.010 contributor: fullname: Pou – volume: 4 start-page: 1392 year: 2012 ident: B57 article-title: An automated technique for generating georectified mosaics from ultra-high resolution unmanned aerial vehicle (UAV) imagery, based on structure from motion (SfM) point clouds publication-title: Remote Sens. doi: 10.3390/rs4051392 contributor: fullname: Turner – volume: 34 start-page: 77 year: 2018 ident: B67 article-title: Cotton moisture stress diagnosis based on canopy temperature characteristics calculated from UAV thermal infrared image publication-title: Nongye Gongcheng Xuebao/Tran. Chin. Soc. Agri. Eng. doi: 10.11975/j.issn.1002-6819.2018.15.010 contributor: fullname: Zhang – volume: 1 start-page: 25 year: 1982 ident: B13 article-title: Irrigation scheduling using soil moisture measurements: theory and practice publication-title: Adv. Irrig. doi: 10.1016/B978-0-12-024301-3.50008-3 contributor: fullname: Campbell – volume: 203 start-page: 366 year: 2018 ident: B26 article-title: Comparison of three crop water stress index models with sap flow measurements in maize publication-title: Agric. Water Manage. doi: 10.1016/j.agwat.2018.02.030 contributor: fullname: Han – volume-title: Automatic drip irrigation of corn and soybean year: 2000 ident: B19 contributor: fullname: Evett – volume: 153 start-page: 9 year: 2015 ident: B20 article-title: UAVs challenge to assess water stress for sustainable agriculture publication-title: Agric. Water Manage. doi: 10.1016/j.agwat.2015.01.020 contributor: fullname: Gago – volume: 5 start-page: 466 year: 1993 ident: B21 article-title: Infrared thermometry and the crop water stress index. II. Sampling procedures and interpretation publication-title: J. Prod. Agric. doi: 10.2134/jpa1992.0466 contributor: fullname: Gardner – volume: 8 start-page: 18 year: 2017 ident: B37 article-title: UAV-based thermal imaging for high-throughput field phenotyping of black poplar response to drought publication-title: Front. Plant Sci. doi: 10.3389/fpls.2017.01681 contributor: fullname: Ludovisi – volume: 55 start-page: 210 year: 1963 ident: B55 article-title: Plant temperatures publication-title: Agron. J. doi: 10.2134/agronj1963.00021962005500020043x contributor: fullname: Tanner – volume: 97 start-page: 1787 year: 2010 ident: B61 article-title: Infrared canopy temperature of early-ripening peach trees under postharvest deficit irrigation publication-title: Agric. Water Manage. doi: 10.1016/j.agwat.2010.06.014 contributor: fullname: Wang – volume: 18 start-page: 801 year: 2017 ident: B14 article-title: Mapping water status based on aerial thermal imagery: comparison of methodologies for upscaling from a single leaf to commercial fields publication-title: PRECIS. AGRIC. doi: 10.1007/s11119-016-9484-3 contributor: fullname: Cohen – volume: 19 start-page: 211 year: 1968 ident: B22 article-title: Transpiration and leaf temperature publication-title: Annu. Rev. Plant Physiol. doi: 10.1146/annurev.pp.19.060168.001235 contributor: fullname: Gates – volume: 165 start-page: 77 year: 2018 ident: B48 article-title: Linking thermal imaging and soil remote sensing to enhance irrigation management of sugar beet publication-title: Biosyst. Eng. doi: 10.1016/j.biosystemseng.2017.08.013 contributor: fullname: Quebrajo – volume-title: Crop evapotranspiration—Guidelines for computing crop water requirements—FAO Irrigation and drainage paper 56. year: 1998 ident: B3 contributor: fullname: Allen – volume: 11 start-page: 330 year: 2019 ident: B51 article-title: UAV-based high resolution thermal imaging for vegetation monitoring, and plant phenotyping using ICI 8640 P, FLIR Vue Pro R 640, and thermoMap cameras publication-title: Remote Sens. doi: 10.3390/rs11030330 contributor: fullname: Sagan – volume: 28 year: 2018 ident: B36 article-title: Evaluating the water application uniformity of center pivot irrigation systems in Northern China publication-title: Int. Agric. Eng. J. Under Rev. contributor: fullname: Li – volume: 11 start-page: 605 year: 2019 ident: B66 article-title: Mapping maize water stress based on UAV multispectral remote sensing publication-title: Remote Sens. doi: 10.3390/rs11060605 contributor: fullname: Zhang – volume: 144 start-page: 69 year: 2014 ident: B54 article-title: Conventional and simplified canopy temperature indices predict water stress in sunflower publication-title: Agric. Water Manage. doi: 10.1016/j.agwat.2014.06.003 contributor: fullname: Taghvaeian – volume: 34 start-page: 68 year: 2018 ident: B62 article-title: Monitoring of canopy temperature of maize based on UAV thermal infrared imagery and digital imagery publication-title: Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering doi: 10.11975/j.issn.1002-6819.2018.17.010 contributor: fullname: Yang – volume: 177 start-page: 400 year: 2016 ident: B25 article-title: Estimating maize water stress by standard deviation of canopy temperature in thermal imagery publication-title: Agric. Water Manage. doi: 10.1016/j.agwat.2016.08.031 contributor: fullname: Han – volume: 10 start-page: 1615 year: 2018 ident: B29 article-title: Using time series of high-resolution planet satellite images to monitor grapevine stem water potential in commercial vineyards publication-title: Remote Sens. doi: 10.3390/rs10101615 contributor: fullname: Helman – volume: 17 start-page: 1133 year: 1981 ident: B33 article-title: Canopy temperature as a crop water stress indicator publication-title: Water Resour Res. doi: 10.1029/WR017i004p01133 contributor: fullname: Jackson – volume: 134 start-page: 43 year: 2017 ident: B38 article-title: Unmanned aerial system (UAS)-based phenotyping of soybean using multi-sensor data fusion and extreme learning machine publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2017.10.011 contributor: fullname: Maimaitijiang – volume: 198 start-page: 94 year: 2014 ident: B24 article-title: Applicability and limitations of using the crop water stress index as an indicator of water deficits in citrus orchards publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2014.08.003 contributor: fullname: Gonzalez-Dugo – volume: 199 start-page: 75 year: 2013 ident: B69 article-title: Infrared thermal imaging as a rapid tool for identifying water-stress tolerant maize genotypes of different phenology publication-title: J. Agron. Crop Sci. doi: 10.1111/j.1439-037X.2012.00537.x contributor: fullname: Zia – volume: 325 start-page: 61 year: 2016 ident: B27 article-title: Drone with thermal infrared camera provides high resolution georeferenced imagery of the Waikite geothermal area, New Zealand publication-title: J. Volcanol. Geoth. Res. doi: 10.1016/j.jvolgeores.2016.06.014 contributor: fullname: Harvey – volume: 49 start-page: 250 year: 2018 ident: B68 article-title: Diagnosis of cotton water stress using unmanned aerial vehicle thermal infrared remote sensing after removing soil publication-title: Nongye Jixie Xuebao/Transactions of the Chinese Society for Agricultural Machinery doi: 10.6041/j.issn.1000-1298.2018.10.028 contributor: fullname: Zhang – volume: 16 start-page: 311 year: 2015 ident: B15 article-title: Crop water status estimation using thermography: multi-year model development using ground-based thermal images publication-title: PRECIS. AGRIC. doi: 10.1007/s11119-014-9378-1 contributor: fullname: Cohen – volume: 9 start-page: 961 year: 2017 ident: B18 article-title: High resolution multispectral and thermal remote sensing-based water stress assessment in subsurface irrigated grapevines publication-title: Remote Sens. doi: 10.3390/rs9090961 contributor: fullname: Espinoza – volume: 33 start-page: 81 year: 2015 ident: B8 article-title: Seasonal evolution of crop water stress index in grapevine varieties determined with high-resolution remote sensing thermal imagery publication-title: Irrig. Sci. doi: 10.1007/s00271-014-0456-y contributor: fullname: Bellvert – volume: 34 start-page: 6109 year: 2013 ident: B1 article-title: How sensitive is the CWSI to changes in solar radiation publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2013.793873 contributor: fullname: Agam – volume: 24 start-page: 45 year: 1981 ident: B30 article-title: Normalizing the stress-degree-day parameter for environmental variability publication-title: Agric. Meteorol. doi: 10.1016/0002-1571(81)90032-7 contributor: fullname: Idso – volume: 11 start-page: 148 year: 2010 ident: B40 article-title: Crop water stress mapping for site-specific irrigation by thermal imagery and artificial reference surfaces publication-title: PRECIS. AGRIC. doi: 10.1007/s11119-009-9153-x contributor: fullname: Meron – volume: 9 start-page: 828 year: 2017 ident: B43 article-title: Adaptive estimation of crop water stress in nectarine and peach orchards using high-resolution imagery from an unmanned aerial vehicle (UAV) publication-title: Remote Sens. doi: 10.3390/rs9080828 contributor: fullname: Park – volume: 4 start-page: 186 year: 2011 ident: B58 article-title: Applications of thermal imaging in agriculture and food industry—a review publication-title: Food Bioprocess Technol. doi: 10.1007/s11947-010-0333-5 contributor: fullname: Vadivambal – volume: 112 start-page: 2341 year: 2008 ident: B59 article-title: Angular sensitivity analysis of vegetation indices derived from CHRIS/PROBA data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2007.11.001 contributor: fullname: Verrelst – volume: 11 start-page: 11 year: 1968 ident: B28 article-title: Performance characteristics of self-propelled center-pivot sprinkler irrigation system publication-title: Trans. ASAE doi: 10.13031/2013.39320 contributor: fullname: Heermann – volume: 23 start-page: 245 year: 2013 ident: B17 article-title: A comprehensive drought monitoring method integrating MODIS and TRMM data publication-title: Int. J. Appl. Earth Obs. Geoinformation doi: 10.1016/j.jag.2012.09.010 contributor: fullname: Du – volume: 92 start-page: 1221 year: 2000 ident: B32 article-title: Determination of crop water stress index for irrigation timing and yield estimation of corn publication-title: Agron. J. doi: 10.2134/agronj2000.9261221x contributor: fullname: Irmak – volume: 139 start-page: 20 year: 2013 ident: B42 article-title: Crop water stress in peach orchards and relationships with soil moisture content in a chernozem of Dobrogea publication-title: J. Irrig. Drain. Eng. doi: 10.1061/(ASCE)IR.1943-4774.0000492 contributor: fullname: Paltineanu – volume: 183 start-page: 49 year: 2017 ident: B52 article-title: High-resolution UAV-based thermal imaging to estimate the instantaneous and seasonal variability of plant water status within a vineyard publication-title: Agric. Water Manage. doi: 10.1016/j.agwat.2016.08.026 contributor: fullname: Santesteban – volume: 18 start-page: 171 year: 1999 ident: B63 article-title: Evaluation of crop water stress index for LEPA irrigated corn publication-title: Irrig. Sci. doi: 10.1007/s002710050059 contributor: fullname: Yazar – volume: 48 start-page: 653 year: 2005 ident: B45 article-title: Non-water-stressed baselines for calculating crop water stress index (CWSI) for alfalfa and tall fescue grass publication-title: Trans. ASAE doi: 10.3390/rs5052327 contributor: fullname: Payero – volume: 49 start-page: 233 year: 2018 ident: B65 article-title: Establishing method of crop water stress index empirical model of field maize publication-title: Nongye Jixie Xuebao/Tran. Chin. Soc. Agri. Machin. doi: 10.6041/j.issn.1000-1298.2018.05.027 contributor: fullname: Zhang – volume: 30 start-page: 511 year: 2012 ident: B7 article-title: Assessment of vineyard water status variability by thermal and multispectral imagery using an unmanned aerial vehicle (UAV) publication-title: Irrig. Sci. doi: 10.1007/s00271-012-0382-9 contributor: fullname: Baluja – volume: 118 start-page: 79 year: 2013 ident: B2 article-title: An insight to the performance of crop water stress index for olive trees publication-title: Agric. Water Manage. doi: 10.1016/j.agwat.2012.12.004 contributor: fullname: Agam – volume: 141 start-page: 267 year: 2017 ident: B31 article-title: Recent advances in crop water stress detection publication-title: COMPUT. ELECTRON. AGR. doi: 10.1016/j.compag.2017.07.026 contributor: fullname: Ihuoma – volume: 18 start-page: 397 year: 2018 ident: B46 article-title: Automatic coregistration algorithm to remove canopy shaded pixels in UAV-borne thermal images to improve the estimation of crop water stress index of a drip-irrigated Cabernet Sauvignon vineyard publication-title: Sensors doi: 10.3390/s18020397 contributor: fullname: Poblete – volume: 17 start-page: 2173 year: 2017 ident: B49 article-title: Uncooled thermal camera calibration and optimization of the photogrammetry process for UAV applications in agriculture publication-title: Sensors doi: 10.3390/s17102173 contributor: fullname: Ribeiro-Gomes – volume: 15 start-page: 273 year: 2014 ident: B50 article-title: Crop water stress index derived from multi-year ground and aerial thermal images as an indicator of potato water status publication-title: PRECIS. AGRIC. doi: 10.1007/s11119-014-9351-z contributor: fullname: Rud – volume: 97 start-page: 1146 year: 2010 ident: B35 article-title: Evaluating the crop water stress index and its correlation with latent heat and CO2 fluxes over winter wheat and maize in the North China plain publication-title: Agric. Water Manage. doi: 10.1016/j.agwat.2008.09.015 contributor: fullname: Li – volume: 113 start-page: 2380 year: 2009 ident: B10 article-title: Mapping canopy conductance and CWSI in olive orchards using high resolution thermal remote sensing imagery publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2009.06.018 contributor: fullname: Berni – volume: 18 start-page: 95 year: 2016 ident: B39 article-title: A cost-effective canopy temperature measurement system for precision agriculture: a case study on sugar beet publication-title: PRECIS. AGRIC. doi: 10.1007/s11119-016-9470-9 contributor: fullname: Martínez – start-page: 315 year: 2016 ident: B5 article-title: Continuous, long-term, high-frequency thermal imaging of vegetation: uncertainties and recommended best practices publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2016.07.017 contributor: fullname: Aubrecht – volume: 1 start-page: 1 year: 2018 ident: B4 article-title: Field phenotyping for the future publication-title: Annu. Plant Rev. Online doi: 10.1002/9781119312994.apr0651 contributor: fullname: Atkinson – volume: 96 start-page: 301 year: 2007 ident: B53 article-title: Correction of low-altitude thermal images applied to estimating soil water status publication-title: Biosyst. Eng. doi: 10.1016/j.biosystemseng.2006.11.006 contributor: fullname: Sugiura – volume: 11 start-page: 267 year: 2019 ident: B11 article-title: Simplified evaluation of cotton water stress using high resolution unmanned aerial vehicle thermal imagery publication-title: Remote Sens. doi: 10.3390/rs11030267 contributor: fullname: Bian – volume: 17 start-page: 1499 year: 2017 ident: B56 article-title: Vicarious calibration of sUAS microbolometer temperature imagery for estimation of radiometric land surface temperature publication-title: Sensors (Basel) doi: 10.3390/s17071499 contributor: fullname: Torres-Rua – start-page: 25 volume-title: A tool for detecting crop water status using airborne high-resolution thermal imagery. year: 2014 ident: B9 article-title: Sustainable irrigation and drainage V contributor: fullname: Bellvert – volume: 138 start-page: 38 year: 2013 ident: B64 article-title: A PRI-based water stress index combining structural and chlorophyll effects: assessment using diurnal narrow-band airborne imagery and the CWSI thermal index publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2013.07.024 contributor: fullname: Zarco-Tejada – volume: 189 start-page: 70 year: 2017 ident: B60 article-title: A satellite based crop water stress index for irrigation scheduling in sugarcane fields publication-title: Agric. Water Manage. doi: 10.1016/j.agwat.2017.04.016 contributor: fullname: Veysi – volume: 114 start-page: 358 year: 2013 ident: B41 article-title: Twenty five years of remote sensing in precision agriculture: key advances and remaining knowledge gaps publication-title: Biosyst. Eng. doi: 10.1016/j.biosystemseng.2012.08.009 contributor: fullname: Mulla – volume: 17 start-page: 1104 year: 2017 ident: B12 article-title: Remote sensing for crop water management: from ET modelling to services for the end users publication-title: Sensors doi: 10.3390/s17051104 contributor: fullname: Calera – volume: 4 start-page: 380 year: 2014 ident: B34 article-title: Scaling of thermal images at different spatial resolution: the mixed pixel problem publication-title: Agronomy doi: 10.3390/agronomy4030380 contributor: fullname: Jones |
SSID | ssj0000500997 |
Score | 2.5866673 |
Snippet | To identify drought-tolerant crop cultivars or achieve a balance between water use and yield, accurate measurements of crop water stress are needed. In this... |
SourceID | doaj pubmedcentral proquest crossref |
SourceType | Open Website Open Access Repository Aggregation Database |
StartPage | 1270 |
SubjectTerms | leaf area index nearest neighbor algorithm Otsu algorithm Plant Science red-green ratio index soil water content stomatal conductance |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ27b9swEIeJNuiQpWiaBnVeYIEMXZTQkiiSo53YtYdmiPPaBL6EGkgkw7GBOn997kgnsaYuHUUKIvU7Urzj4xMhJ7awkKNNwpS0CXjEPjGFZonTMk8dRLlZOB49mojLe3kxQEzO26--cE9YxANH4c6Yt0awKpOOm5xVMGKZQniVC-azSuSRBMrkRjAVqd7o-ojI8oEoTJ1Vswekc3fVaVhsbQ1DgdbfcjHbGyQ3RpzhF_J57SrSXqziDvng66_kU78Bd261S-a_9fTZ03NdN7MVvfbg_kY8Mh38XQQGs6PDefNIb3q3FBoDfIAfqK4dvfrVp-NHRFeswvV48UR778vYdFrTO3BA53QSjpHQ2Otx-u8buRkOrs9HyfoHConlLF0kvMqN5zbrVgLCBi4s8yBilQrE4vlu4ZAelyoNac5WhcT520wbprUrHGMm2yNbdVP774QyLaVPmeaOs9wobjJu4ZnKc-VzJ1SH_HzVs5xFTkYJ8QVKX6L0JUpfBuk7pI96v92GgOuQAGYv12Yv_2X2Dvnxaq0SOgSucujaN0soKIOIVeYq7XaIaJmxVWI7p57-CWjtAnn7TO3_jyoekG186bDzTx2SrcV86Y_Ixye3PA6N9QVoj_DH priority: 102 providerName: Directory of Open Access Journals |
Title | Maize Canopy Temperature Extracted From UAV Thermal and RGB Imagery and Its Application in Water Stress Monitoring |
URI | https://search.proquest.com/docview/2309484921 https://pubmed.ncbi.nlm.nih.gov/PMC6794609 https://doaj.org/article/0ecb70f38d5b40f082b67e9470e3f744 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFH6iE0K7IH6KMpiMxIFLWje24_jYlpbtMITYBtwi_wpUapMqa6WVv55np4XmyjF2Ejt-z_H32c-fAd7bzGKONglVuU0QEfvEZJomTuc8dchyWdwefXEtP__IP86CTI447IWJQfvWLAbVcjWoFr9ibOV6ZYeHOLHhl6tpFlTRqRr2oIfY8Iiit4LeAfXIVsYHCZgalutlEOYeqUFcZz2FRwxJgpLhKNyjwShq9neAZjdM8mjcmT-Bx3vASMZtxZ7CA189g4eTGkHd7jk0V3rx25Oprur1jtx4BMGtSDKZ3W-iErMj86ZekdvxN4Iugb_hJdGVI18_TcjlKghY7OL15eaOjP8tZpNFRb4jDG3IddxMQtq-HyYBX8DtfHYzvUj2xygkVtB0k4iSGy8sG5USyYOQlnpheJnKII7nR5kLGnKp0pjmbJnlYRaXaUO1dpmj1LCXcFLVlX8FhOo89ynVwgnKjRKGCYvvVF4oz51UffhwaM9i3aplFMgyghWKYIUiWKGIVujDJLT339uCzHVMqJufxd7YBfXWSFqy3GGNaYlwxWTSKy6pZ6XkvA_vDtYqsFuEtQ5d-XqLBTHkrTlX6agPsmPGTondHPS3KLC996_X__3kGZyGL41Bf-oNnGyarX8LvTu3PY-k_zy67B8ogPKM |
link.rule.ids | 230,315,729,782,786,866,887,2108,27935,27936,53803,53805 |
linkProvider | National Library of Medicine |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwEB6xC4K98EaUp5E4cEnrxnEcH9vS0ortCrFd4Bb5FajUJlW2lSi_nrHTQnvdY-wkdvL58Y098xngvUkN5igdUZmZCBmxi3SqaGRVlsQWrVwWwqPHl-LiR_Zx6GVy-D4WJjjtGz1vl4tlu5z_Cr6Vq6Xp7P3EOl-mg9SrolPZOYHb2F8pOzDSG0lvz3tEI-SDJpjsFKuFl-buynbYaT2DuwzNBCn8YbgH01FQ7T-imseOkgczz-jBDev8EO7vqCbpNdmP4JYrH8OdfoV0cPsE6qma_3FkoMpqtSUzh_S5kVcmw9_roOFsyaiuluSq941gY8IBfEFUacnXT30yWXrpi224nqyvSe__NjiZl-Q7EtiaXIYwFNKMGn758ClcjYazwTjaHcAQGU7jdcSLRDtuWLcQaHZwYajjOili4WX1XDe1Xn0ulgrTrCnSzK__MqWpUja1lGr2DE7LqnTPgVCVZS6miltOEy25ZtzgO6Xj0iVWyBZ82OOQrxqdjRztE49e7tHLPXp5QK8FfY_Tv9u8QHZIqOqf-e6X59QZLWjBMos1pgUSHZ0KJxNBHStEkrTg3R7lHDuU3yVRpas2WBBDizdLZNxtgTiC_6jE4xxEPUhz71B-ceMn38K98Wx6np9PLj6_hDP_1cF1UL6C03W9ca_h5Npu3oQG_xcW1wc6 |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFD5iA0174Y4oVyPxwEsaN4nj-LHtWlbBpoltwFvkW6BSm0RZK1F-PcdOO5pXeIztxHY-X75jH38GeK9TjTFSBVRkOkBGbAOVShoYmSWRQSs39sejTy_5-ffsZOJkcm6v-vJO-1rN--Vi2S_nP71vZb3U4c5PLLw4G6dOFZ2KsDZFeAB3sc9Stmeot7LejvvwVswHzTARFvXCyXMPRN_vth7DUYymguDuQty9Kckr93foZtdZcm_2mT74j3I_hPtbykmGbZJHcMeWj-HeqEJauHkCzZmc_7ZkLMuq3pArizS6lVkmk18rr-VsyLSpluR6-JVgo8KBfEFkaciXjyMyWzoJjI1_nq1uyPDvdjiZl-QbEtmGXPrjKKQdPdwy4lO4nk6uxqfB9iKGQDMarQJWJMoyHQ8KjuYH45pappIi4k5ezw5S41ToIiExzOgizdw6cCwVldKkhlIVP4PDsirtcyBUZpmNqGSG0UQJpmKm8ZvCMmETw0UPPuywyOtWbyNHO8UhmDsEc4dg7hHswchhdZvMCWX7gKr5kW9_e06tVpwWcWawxLRAwqNSbkXCqY0LniQ9eLdDOseO5XZLZGmrNWYUo-WbJSIa9IB3mkAnx24MIu8lurdIv_jnN9_C0cXJNP88O__0Eo5dpb0HoXgFh6tmbV_DwY1Zv_Ft_g9XRwm6 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Maize+Canopy+Temperature+Extracted+From+UAV+Thermal+and+RGB+Imagery+and+Its+Application+in+Water+Stress+Monitoring&rft.jtitle=Frontiers+in+plant+science&rft.au=Zhang%2C+Liyuan&rft.au=Niu%2C+Yaxiao&rft.au=Zhang%2C+Huihui&rft.au=Han%2C+Wenting&rft.date=2019-10-09&rft.issn=1664-462X&rft.eissn=1664-462X&rft.volume=10&rft.spage=1270&rft.epage=1270&rft_id=info:doi/10.3389%2Ffpls.2019.01270&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-462X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-462X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-462X&client=summon |