Perovskite nanowire lasers on low-refractive-index conductive substrate for high-Q and low-threshold operation

Over the last five years, inorganic lead halide perovskite nanowires have emerged as prospective candidates to supersede standard semiconductor analogs in advanced photonic designs and optoelectronic devices. In particular, CsPbX (X = Cl, Br, I) perovskite materials have great advantages over conven...

Full description

Saved in:
Bibliographic Details
Published in:Nanophotonics (Berlin, Germany) Vol. 9; no. 12; pp. 3977 - 3984
Main Authors: Markina, Daria I., Pushkarev, Anatoly P., Shishkin, Ivan I., Komissarenko, Filipp E., Berestennikov, Alexander S., Pavluchenko, Alexey S., Smirnova, Irina P., Markov, Lev K., Vengris, Mikas, Zakhidov, Anvar A., Makarov, Sergey V.
Format: Journal Article
Language:English
Published: Berlin De Gruyter 01-09-2020
Walter de Gruyter GmbH
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Over the last five years, inorganic lead halide perovskite nanowires have emerged as prospective candidates to supersede standard semiconductor analogs in advanced photonic designs and optoelectronic devices. In particular, CsPbX (X = Cl, Br, I) perovskite materials have great advantages over conventional semiconductors such as defect tolerance, highly efficient luminescence, and the ability to form regularly shaped nano- and microcavities from solution via fast crystallization. However, on the way of electrically pumped lasing, the perovskite nanowires grown on transparent conductive substrates usually suffer from strong undesirable light leakage increasing their threshold of lasing. Here, we report on the integration of CsPbBr nanowires with nanostructured indium tin oxide substrates possessing near-unity effective refractive index and high conductivity by using a simple wet chemical approach. Surface passivation of the substrates is found out to govern the regularity of the perovskite resonators’ shape. The nanowires show room-temperature lasing with ultrahigh quality factors (up to 7860) which are up to four times higher than that of similar structures on a flat indium tin oxide layer, resulting in more than twofold reduction of the lasing threshold for the nanostructured substrate. Numerical modeling of eigenmodes of the nanowires confirms the key role of low-refractive-index substrate for improved light confinement in the Fabry–Pérot cavity which results in superior laser performance.
AbstractList Over the last five years, inorganic lead halide perovskite nanowires have emerged as prospective candidates to supersede standard semiconductor analogs in advanced photonic designs and optoelectronic devices. In particular, CsPbX (X = Cl, Br, I) perovskite materials have great advantages over conventional semiconductors such as defect tolerance, highly efficient luminescence, and the ability to form regularly shaped nano- and microcavities from solution via fast crystallization. However, on the way of electrically pumped lasing, the perovskite nanowires grown on transparent conductive substrates usually suffer from strong undesirable light leakage increasing their threshold of lasing. Here, we report on the integration of CsPbBr nanowires with nanostructured indium tin oxide substrates possessing near-unity effective refractive index and high conductivity by using a simple wet chemical approach. Surface passivation of the substrates is found out to govern the regularity of the perovskite resonators’ shape. The nanowires show room-temperature lasing with ultrahigh quality factors (up to 7860) which are up to four times higher than that of similar structures on a flat indium tin oxide layer, resulting in more than twofold reduction of the lasing threshold for the nanostructured substrate. Numerical modeling of eigenmodes of the nanowires confirms the key role of low-refractive-index substrate for improved light confinement in the Fabry–Pérot cavity which results in superior laser performance.
Over the last five years, inorganic lead halide perovskite nanowires have emerged as prospective candidates to supersede standard semiconductor analogs in advanced photonic designs and optoelectronic devices. In particular, CsPbX 3 (X = Cl, Br, I) perovskite materials have great advantages over conventional semiconductors such as defect tolerance, highly efficient luminescence, and the ability to form regularly shaped nano- and microcavities from solution via fast crystallization. However, on the way of electrically pumped lasing, the perovskite nanowires grown on transparent conductive substrates usually suffer from strong undesirable light leakage increasing their threshold of lasing. Here, we report on the integration of CsPbBr 3 nanowires with nanostructured indium tin oxide substrates possessing near-unity effective refractive index and high conductivity by using a simple wet chemical approach. Surface passivation of the substrates is found out to govern the regularity of the perovskite resonators’ shape. The nanowires show room-temperature lasing with ultrahigh quality factors (up to 7860) which are up to four times higher than that of similar structures on a flat indium tin oxide layer, resulting in more than twofold reduction of the lasing threshold for the nanostructured substrate. Numerical modeling of eigenmodes of the nanowires confirms the key role of low-refractive-index substrate for improved light confinement in the Fabry–Pérot cavity which results in superior laser performance.
Over the last five years, inorganic lead halide perovskite nanowires have emerged as prospective candidates to supersede standard semiconductor analogs in advanced photonic designs and optoelectronic devices. In particular, CsPbX3 (X = Cl, Br, I) perovskite materials have great advantages over conventional semiconductors such as defect tolerance, highly efficient luminescence, and the ability to form regularly shaped nano- and microcavities from solution via fast crystallization. However, on the way of electrically pumped lasing, the perovskite nanowires grown on transparent conductive substrates usually suffer from strong undesirable light leakage increasing their threshold of lasing. Here, we report on the integration of CsPbBr3 nanowires with nanostructured indium tin oxide substrates possessing near-unity effective refractive index and high conductivity by using a simple wet chemical approach. Surface passivation of the substrates is found out to govern the regularity of the perovskite resonators’ shape. The nanowires show room-temperature lasing with ultrahigh quality factors (up to 7860) which are up to four times higher than that of similar structures on a flat indium tin oxide layer, resulting in more than twofold reduction of the lasing threshold for the nanostructured substrate. Numerical modeling of eigenmodes of the nanowires confirms the key role of low-refractive-index substrate for improved light confinement in the Fabry–Pérot cavity which results in superior laser performance.
Over the last five years, inorganic lead halide perovskite nanowires have emerged as prospective candidates to supersede standard semiconductor analogs in advanced photonic designs and optoelectronic devices. In particular, CsPbX3 (X = Cl, Br, I) perovskite materials have great advantages over conventional semiconductors such as defect tolerance, highly efficient luminescence, and the ability to form regularly shaped nano- and microcavities from solution via fast crystallization. However, on the way of electrically pumped lasing, the perovskite nanowires grown on transparent conductive substrates usually suffer from strong undesirable light leakage increasing their threshold of lasing. Here, we report on the integration of CsPbBr3 nanowires with nanostructured indium tin oxide substrates possessing near-unity effective refractive index and high conductivity by using a simple wet chemical approach. Surface passivation of the substrates is found out to govern the regularity of the perovskite resonators’ shape. The nanowires show room-temperature lasing with ultrahigh quality factors (up to 7860) which are up to four times higher than that of similar structures on a flat indium tin oxide layer, resulting in more than twofold reduction of the lasing threshold for the nanostructured substrate. Numerical modeling of eigenmodes of the nanowires confirms the key role of low-refractive-index substrate for improved light confinement in the Fabry–Pérot cavity which results in superior laser performance.
Author Shishkin, Ivan I.
Berestennikov, Alexander S.
Makarov, Sergey V.
Zakhidov, Anvar A.
Pavluchenko, Alexey S.
Pushkarev, Anatoly P.
Komissarenko, Filipp E.
Vengris, Mikas
Markina, Daria I.
Smirnova, Irina P.
Markov, Lev K.
Author_xml – sequence: 1
  givenname: Daria I.
  orcidid: 0000-0002-3846-0569
  surname: Markina
  fullname: Markina, Daria I.
  organization: Department of Physics and Engineering, ITMO University, St. Petersburg, 197101, Russia
– sequence: 2
  givenname: Anatoly P.
  surname: Pushkarev
  fullname: Pushkarev, Anatoly P.
  email: anatoly.pushkarev@metalab.ifmo.ru
  organization: Department of Physics and Engineering, ITMO University, St. Petersburg, 197101, Russia
– sequence: 3
  givenname: Ivan I.
  surname: Shishkin
  fullname: Shishkin, Ivan I.
  organization: Department of Physics and Engineering, ITMO University, St. Petersburg, 197101, Russia
– sequence: 4
  givenname: Filipp E.
  surname: Komissarenko
  fullname: Komissarenko, Filipp E.
  organization: Department of Physics and Engineering, ITMO University, St. Petersburg, 197101, Russia
– sequence: 5
  givenname: Alexander S.
  surname: Berestennikov
  fullname: Berestennikov, Alexander S.
  organization: Department of Physics and Engineering, ITMO University, St. Petersburg, 197101, Russia
– sequence: 6
  givenname: Alexey S.
  surname: Pavluchenko
  fullname: Pavluchenko, Alexey S.
  organization: Ioffe Institute, St. Petersburg, 194021, Russia
– sequence: 7
  givenname: Irina P.
  surname: Smirnova
  fullname: Smirnova, Irina P.
  organization: Ioffe Institute, St. Petersburg, 194021, Russia
– sequence: 8
  givenname: Lev K.
  surname: Markov
  fullname: Markov, Lev K.
  organization: Ioffe Institute, St. Petersburg, 194021, Russia
– sequence: 9
  givenname: Mikas
  surname: Vengris
  fullname: Vengris, Mikas
  organization: Laser Research Center, Faculty of Physics, Vilnius University, Vilnius, LT-10223, Lithuania
– sequence: 10
  givenname: Anvar A.
  surname: Zakhidov
  fullname: Zakhidov, Anvar A.
  organization: University of Texas at Dallas, Richardson, TX, 75080, USA
– sequence: 11
  givenname: Sergey V.
  orcidid: 0000-0002-9257-6183
  surname: Makarov
  fullname: Makarov, Sergey V.
  email: s.makarov@metalab.ifmo.ru
  organization: Department of Physics and Engineering, ITMO University, St. Petersburg, 197101, Russia
BookMark eNp1kd1LHDEUxUOxULW--xjwOZqPmczkSURsFYS2UJ9DNrnZyXaarMmMW__7ZnfEPjUQcrmc38nlnhN0FFMEhM4ZvWQta6-iiWk7EE45JfV2H9AxZ4qTXrLm6L2m8hM6K2VD61FKMCWPUfwOOb2UX2ECvHfZhQx4NAVywSniMe1IBp-NncILkBAd_ME2RTcfGrjMqzJlU2GfMh7CeiA_sInuAE5DhjKk0eG0hSoKKX5GH70ZC5y9vafo6cvdz9t78vjt68PtzSOxLWUTAVvnU8pxIx14T52VKyZ9QzupXKO84ozSVglHuXBOCss6xVVroTcrtxJUnKKHxdcls9HbHH6b_KqTCfrQSHmtTZ6CHUGLvmOct572jDfOdz31dTtMdNJYxVtTvS4Wr21OzzOUSW_SnGMdX_OmYbJp-r6tKrqobE6l1J29_8qo3oekl5D0PiS9D6ki1wuyM-ME2cE6z6-1-Of_P1QxLlTXib8VMJ1z
CitedBy_id crossref_primary_10_1088_1742_6596_2015_1_012087
crossref_primary_10_1021_acs_jpcc_1c01492
crossref_primary_10_1016_j_optmat_2022_112068
crossref_primary_10_1098_rsos_220475
crossref_primary_10_1515_nanoph_2020_0548
crossref_primary_10_1021_acsnano_0c06463
crossref_primary_10_1002_adom_202301877
crossref_primary_10_3390_nano13030419
crossref_primary_10_3390_magnetochemistry9050137
crossref_primary_10_1016_j_cis_2021_102548
crossref_primary_10_1364_OSAC_424375
crossref_primary_10_1021_acs_nanolett_3c04797
crossref_primary_10_1134_S1063782622010110
crossref_primary_10_1002_adma_202300179
crossref_primary_10_1515_nanoph_2021_0280
crossref_primary_10_1002_adom_202101535
crossref_primary_10_1002_lpor_202100728
crossref_primary_10_1134_S1063782621040102
crossref_primary_10_1088_1742_6596_2172_1_012004
crossref_primary_10_1021_acsanm_3c01963
crossref_primary_10_1016_j_photonics_2022_101103
crossref_primary_10_1364_OE_477912
crossref_primary_10_1021_acs_chemmater_0c04263
crossref_primary_10_1021_acs_nanolett_1c03656
crossref_primary_10_1002_adom_202202407
crossref_primary_10_1002_lpor_202200189
Cites_doi 10.1021/acsnano.8b08948
10.1103/PhysRev.160.290
10.1002/smll.201702107
10.1021/acsami.8b17396
10.1021/acs.nanolett.8b01912
10.1021/acsnano.9b06870
10.1038/nmeth.1221
10.1002/adom.201800784
10.1002/adom.201901514
10.1002/adma.201500449
10.1021/acsnano.6b03916
10.1021/nl503057g
10.1021/acs.nanolett.8b02811
10.1063/1.109714
10.1021/acsnano.8b02793
10.1021/acsnano.7b04496
10.1063/1.1599037
10.1002/adma.201604268
10.1038/s41467-018-07706-9
10.1038/s41467-018-07972-7
10.1038/s41467-019-08425-5
10.1021/acsnano.6b07374
10.1126/science.aba4597
10.1021/acsphotonics.6b00940
10.1002/adom.201800278
10.1021/ja401926u
10.1021/ja809598r
10.1021/acs.jpcc.8b01419
10.1049/el.2014.2011
10.1515/nanoph-2019-0443
10.1063/1.5107449
10.1021/acsnano.8b04170
10.1002/smll.202000410
10.1038/s41598-019-54412-7
10.1002/lpor.201900079
10.1039/C5NR05435D
10.1002/adma.201606205
10.1103/PhysRevLett.115.027403
10.1002/adma.201801481
10.1038/srep06589
10.1134/S1063782616070150
10.1134/S106378261810010X
ContentType Journal Article
Copyright 2020. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2020. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SP
7U5
8FD
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L7M
P5Z
P62
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
DOA
DOI 10.1515/nanoph-2020-0207
DatabaseName CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
Technology Research Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest Central Korea
Solid State and Superconductivity Abstracts
ProQuest One Academic
Advanced Technologies Database with Aerospace
DatabaseTitleList
CrossRef
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: http://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 2192-8614
EndPage 3984
ExternalDocumentID oai_doaj_org_article_3871225f08124df780f0991376ac925a
10_1515_nanoph_2020_0207
10_1515_nanoph_2020_02079123977
GrantInformation_xml – fundername: Ministry of Science and Higher Education
  grantid: 14.Y26.31.0010
– fundername: Russian Science Foundation
  grantid: 18-73-00346
– fundername: European Regional Development Fund
  grantid: 01.2.2-LMT-K-718-01-0014
GroupedDBID 0R~
0~D
5VS
8FE
8FG
AAFWJ
ABFKT
ACGFS
ADBBV
AEJTT
AENEX
AFKRA
AFPKN
AHGSO
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
F-.
GROUPED_DOAJ
HCIFZ
HZ~
O9-
OK1
P62
PIMPY
PROAC
QD8
SA.
AAYXX
CCPQU
CITATION
7SP
7U5
8FD
ABUWG
AZQEC
DWQXO
L7M
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c501t-ec99399d2a6deff0dc6b16f40769d49f92100593d023dd63c179295ce8abdb303
IEDL.DBID DOA
ISSN 2192-8606
IngestDate Tue Oct 22 15:09:10 EDT 2024
Thu Oct 10 20:18:11 EDT 2024
Thu Nov 21 22:30:36 EST 2024
Fri Nov 25 00:38:54 EST 2022
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License This work is licensed under the Creative Commons Attribution 4.0 International License.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c501t-ec99399d2a6deff0dc6b16f40769d49f92100593d023dd63c179295ce8abdb303
ORCID 0000-0002-3846-0569
0000-0002-9257-6183
OpenAccessLink https://doaj.org/article/3871225f08124df780f0991376ac925a
PQID 2441644885
PQPubID 2038884
PageCount 08
ParticipantIDs doaj_primary_oai_doaj_org_article_3871225f08124df780f0991376ac925a
proquest_journals_2441644885
crossref_primary_10_1515_nanoph_2020_0207
walterdegruyter_journals_10_1515_nanoph_2020_02079123977
PublicationCentury 2000
PublicationDate 2020-09-01
PublicationDateYYYYMMDD 2020-09-01
PublicationDate_xml – month: 09
  year: 2020
  text: 2020-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin
PublicationPlace_xml – name: Berlin
PublicationTitle Nanophotonics (Berlin, Germany)
PublicationYear 2020
Publisher De Gruyter
Walter de Gruyter GmbH
Publisher_xml – name: De Gruyter
– name: Walter de Gruyter GmbH
References 2023040102161423546_j_nanoph-2020-0207_ref_038_w2aab3b7d927b1b6b1ab2b2c38Aa
2023040102161423546_j_nanoph-2020-0207_ref_033_w2aab3b7d927b1b6b1ab2b2c33Aa
2023040102161423546_j_nanoph-2020-0207_ref_004_w2aab3b7d927b1b6b1ab2b2b4Aa
2023040102161423546_j_nanoph-2020-0207_ref_014_w2aab3b7d927b1b6b1ab2b2c14Aa
2023040102161423546_j_nanoph-2020-0207_ref_042_w2aab3b7d927b1b6b1ab2b2c42Aa
2023040102161423546_j_nanoph-2020-0207_ref_010_w2aab3b7d927b1b6b1ab2b2c10Aa
2023040102161423546_j_nanoph-2020-0207_ref_015_w2aab3b7d927b1b6b1ab2b2c15Aa
2023040102161423546_j_nanoph-2020-0207_ref_043_w2aab3b7d927b1b6b1ab2b2c43Aa
2023040102161423546_j_nanoph-2020-0207_ref_008_w2aab3b7d927b1b6b1ab2b2b8Aa
2023040102161423546_j_nanoph-2020-0207_ref_024_w2aab3b7d927b1b6b1ab2b2c24Aa
2023040102161423546_j_nanoph-2020-0207_ref_029_w2aab3b7d927b1b6b1ab2b2c29Aa
2023040102161423546_j_nanoph-2020-0207_ref_003_w2aab3b7d927b1b6b1ab2b2b3Aa
2023040102161423546_j_nanoph-2020-0207_ref_020_w2aab3b7d927b1b6b1ab2b2c20Aa
2023040102161423546_j_nanoph-2020-0207_ref_025_w2aab3b7d927b1b6b1ab2b2c25Aa
2023040102161423546_j_nanoph-2020-0207_ref_034_w2aab3b7d927b1b6b1ab2b2c34Aa
2023040102161423546_j_nanoph-2020-0207_ref_039_w2aab3b7d927b1b6b1ab2b2c39Aa
2023040102161423546_j_nanoph-2020-0207_ref_044_w2aab3b7d927b1b6b1ab2b2c44Aa
2023040102161423546_j_nanoph-2020-0207_ref_007_w2aab3b7d927b1b6b1ab2b2b7Aa
2023040102161423546_j_nanoph-2020-0207_ref_035_w2aab3b7d927b1b6b1ab2b2c35Aa
2023040102161423546_j_nanoph-2020-0207_ref_016_w2aab3b7d927b1b6b1ab2b2c16Aa
2023040102161423546_j_nanoph-2020-0207_ref_011_w2aab3b7d927b1b6b1ab2b2c11Aa
2023040102161423546_j_nanoph-2020-0207_ref_012_w2aab3b7d927b1b6b1ab2b2c12Aa
2023040102161423546_j_nanoph-2020-0207_ref_017_w2aab3b7d927b1b6b1ab2b2c17Aa
2023040102161423546_j_nanoph-2020-0207_ref_002_w2aab3b7d927b1b6b1ab2b2b2Aa
2023040102161423546_j_nanoph-2020-0207_ref_030_w2aab3b7d927b1b6b1ab2b2c30Aa
2023040102161423546_j_nanoph-2020-0207_ref_026_w2aab3b7d927b1b6b1ab2b2c26Aa
2023040102161423546_j_nanoph-2020-0207_ref_021_w2aab3b7d927b1b6b1ab2b2c21Aa
2023040102161423546_j_nanoph-2020-0207_ref_006_w2aab3b7d927b1b6b1ab2b2b6Aa
2023040102161423546_j_nanoph-2020-0207_ref_031_w2aab3b7d927b1b6b1ab2b2c31Aa
2023040102161423546_j_nanoph-2020-0207_ref_036_w2aab3b7d927b1b6b1ab2b2c36Aa
2023040102161423546_j_nanoph-2020-0207_ref_027_w2aab3b7d927b1b6b1ab2b2c27Aa
2023040102161423546_j_nanoph-2020-0207_ref_001_w2aab3b7d927b1b6b1ab2b2b1Aa
2023040102161423546_j_nanoph-2020-0207_ref_040_w2aab3b7d927b1b6b1ab2b2c40Aa
2023040102161423546_j_nanoph-2020-0207_ref_041_w2aab3b7d927b1b6b1ab2b2c41Aa
2023040102161423546_j_nanoph-2020-0207_ref_022_w2aab3b7d927b1b6b1ab2b2c22Aa
2023040102161423546_j_nanoph-2020-0207_ref_005_w2aab3b7d927b1b6b1ab2b2b5Aa
2023040102161423546_j_nanoph-2020-0207_ref_013_w2aab3b7d927b1b6b1ab2b2c13Aa
2023040102161423546_j_nanoph-2020-0207_ref_018_w2aab3b7d927b1b6b1ab2b2c18Aa
2023040102161423546_j_nanoph-2020-0207_ref_023_w2aab3b7d927b1b6b1ab2b2c23Aa
2023040102161423546_j_nanoph-2020-0207_ref_028_w2aab3b7d927b1b6b1ab2b2c28Aa
2023040102161423546_j_nanoph-2020-0207_ref_019_w2aab3b7d927b1b6b1ab2b2c19Aa
2023040102161423546_j_nanoph-2020-0207_ref_037_w2aab3b7d927b1b6b1ab2b2c37Aa
2023040102161423546_j_nanoph-2020-0207_ref_032_w2aab3b7d927b1b6b1ab2b2c32Aa
2023040102161423546_j_nanoph-2020-0207_ref_009_w2aab3b7d927b1b6b1ab2b2b9Aa
References_xml – ident: 2023040102161423546_j_nanoph-2020-0207_ref_002_w2aab3b7d927b1b6b1ab2b2b2Aa
– ident: 2023040102161423546_j_nanoph-2020-0207_ref_009_w2aab3b7d927b1b6b1ab2b2b9Aa
  doi: 10.1021/acsnano.8b08948
– ident: 2023040102161423546_j_nanoph-2020-0207_ref_032_w2aab3b7d927b1b6b1ab2b2c32Aa
  doi: 10.1103/PhysRev.160.290
– ident: 2023040102161423546_j_nanoph-2020-0207_ref_023_w2aab3b7d927b1b6b1ab2b2c23Aa
  doi: 10.1002/smll.201702107
– ident: 2023040102161423546_j_nanoph-2020-0207_ref_029_w2aab3b7d927b1b6b1ab2b2c29Aa
  doi: 10.1021/acsami.8b17396
– ident: 2023040102161423546_j_nanoph-2020-0207_ref_043_w2aab3b7d927b1b6b1ab2b2c43Aa
  doi: 10.1021/acs.nanolett.8b01912
– ident: 2023040102161423546_j_nanoph-2020-0207_ref_016_w2aab3b7d927b1b6b1ab2b2c16Aa
– ident: 2023040102161423546_j_nanoph-2020-0207_ref_038_w2aab3b7d927b1b6b1ab2b2c38Aa
  doi: 10.1021/acsnano.9b06870
– ident: 2023040102161423546_j_nanoph-2020-0207_ref_031_w2aab3b7d927b1b6b1ab2b2c31Aa
  doi: 10.1038/nmeth.1221
– ident: 2023040102161423546_j_nanoph-2020-0207_ref_013_w2aab3b7d927b1b6b1ab2b2c13Aa
  doi: 10.1002/adom.201800784
– ident: 2023040102161423546_j_nanoph-2020-0207_ref_024_w2aab3b7d927b1b6b1ab2b2c24Aa
  doi: 10.1002/adom.201901514
– ident: 2023040102161423546_j_nanoph-2020-0207_ref_021_w2aab3b7d927b1b6b1ab2b2c21Aa
  doi: 10.1002/adma.201500449
– ident: 2023040102161423546_j_nanoph-2020-0207_ref_035_w2aab3b7d927b1b6b1ab2b2c35Aa
  doi: 10.1021/acsnano.6b03916
– ident: 2023040102161423546_j_nanoph-2020-0207_ref_006_w2aab3b7d927b1b6b1ab2b2b6Aa
  doi: 10.1021/nl503057g
– ident: 2023040102161423546_j_nanoph-2020-0207_ref_022_w2aab3b7d927b1b6b1ab2b2c22Aa
  doi: 10.1021/acs.nanolett.8b02811
– ident: 2023040102161423546_j_nanoph-2020-0207_ref_033_w2aab3b7d927b1b6b1ab2b2c33Aa
  doi: 10.1063/1.109714
– ident: 2023040102161423546_j_nanoph-2020-0207_ref_037_w2aab3b7d927b1b6b1ab2b2c37Aa
  doi: 10.1021/acsnano.8b02793
– ident: 2023040102161423546_j_nanoph-2020-0207_ref_007_w2aab3b7d927b1b6b1ab2b2b7Aa
  doi: 10.1021/acsnano.7b04496
– ident: 2023040102161423546_j_nanoph-2020-0207_ref_034_w2aab3b7d927b1b6b1ab2b2c34Aa
  doi: 10.1063/1.1599037
– ident: 2023040102161423546_j_nanoph-2020-0207_ref_011_w2aab3b7d927b1b6b1ab2b2c11Aa
  doi: 10.1002/adma.201604268
– ident: 2023040102161423546_j_nanoph-2020-0207_ref_005_w2aab3b7d927b1b6b1ab2b2b5Aa
  doi: 10.1038/s41467-018-07706-9
– ident: 2023040102161423546_j_nanoph-2020-0207_ref_008_w2aab3b7d927b1b6b1ab2b2b8Aa
  doi: 10.1038/s41467-018-07972-7
– ident: 2023040102161423546_j_nanoph-2020-0207_ref_003_w2aab3b7d927b1b6b1ab2b2b3Aa
  doi: 10.1038/s41467-019-08425-5
– ident: 2023040102161423546_j_nanoph-2020-0207_ref_036_w2aab3b7d927b1b6b1ab2b2c36Aa
  doi: 10.1021/acsnano.6b07374
– ident: 2023040102161423546_j_nanoph-2020-0207_ref_039_w2aab3b7d927b1b6b1ab2b2c39Aa
  doi: 10.1126/science.aba4597
– ident: 2023040102161423546_j_nanoph-2020-0207_ref_010_w2aab3b7d927b1b6b1ab2b2c10Aa
  doi: 10.1021/acsphotonics.6b00940
– ident: 2023040102161423546_j_nanoph-2020-0207_ref_019_w2aab3b7d927b1b6b1ab2b2c19Aa
  doi: 10.1002/adom.201800278
– ident: 2023040102161423546_j_nanoph-2020-0207_ref_027_w2aab3b7d927b1b6b1ab2b2c27Aa
  doi: 10.1021/ja401926u
– ident: 2023040102161423546_j_nanoph-2020-0207_ref_001_w2aab3b7d927b1b6b1ab2b2b1Aa
  doi: 10.1021/ja809598r
– ident: 2023040102161423546_j_nanoph-2020-0207_ref_017_w2aab3b7d927b1b6b1ab2b2c17Aa
  doi: 10.1021/acs.jpcc.8b01419
– ident: 2023040102161423546_j_nanoph-2020-0207_ref_030_w2aab3b7d927b1b6b1ab2b2c30Aa
  doi: 10.1049/el.2014.2011
– ident: 2023040102161423546_j_nanoph-2020-0207_ref_020_w2aab3b7d927b1b6b1ab2b2c20Aa
  doi: 10.1515/nanoph-2019-0443
– ident: 2023040102161423546_j_nanoph-2020-0207_ref_015_w2aab3b7d927b1b6b1ab2b2c15Aa
  doi: 10.1063/1.5107449
– ident: 2023040102161423546_j_nanoph-2020-0207_ref_004_w2aab3b7d927b1b6b1ab2b2b4Aa
  doi: 10.1021/acsnano.8b04170
– ident: 2023040102161423546_j_nanoph-2020-0207_ref_041_w2aab3b7d927b1b6b1ab2b2c41Aa
  doi: 10.1002/smll.202000410
– ident: 2023040102161423546_j_nanoph-2020-0207_ref_018_w2aab3b7d927b1b6b1ab2b2c18Aa
  doi: 10.1038/s41598-019-54412-7
– ident: 2023040102161423546_j_nanoph-2020-0207_ref_012_w2aab3b7d927b1b6b1ab2b2c12Aa
  doi: 10.1002/lpor.201900079
– ident: 2023040102161423546_j_nanoph-2020-0207_ref_044_w2aab3b7d927b1b6b1ab2b2c44Aa
  doi: 10.1039/C5NR05435D
– ident: 2023040102161423546_j_nanoph-2020-0207_ref_040_w2aab3b7d927b1b6b1ab2b2c40Aa
  doi: 10.1002/adma.201606205
– ident: 2023040102161423546_j_nanoph-2020-0207_ref_025_w2aab3b7d927b1b6b1ab2b2c25Aa
  doi: 10.1103/PhysRevLett.115.027403
– ident: 2023040102161423546_j_nanoph-2020-0207_ref_014_w2aab3b7d927b1b6b1ab2b2c14Aa
  doi: 10.1002/adma.201801481
– ident: 2023040102161423546_j_nanoph-2020-0207_ref_026_w2aab3b7d927b1b6b1ab2b2c26Aa
  doi: 10.1038/srep06589
– ident: 2023040102161423546_j_nanoph-2020-0207_ref_042_w2aab3b7d927b1b6b1ab2b2c42Aa
  doi: 10.1134/S1063782616070150
– ident: 2023040102161423546_j_nanoph-2020-0207_ref_028_w2aab3b7d927b1b6b1ab2b2c28Aa
  doi: 10.1134/S106378261810010X
SSID ssj0000993196
Score 2.3512132
Snippet Over the last five years, inorganic lead halide perovskite nanowires have emerged as prospective candidates to supersede standard semiconductor analogs in...
SourceID doaj
proquest
crossref
walterdegruyter
SourceType Open Website
Aggregation Database
Publisher
StartPage 3977
SubjectTerms Crystallization
CsPbBr
cspbbr3
Fabry-Perot interferometers
Fabry–Pérot cavity
Indium tin oxides
Lasing
Lead compounds
Metal halides
Microcavities
nanolaser
Nanostructure
nanowire
Nanowires
Optoelectronic devices
perovskite
Perovskites
Q factors
Refractivity
Room temperature
Substrates
ultrahigh quality factor
Title Perovskite nanowire lasers on low-refractive-index conductive substrate for high-Q and low-threshold operation
URI http://www.degruyter.com/doi/10.1515/nanoph-2020-0207
https://www.proquest.com/docview/2441644885
https://doaj.org/article/3871225f08124df780f0991376ac925a
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1JSywxEA7qyYvrkzdu5ODFQ7DXTHJ0xZMoKrxbyKo8pHuYnnHw31uV9LiBePHQl5CGouqrrq86yRdCDspS89JlglVaeFa5qmIGqhCrysJA8nHH46m0y9vh1T9xdo4yOW9XfeGesCQPnBx3VAKjB8yFDCuRC0ORBSA1OeSFtrKoEzXK-Idm6n_iPYgtvFkOKAwTQNP7NUqo30eNbtrRIwAEWid4hp9qUpTu_8Q3V2Zx5dr5h_H0ZTJfKY0F6GKNrPTMkR4ni9fJgm82yGrPImmfo90maa79uH3u8K8sRRNQjJgCRwaeR9uGPrUzBhbEw1HPnkW1RApNMeq-wgDt4EsSFWsp0FmKasbshurGxRcnEPkOF6xoO_IJO3_I_cX53ekl629VYLbO8gnzFnwjpSs0dz6EzFluch6gsePSVTJIcCfe8-egmjvHSwspW8jaeqGNM1DxtshS0zb-L6EcvVzn0HNoU-XWyBDEMBTWOG249WZADud-VaMknqGw6YAYqBQDhTFQGIMBOUHHv81D2es4AGBQPRjUT2AYkN152FSfi50CApNjFyrqARFfQvk-6zu7JJR24Mjbv2HeDllOmMMtartkaTKe-j2y2LnpfoTvK0UU8fI
link.rule.ids 315,782,786,866,2106,27933,27934
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Perovskite+nanowire+lasers+on+low-refractive-index+conductive+substrate+for+high-Q+and+low-threshold+operation&rft.jtitle=Nanophotonics+%28Berlin%2C+Germany%29&rft.au=Markina%2C+Daria+I&rft.au=Pushkarev%2C+Anatoly+P&rft.au=Shishkin%2C+Ivan+I&rft.au=Komissarenko%2C+Filipp+E&rft.date=2020-09-01&rft.pub=Walter+de+Gruyter+GmbH&rft.issn=2192-8606&rft.eissn=2192-8614&rft.volume=9&rft.issue=12&rft.spage=3977&rft.epage=3984&rft_id=info:doi/10.1515%2Fnanoph-2020-0207
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2192-8606&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2192-8606&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2192-8606&client=summon