Perovskite nanowire lasers on low-refractive-index conductive substrate for high-Q and low-threshold operation
Over the last five years, inorganic lead halide perovskite nanowires have emerged as prospective candidates to supersede standard semiconductor analogs in advanced photonic designs and optoelectronic devices. In particular, CsPbX (X = Cl, Br, I) perovskite materials have great advantages over conven...
Saved in:
Published in: | Nanophotonics (Berlin, Germany) Vol. 9; no. 12; pp. 3977 - 3984 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Berlin
De Gruyter
01-09-2020
Walter de Gruyter GmbH |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Over the last five years, inorganic lead halide perovskite nanowires have emerged as prospective candidates to supersede standard semiconductor analogs in advanced photonic designs and optoelectronic devices. In particular, CsPbX
(X = Cl, Br, I) perovskite materials have great advantages over conventional semiconductors such as defect tolerance, highly efficient luminescence, and the ability to form regularly shaped nano- and microcavities from solution via fast crystallization. However, on the way of electrically pumped lasing, the perovskite nanowires grown on transparent conductive substrates usually suffer from strong undesirable light leakage increasing their threshold of lasing. Here, we report on the integration of CsPbBr
nanowires with nanostructured indium tin oxide substrates possessing near-unity effective refractive index and high conductivity by using a simple wet chemical approach. Surface passivation of the substrates is found out to govern the regularity of the perovskite resonators’ shape. The nanowires show room-temperature lasing with ultrahigh quality factors (up to 7860) which are up to four times higher than that of similar structures on a flat indium tin oxide layer, resulting in more than twofold reduction of the lasing threshold for the nanostructured substrate. Numerical modeling of eigenmodes of the nanowires confirms the key role of low-refractive-index substrate for improved light confinement in the Fabry–Pérot cavity which results in superior laser performance. |
---|---|
AbstractList | Over the last five years, inorganic lead halide perovskite nanowires have emerged as prospective candidates to supersede standard semiconductor analogs in advanced photonic designs and optoelectronic devices. In particular, CsPbX
(X = Cl, Br, I) perovskite materials have great advantages over conventional semiconductors such as defect tolerance, highly efficient luminescence, and the ability to form regularly shaped nano- and microcavities from solution via fast crystallization. However, on the way of electrically pumped lasing, the perovskite nanowires grown on transparent conductive substrates usually suffer from strong undesirable light leakage increasing their threshold of lasing. Here, we report on the integration of CsPbBr
nanowires with nanostructured indium tin oxide substrates possessing near-unity effective refractive index and high conductivity by using a simple wet chemical approach. Surface passivation of the substrates is found out to govern the regularity of the perovskite resonators’ shape. The nanowires show room-temperature lasing with ultrahigh quality factors (up to 7860) which are up to four times higher than that of similar structures on a flat indium tin oxide layer, resulting in more than twofold reduction of the lasing threshold for the nanostructured substrate. Numerical modeling of eigenmodes of the nanowires confirms the key role of low-refractive-index substrate for improved light confinement in the Fabry–Pérot cavity which results in superior laser performance. Over the last five years, inorganic lead halide perovskite nanowires have emerged as prospective candidates to supersede standard semiconductor analogs in advanced photonic designs and optoelectronic devices. In particular, CsPbX 3 (X = Cl, Br, I) perovskite materials have great advantages over conventional semiconductors such as defect tolerance, highly efficient luminescence, and the ability to form regularly shaped nano- and microcavities from solution via fast crystallization. However, on the way of electrically pumped lasing, the perovskite nanowires grown on transparent conductive substrates usually suffer from strong undesirable light leakage increasing their threshold of lasing. Here, we report on the integration of CsPbBr 3 nanowires with nanostructured indium tin oxide substrates possessing near-unity effective refractive index and high conductivity by using a simple wet chemical approach. Surface passivation of the substrates is found out to govern the regularity of the perovskite resonators’ shape. The nanowires show room-temperature lasing with ultrahigh quality factors (up to 7860) which are up to four times higher than that of similar structures on a flat indium tin oxide layer, resulting in more than twofold reduction of the lasing threshold for the nanostructured substrate. Numerical modeling of eigenmodes of the nanowires confirms the key role of low-refractive-index substrate for improved light confinement in the Fabry–Pérot cavity which results in superior laser performance. Over the last five years, inorganic lead halide perovskite nanowires have emerged as prospective candidates to supersede standard semiconductor analogs in advanced photonic designs and optoelectronic devices. In particular, CsPbX3 (X = Cl, Br, I) perovskite materials have great advantages over conventional semiconductors such as defect tolerance, highly efficient luminescence, and the ability to form regularly shaped nano- and microcavities from solution via fast crystallization. However, on the way of electrically pumped lasing, the perovskite nanowires grown on transparent conductive substrates usually suffer from strong undesirable light leakage increasing their threshold of lasing. Here, we report on the integration of CsPbBr3 nanowires with nanostructured indium tin oxide substrates possessing near-unity effective refractive index and high conductivity by using a simple wet chemical approach. Surface passivation of the substrates is found out to govern the regularity of the perovskite resonators’ shape. The nanowires show room-temperature lasing with ultrahigh quality factors (up to 7860) which are up to four times higher than that of similar structures on a flat indium tin oxide layer, resulting in more than twofold reduction of the lasing threshold for the nanostructured substrate. Numerical modeling of eigenmodes of the nanowires confirms the key role of low-refractive-index substrate for improved light confinement in the Fabry–Pérot cavity which results in superior laser performance. Over the last five years, inorganic lead halide perovskite nanowires have emerged as prospective candidates to supersede standard semiconductor analogs in advanced photonic designs and optoelectronic devices. In particular, CsPbX3 (X = Cl, Br, I) perovskite materials have great advantages over conventional semiconductors such as defect tolerance, highly efficient luminescence, and the ability to form regularly shaped nano- and microcavities from solution via fast crystallization. However, on the way of electrically pumped lasing, the perovskite nanowires grown on transparent conductive substrates usually suffer from strong undesirable light leakage increasing their threshold of lasing. Here, we report on the integration of CsPbBr3 nanowires with nanostructured indium tin oxide substrates possessing near-unity effective refractive index and high conductivity by using a simple wet chemical approach. Surface passivation of the substrates is found out to govern the regularity of the perovskite resonators’ shape. The nanowires show room-temperature lasing with ultrahigh quality factors (up to 7860) which are up to four times higher than that of similar structures on a flat indium tin oxide layer, resulting in more than twofold reduction of the lasing threshold for the nanostructured substrate. Numerical modeling of eigenmodes of the nanowires confirms the key role of low-refractive-index substrate for improved light confinement in the Fabry–Pérot cavity which results in superior laser performance. |
Author | Shishkin, Ivan I. Berestennikov, Alexander S. Makarov, Sergey V. Zakhidov, Anvar A. Pavluchenko, Alexey S. Pushkarev, Anatoly P. Komissarenko, Filipp E. Vengris, Mikas Markina, Daria I. Smirnova, Irina P. Markov, Lev K. |
Author_xml | – sequence: 1 givenname: Daria I. orcidid: 0000-0002-3846-0569 surname: Markina fullname: Markina, Daria I. organization: Department of Physics and Engineering, ITMO University, St. Petersburg, 197101, Russia – sequence: 2 givenname: Anatoly P. surname: Pushkarev fullname: Pushkarev, Anatoly P. email: anatoly.pushkarev@metalab.ifmo.ru organization: Department of Physics and Engineering, ITMO University, St. Petersburg, 197101, Russia – sequence: 3 givenname: Ivan I. surname: Shishkin fullname: Shishkin, Ivan I. organization: Department of Physics and Engineering, ITMO University, St. Petersburg, 197101, Russia – sequence: 4 givenname: Filipp E. surname: Komissarenko fullname: Komissarenko, Filipp E. organization: Department of Physics and Engineering, ITMO University, St. Petersburg, 197101, Russia – sequence: 5 givenname: Alexander S. surname: Berestennikov fullname: Berestennikov, Alexander S. organization: Department of Physics and Engineering, ITMO University, St. Petersburg, 197101, Russia – sequence: 6 givenname: Alexey S. surname: Pavluchenko fullname: Pavluchenko, Alexey S. organization: Ioffe Institute, St. Petersburg, 194021, Russia – sequence: 7 givenname: Irina P. surname: Smirnova fullname: Smirnova, Irina P. organization: Ioffe Institute, St. Petersburg, 194021, Russia – sequence: 8 givenname: Lev K. surname: Markov fullname: Markov, Lev K. organization: Ioffe Institute, St. Petersburg, 194021, Russia – sequence: 9 givenname: Mikas surname: Vengris fullname: Vengris, Mikas organization: Laser Research Center, Faculty of Physics, Vilnius University, Vilnius, LT-10223, Lithuania – sequence: 10 givenname: Anvar A. surname: Zakhidov fullname: Zakhidov, Anvar A. organization: University of Texas at Dallas, Richardson, TX, 75080, USA – sequence: 11 givenname: Sergey V. orcidid: 0000-0002-9257-6183 surname: Makarov fullname: Makarov, Sergey V. email: s.makarov@metalab.ifmo.ru organization: Department of Physics and Engineering, ITMO University, St. Petersburg, 197101, Russia |
BookMark | eNp1kd1LHDEUxUOxULW--xjwOZqPmczkSURsFYS2UJ9DNrnZyXaarMmMW__7ZnfEPjUQcrmc38nlnhN0FFMEhM4ZvWQta6-iiWk7EE45JfV2H9AxZ4qTXrLm6L2m8hM6K2VD61FKMCWPUfwOOb2UX2ECvHfZhQx4NAVywSniMe1IBp-NncILkBAd_ME2RTcfGrjMqzJlU2GfMh7CeiA_sInuAE5DhjKk0eG0hSoKKX5GH70ZC5y9vafo6cvdz9t78vjt68PtzSOxLWUTAVvnU8pxIx14T52VKyZ9QzupXKO84ozSVglHuXBOCss6xVVroTcrtxJUnKKHxdcls9HbHH6b_KqTCfrQSHmtTZ6CHUGLvmOct572jDfOdz31dTtMdNJYxVtTvS4Wr21OzzOUSW_SnGMdX_OmYbJp-r6tKrqobE6l1J29_8qo3oekl5D0PiS9D6ki1wuyM-ME2cE6z6-1-Of_P1QxLlTXib8VMJ1z |
CitedBy_id | crossref_primary_10_1088_1742_6596_2015_1_012087 crossref_primary_10_1021_acs_jpcc_1c01492 crossref_primary_10_1016_j_optmat_2022_112068 crossref_primary_10_1098_rsos_220475 crossref_primary_10_1515_nanoph_2020_0548 crossref_primary_10_1021_acsnano_0c06463 crossref_primary_10_1002_adom_202301877 crossref_primary_10_3390_nano13030419 crossref_primary_10_3390_magnetochemistry9050137 crossref_primary_10_1016_j_cis_2021_102548 crossref_primary_10_1364_OSAC_424375 crossref_primary_10_1021_acs_nanolett_3c04797 crossref_primary_10_1134_S1063782622010110 crossref_primary_10_1002_adma_202300179 crossref_primary_10_1515_nanoph_2021_0280 crossref_primary_10_1002_adom_202101535 crossref_primary_10_1002_lpor_202100728 crossref_primary_10_1134_S1063782621040102 crossref_primary_10_1088_1742_6596_2172_1_012004 crossref_primary_10_1021_acsanm_3c01963 crossref_primary_10_1016_j_photonics_2022_101103 crossref_primary_10_1364_OE_477912 crossref_primary_10_1021_acs_chemmater_0c04263 crossref_primary_10_1021_acs_nanolett_1c03656 crossref_primary_10_1002_adom_202202407 crossref_primary_10_1002_lpor_202200189 |
Cites_doi | 10.1021/acsnano.8b08948 10.1103/PhysRev.160.290 10.1002/smll.201702107 10.1021/acsami.8b17396 10.1021/acs.nanolett.8b01912 10.1021/acsnano.9b06870 10.1038/nmeth.1221 10.1002/adom.201800784 10.1002/adom.201901514 10.1002/adma.201500449 10.1021/acsnano.6b03916 10.1021/nl503057g 10.1021/acs.nanolett.8b02811 10.1063/1.109714 10.1021/acsnano.8b02793 10.1021/acsnano.7b04496 10.1063/1.1599037 10.1002/adma.201604268 10.1038/s41467-018-07706-9 10.1038/s41467-018-07972-7 10.1038/s41467-019-08425-5 10.1021/acsnano.6b07374 10.1126/science.aba4597 10.1021/acsphotonics.6b00940 10.1002/adom.201800278 10.1021/ja401926u 10.1021/ja809598r 10.1021/acs.jpcc.8b01419 10.1049/el.2014.2011 10.1515/nanoph-2019-0443 10.1063/1.5107449 10.1021/acsnano.8b04170 10.1002/smll.202000410 10.1038/s41598-019-54412-7 10.1002/lpor.201900079 10.1039/C5NR05435D 10.1002/adma.201606205 10.1103/PhysRevLett.115.027403 10.1002/adma.201801481 10.1038/srep06589 10.1134/S1063782616070150 10.1134/S106378261810010X |
ContentType | Journal Article |
Copyright | 2020. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2020. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7SP 7U5 8FD 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L7M P5Z P62 PIMPY PQEST PQQKQ PQUKI PRINS DOA |
DOI | 10.1515/nanoph-2020-0207 |
DatabaseName | CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea SciTech Premium Collection Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection Technology Research Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest Central Korea Solid State and Superconductivity Abstracts ProQuest One Academic Advanced Technologies Database with Aerospace |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: http://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences |
EISSN | 2192-8614 |
EndPage | 3984 |
ExternalDocumentID | oai_doaj_org_article_3871225f08124df780f0991376ac925a 10_1515_nanoph_2020_0207 10_1515_nanoph_2020_02079123977 |
GrantInformation_xml | – fundername: Ministry of Science and Higher Education grantid: 14.Y26.31.0010 – fundername: Russian Science Foundation grantid: 18-73-00346 – fundername: European Regional Development Fund grantid: 01.2.2-LMT-K-718-01-0014 |
GroupedDBID | 0R~ 0~D 5VS 8FE 8FG AAFWJ ABFKT ACGFS ADBBV AEJTT AENEX AFKRA AFPKN AHGSO ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ F-. GROUPED_DOAJ HCIFZ HZ~ O9- OK1 P62 PIMPY PROAC QD8 SA. AAYXX CCPQU CITATION 7SP 7U5 8FD ABUWG AZQEC DWQXO L7M PQEST PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c501t-ec99399d2a6deff0dc6b16f40769d49f92100593d023dd63c179295ce8abdb303 |
IEDL.DBID | DOA |
ISSN | 2192-8606 |
IngestDate | Tue Oct 22 15:09:10 EDT 2024 Thu Oct 10 20:18:11 EDT 2024 Thu Nov 21 22:30:36 EST 2024 Fri Nov 25 00:38:54 EST 2022 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
License | This work is licensed under the Creative Commons Attribution 4.0 International License. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c501t-ec99399d2a6deff0dc6b16f40769d49f92100593d023dd63c179295ce8abdb303 |
ORCID | 0000-0002-3846-0569 0000-0002-9257-6183 |
OpenAccessLink | https://doaj.org/article/3871225f08124df780f0991376ac925a |
PQID | 2441644885 |
PQPubID | 2038884 |
PageCount | 08 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_3871225f08124df780f0991376ac925a proquest_journals_2441644885 crossref_primary_10_1515_nanoph_2020_0207 walterdegruyter_journals_10_1515_nanoph_2020_02079123977 |
PublicationCentury | 2000 |
PublicationDate | 2020-09-01 |
PublicationDateYYYYMMDD | 2020-09-01 |
PublicationDate_xml | – month: 09 year: 2020 text: 2020-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Berlin |
PublicationPlace_xml | – name: Berlin |
PublicationTitle | Nanophotonics (Berlin, Germany) |
PublicationYear | 2020 |
Publisher | De Gruyter Walter de Gruyter GmbH |
Publisher_xml | – name: De Gruyter – name: Walter de Gruyter GmbH |
References | 2023040102161423546_j_nanoph-2020-0207_ref_038_w2aab3b7d927b1b6b1ab2b2c38Aa 2023040102161423546_j_nanoph-2020-0207_ref_033_w2aab3b7d927b1b6b1ab2b2c33Aa 2023040102161423546_j_nanoph-2020-0207_ref_004_w2aab3b7d927b1b6b1ab2b2b4Aa 2023040102161423546_j_nanoph-2020-0207_ref_014_w2aab3b7d927b1b6b1ab2b2c14Aa 2023040102161423546_j_nanoph-2020-0207_ref_042_w2aab3b7d927b1b6b1ab2b2c42Aa 2023040102161423546_j_nanoph-2020-0207_ref_010_w2aab3b7d927b1b6b1ab2b2c10Aa 2023040102161423546_j_nanoph-2020-0207_ref_015_w2aab3b7d927b1b6b1ab2b2c15Aa 2023040102161423546_j_nanoph-2020-0207_ref_043_w2aab3b7d927b1b6b1ab2b2c43Aa 2023040102161423546_j_nanoph-2020-0207_ref_008_w2aab3b7d927b1b6b1ab2b2b8Aa 2023040102161423546_j_nanoph-2020-0207_ref_024_w2aab3b7d927b1b6b1ab2b2c24Aa 2023040102161423546_j_nanoph-2020-0207_ref_029_w2aab3b7d927b1b6b1ab2b2c29Aa 2023040102161423546_j_nanoph-2020-0207_ref_003_w2aab3b7d927b1b6b1ab2b2b3Aa 2023040102161423546_j_nanoph-2020-0207_ref_020_w2aab3b7d927b1b6b1ab2b2c20Aa 2023040102161423546_j_nanoph-2020-0207_ref_025_w2aab3b7d927b1b6b1ab2b2c25Aa 2023040102161423546_j_nanoph-2020-0207_ref_034_w2aab3b7d927b1b6b1ab2b2c34Aa 2023040102161423546_j_nanoph-2020-0207_ref_039_w2aab3b7d927b1b6b1ab2b2c39Aa 2023040102161423546_j_nanoph-2020-0207_ref_044_w2aab3b7d927b1b6b1ab2b2c44Aa 2023040102161423546_j_nanoph-2020-0207_ref_007_w2aab3b7d927b1b6b1ab2b2b7Aa 2023040102161423546_j_nanoph-2020-0207_ref_035_w2aab3b7d927b1b6b1ab2b2c35Aa 2023040102161423546_j_nanoph-2020-0207_ref_016_w2aab3b7d927b1b6b1ab2b2c16Aa 2023040102161423546_j_nanoph-2020-0207_ref_011_w2aab3b7d927b1b6b1ab2b2c11Aa 2023040102161423546_j_nanoph-2020-0207_ref_012_w2aab3b7d927b1b6b1ab2b2c12Aa 2023040102161423546_j_nanoph-2020-0207_ref_017_w2aab3b7d927b1b6b1ab2b2c17Aa 2023040102161423546_j_nanoph-2020-0207_ref_002_w2aab3b7d927b1b6b1ab2b2b2Aa 2023040102161423546_j_nanoph-2020-0207_ref_030_w2aab3b7d927b1b6b1ab2b2c30Aa 2023040102161423546_j_nanoph-2020-0207_ref_026_w2aab3b7d927b1b6b1ab2b2c26Aa 2023040102161423546_j_nanoph-2020-0207_ref_021_w2aab3b7d927b1b6b1ab2b2c21Aa 2023040102161423546_j_nanoph-2020-0207_ref_006_w2aab3b7d927b1b6b1ab2b2b6Aa 2023040102161423546_j_nanoph-2020-0207_ref_031_w2aab3b7d927b1b6b1ab2b2c31Aa 2023040102161423546_j_nanoph-2020-0207_ref_036_w2aab3b7d927b1b6b1ab2b2c36Aa 2023040102161423546_j_nanoph-2020-0207_ref_027_w2aab3b7d927b1b6b1ab2b2c27Aa 2023040102161423546_j_nanoph-2020-0207_ref_001_w2aab3b7d927b1b6b1ab2b2b1Aa 2023040102161423546_j_nanoph-2020-0207_ref_040_w2aab3b7d927b1b6b1ab2b2c40Aa 2023040102161423546_j_nanoph-2020-0207_ref_041_w2aab3b7d927b1b6b1ab2b2c41Aa 2023040102161423546_j_nanoph-2020-0207_ref_022_w2aab3b7d927b1b6b1ab2b2c22Aa 2023040102161423546_j_nanoph-2020-0207_ref_005_w2aab3b7d927b1b6b1ab2b2b5Aa 2023040102161423546_j_nanoph-2020-0207_ref_013_w2aab3b7d927b1b6b1ab2b2c13Aa 2023040102161423546_j_nanoph-2020-0207_ref_018_w2aab3b7d927b1b6b1ab2b2c18Aa 2023040102161423546_j_nanoph-2020-0207_ref_023_w2aab3b7d927b1b6b1ab2b2c23Aa 2023040102161423546_j_nanoph-2020-0207_ref_028_w2aab3b7d927b1b6b1ab2b2c28Aa 2023040102161423546_j_nanoph-2020-0207_ref_019_w2aab3b7d927b1b6b1ab2b2c19Aa 2023040102161423546_j_nanoph-2020-0207_ref_037_w2aab3b7d927b1b6b1ab2b2c37Aa 2023040102161423546_j_nanoph-2020-0207_ref_032_w2aab3b7d927b1b6b1ab2b2c32Aa 2023040102161423546_j_nanoph-2020-0207_ref_009_w2aab3b7d927b1b6b1ab2b2b9Aa |
References_xml | – ident: 2023040102161423546_j_nanoph-2020-0207_ref_002_w2aab3b7d927b1b6b1ab2b2b2Aa – ident: 2023040102161423546_j_nanoph-2020-0207_ref_009_w2aab3b7d927b1b6b1ab2b2b9Aa doi: 10.1021/acsnano.8b08948 – ident: 2023040102161423546_j_nanoph-2020-0207_ref_032_w2aab3b7d927b1b6b1ab2b2c32Aa doi: 10.1103/PhysRev.160.290 – ident: 2023040102161423546_j_nanoph-2020-0207_ref_023_w2aab3b7d927b1b6b1ab2b2c23Aa doi: 10.1002/smll.201702107 – ident: 2023040102161423546_j_nanoph-2020-0207_ref_029_w2aab3b7d927b1b6b1ab2b2c29Aa doi: 10.1021/acsami.8b17396 – ident: 2023040102161423546_j_nanoph-2020-0207_ref_043_w2aab3b7d927b1b6b1ab2b2c43Aa doi: 10.1021/acs.nanolett.8b01912 – ident: 2023040102161423546_j_nanoph-2020-0207_ref_016_w2aab3b7d927b1b6b1ab2b2c16Aa – ident: 2023040102161423546_j_nanoph-2020-0207_ref_038_w2aab3b7d927b1b6b1ab2b2c38Aa doi: 10.1021/acsnano.9b06870 – ident: 2023040102161423546_j_nanoph-2020-0207_ref_031_w2aab3b7d927b1b6b1ab2b2c31Aa doi: 10.1038/nmeth.1221 – ident: 2023040102161423546_j_nanoph-2020-0207_ref_013_w2aab3b7d927b1b6b1ab2b2c13Aa doi: 10.1002/adom.201800784 – ident: 2023040102161423546_j_nanoph-2020-0207_ref_024_w2aab3b7d927b1b6b1ab2b2c24Aa doi: 10.1002/adom.201901514 – ident: 2023040102161423546_j_nanoph-2020-0207_ref_021_w2aab3b7d927b1b6b1ab2b2c21Aa doi: 10.1002/adma.201500449 – ident: 2023040102161423546_j_nanoph-2020-0207_ref_035_w2aab3b7d927b1b6b1ab2b2c35Aa doi: 10.1021/acsnano.6b03916 – ident: 2023040102161423546_j_nanoph-2020-0207_ref_006_w2aab3b7d927b1b6b1ab2b2b6Aa doi: 10.1021/nl503057g – ident: 2023040102161423546_j_nanoph-2020-0207_ref_022_w2aab3b7d927b1b6b1ab2b2c22Aa doi: 10.1021/acs.nanolett.8b02811 – ident: 2023040102161423546_j_nanoph-2020-0207_ref_033_w2aab3b7d927b1b6b1ab2b2c33Aa doi: 10.1063/1.109714 – ident: 2023040102161423546_j_nanoph-2020-0207_ref_037_w2aab3b7d927b1b6b1ab2b2c37Aa doi: 10.1021/acsnano.8b02793 – ident: 2023040102161423546_j_nanoph-2020-0207_ref_007_w2aab3b7d927b1b6b1ab2b2b7Aa doi: 10.1021/acsnano.7b04496 – ident: 2023040102161423546_j_nanoph-2020-0207_ref_034_w2aab3b7d927b1b6b1ab2b2c34Aa doi: 10.1063/1.1599037 – ident: 2023040102161423546_j_nanoph-2020-0207_ref_011_w2aab3b7d927b1b6b1ab2b2c11Aa doi: 10.1002/adma.201604268 – ident: 2023040102161423546_j_nanoph-2020-0207_ref_005_w2aab3b7d927b1b6b1ab2b2b5Aa doi: 10.1038/s41467-018-07706-9 – ident: 2023040102161423546_j_nanoph-2020-0207_ref_008_w2aab3b7d927b1b6b1ab2b2b8Aa doi: 10.1038/s41467-018-07972-7 – ident: 2023040102161423546_j_nanoph-2020-0207_ref_003_w2aab3b7d927b1b6b1ab2b2b3Aa doi: 10.1038/s41467-019-08425-5 – ident: 2023040102161423546_j_nanoph-2020-0207_ref_036_w2aab3b7d927b1b6b1ab2b2c36Aa doi: 10.1021/acsnano.6b07374 – ident: 2023040102161423546_j_nanoph-2020-0207_ref_039_w2aab3b7d927b1b6b1ab2b2c39Aa doi: 10.1126/science.aba4597 – ident: 2023040102161423546_j_nanoph-2020-0207_ref_010_w2aab3b7d927b1b6b1ab2b2c10Aa doi: 10.1021/acsphotonics.6b00940 – ident: 2023040102161423546_j_nanoph-2020-0207_ref_019_w2aab3b7d927b1b6b1ab2b2c19Aa doi: 10.1002/adom.201800278 – ident: 2023040102161423546_j_nanoph-2020-0207_ref_027_w2aab3b7d927b1b6b1ab2b2c27Aa doi: 10.1021/ja401926u – ident: 2023040102161423546_j_nanoph-2020-0207_ref_001_w2aab3b7d927b1b6b1ab2b2b1Aa doi: 10.1021/ja809598r – ident: 2023040102161423546_j_nanoph-2020-0207_ref_017_w2aab3b7d927b1b6b1ab2b2c17Aa doi: 10.1021/acs.jpcc.8b01419 – ident: 2023040102161423546_j_nanoph-2020-0207_ref_030_w2aab3b7d927b1b6b1ab2b2c30Aa doi: 10.1049/el.2014.2011 – ident: 2023040102161423546_j_nanoph-2020-0207_ref_020_w2aab3b7d927b1b6b1ab2b2c20Aa doi: 10.1515/nanoph-2019-0443 – ident: 2023040102161423546_j_nanoph-2020-0207_ref_015_w2aab3b7d927b1b6b1ab2b2c15Aa doi: 10.1063/1.5107449 – ident: 2023040102161423546_j_nanoph-2020-0207_ref_004_w2aab3b7d927b1b6b1ab2b2b4Aa doi: 10.1021/acsnano.8b04170 – ident: 2023040102161423546_j_nanoph-2020-0207_ref_041_w2aab3b7d927b1b6b1ab2b2c41Aa doi: 10.1002/smll.202000410 – ident: 2023040102161423546_j_nanoph-2020-0207_ref_018_w2aab3b7d927b1b6b1ab2b2c18Aa doi: 10.1038/s41598-019-54412-7 – ident: 2023040102161423546_j_nanoph-2020-0207_ref_012_w2aab3b7d927b1b6b1ab2b2c12Aa doi: 10.1002/lpor.201900079 – ident: 2023040102161423546_j_nanoph-2020-0207_ref_044_w2aab3b7d927b1b6b1ab2b2c44Aa doi: 10.1039/C5NR05435D – ident: 2023040102161423546_j_nanoph-2020-0207_ref_040_w2aab3b7d927b1b6b1ab2b2c40Aa doi: 10.1002/adma.201606205 – ident: 2023040102161423546_j_nanoph-2020-0207_ref_025_w2aab3b7d927b1b6b1ab2b2c25Aa doi: 10.1103/PhysRevLett.115.027403 – ident: 2023040102161423546_j_nanoph-2020-0207_ref_014_w2aab3b7d927b1b6b1ab2b2c14Aa doi: 10.1002/adma.201801481 – ident: 2023040102161423546_j_nanoph-2020-0207_ref_026_w2aab3b7d927b1b6b1ab2b2c26Aa doi: 10.1038/srep06589 – ident: 2023040102161423546_j_nanoph-2020-0207_ref_042_w2aab3b7d927b1b6b1ab2b2c42Aa doi: 10.1134/S1063782616070150 – ident: 2023040102161423546_j_nanoph-2020-0207_ref_028_w2aab3b7d927b1b6b1ab2b2c28Aa doi: 10.1134/S106378261810010X |
SSID | ssj0000993196 |
Score | 2.3512132 |
Snippet | Over the last five years, inorganic lead halide perovskite nanowires have emerged as prospective candidates to supersede standard semiconductor analogs in... |
SourceID | doaj proquest crossref walterdegruyter |
SourceType | Open Website Aggregation Database Publisher |
StartPage | 3977 |
SubjectTerms | Crystallization CsPbBr cspbbr3 Fabry-Perot interferometers Fabry–Pérot cavity Indium tin oxides Lasing Lead compounds Metal halides Microcavities nanolaser Nanostructure nanowire Nanowires Optoelectronic devices perovskite Perovskites Q factors Refractivity Room temperature Substrates ultrahigh quality factor |
Title | Perovskite nanowire lasers on low-refractive-index conductive substrate for high-Q and low-threshold operation |
URI | http://www.degruyter.com/doi/10.1515/nanoph-2020-0207 https://www.proquest.com/docview/2441644885 https://doaj.org/article/3871225f08124df780f0991376ac925a |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1JSywxEA7qyYvrkzdu5ODFQ7DXTHJ0xZMoKrxbyKo8pHuYnnHw31uV9LiBePHQl5CGouqrrq86yRdCDspS89JlglVaeFa5qmIGqhCrysJA8nHH46m0y9vh1T9xdo4yOW9XfeGesCQPnBx3VAKjB8yFDCuRC0ORBSA1OeSFtrKoEzXK-Idm6n_iPYgtvFkOKAwTQNP7NUqo30eNbtrRIwAEWid4hp9qUpTu_8Q3V2Zx5dr5h_H0ZTJfKY0F6GKNrPTMkR4ni9fJgm82yGrPImmfo90maa79uH3u8K8sRRNQjJgCRwaeR9uGPrUzBhbEw1HPnkW1RApNMeq-wgDt4EsSFWsp0FmKasbshurGxRcnEPkOF6xoO_IJO3_I_cX53ekl629VYLbO8gnzFnwjpSs0dz6EzFluch6gsePSVTJIcCfe8-egmjvHSwspW8jaeqGNM1DxtshS0zb-L6EcvVzn0HNoU-XWyBDEMBTWOG249WZADud-VaMknqGw6YAYqBQDhTFQGIMBOUHHv81D2es4AGBQPRjUT2AYkN152FSfi50CApNjFyrqARFfQvk-6zu7JJR24Mjbv2HeDllOmMMtartkaTKe-j2y2LnpfoTvK0UU8fI |
link.rule.ids | 315,782,786,866,2106,27933,27934 |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Perovskite+nanowire+lasers+on+low-refractive-index+conductive+substrate+for+high-Q+and+low-threshold+operation&rft.jtitle=Nanophotonics+%28Berlin%2C+Germany%29&rft.au=Markina%2C+Daria+I&rft.au=Pushkarev%2C+Anatoly+P&rft.au=Shishkin%2C+Ivan+I&rft.au=Komissarenko%2C+Filipp+E&rft.date=2020-09-01&rft.pub=Walter+de+Gruyter+GmbH&rft.issn=2192-8606&rft.eissn=2192-8614&rft.volume=9&rft.issue=12&rft.spage=3977&rft.epage=3984&rft_id=info:doi/10.1515%2Fnanoph-2020-0207 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2192-8606&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2192-8606&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2192-8606&client=summon |