A distant evolutionary relationship between bacterial sphingomyelinase and mammalian DNase I

The three‐dimensional structure of bacterial sphingomyelinase (SMase) was predicted using a protein fold recognition method; the search of a library of known structures showed that the SMase sequence is highly compatible with the mammalian DNase I structure, which suggested that SMase adopts a struc...

Full description

Saved in:
Bibliographic Details
Published in:Protein science Vol. 5; no. 12; pp. 2459 - 2467
Main Authors: Matsuo, Yo, Yamada, Atsuko, Tsukamoto, Kikuo, Tamura, Hiro‐Omi, Ikezawa, Hiroh, Nakamura, Haruki, Nishikawa, Ken
Format: Journal Article
Language:English
Published: Bristol Cold Spring Harbor Laboratory Press 01-12-1996
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The three‐dimensional structure of bacterial sphingomyelinase (SMase) was predicted using a protein fold recognition method; the search of a library of known structures showed that the SMase sequence is highly compatible with the mammalian DNase I structure, which suggested that SMase adopts a structure similar to that of DNase I. The amino acid sequence alignment based on the prediction revealed that, despite the lack of overall sequence similarity (less than 10% identity), those residues of DNase I that are involved in the hydrolysis of the phosphodiester bond, including two histidine residues (His 134 and His 252) of the active center, are conserved in SMase. In addition, a conserved pentapeptide sequence motif was found, which includes two catalytically critical residues, Asp 251 and His 252. A sequence database search showed that the motif is highly specific to mammalian DNase I and bacterial SMase. The functional roles of SMase residues identified by the sequence comparison were consistent with the results from mutant studies. Two Bacillus cereus SMase mutants (H134A and H252A) were constructed by site‐directed mutagenesis. They completely abolished their catalytic activity. A model for the SMase‐sphingomyelin complex structure was built to investigate how the SMase specifically recognizes its substrate. The model suggested that a set of residues conserved among bacterial SMases, including Trp 28 and Phe 55, might be important in the substrate recognition. The predicted structural similarity and the conservation of the functionally important residues strongly suggest a distant evolutionary relationship between bacterial SMase and mammalian DNase I. These two phosphodiesterases must have acquired the specificity for different substrates in the course of evolution.
AbstractList The three-dimensional structure of bacterial sphingomyelinase (SMase) was predicted using a protein fold recognition method; the search of a library of known structures showed that the SMase sequence is highly compatible with the mammalian DNase I structure, which suggested that SMase adopts a structure similar to that of DNase I. The amino acid sequence alignment based on the prediction revealed that, despite the lack of overall sequence similarity (less than 10% identity), those residues of DNase I that are involved in the hydrolysis of the phosphodiester bond, including two histidine residues (His 134 and His 252) of the active center, are conserved in SMase. In addition, a conserved pentapeptide sequence motif was found, which includes two catalytically critical residues, Asp 251 and His 252. A sequence database search showed that the motif is highly specific to mammalian DNase I and bacterial SMase. The functional roles of SMase residues identified by the sequence comparison were consistent with the results from mutant studies. Two Bacillus cereus SMase mutants (H134A and H252A) were constructed by site-directed mutagenesis. They completely abolished their catalytic activity. A model for the SMase-sphingomyelin complex structure was built to investigate how the SMase specifically recognizes its substrate. The model suggested that a set of residues conserved among bacterial SMases, including Trp 28 and Phe 55, might be important in the substrate recognition. The predicted structural similarity and the conservation of the functionally important residues strongly suggest a distant evolutionary relationship between bacterial SMase and mammalian DNase I. These two phosphodiesterases must have acquired the specificity for different substrates in the course of evolution.
The three‐dimensional structure of bacterial sphingomyelinase (SMase) was predicted using a protein fold recognition method; the search of a library of known structures showed that the SMase sequence is highly compatible with the mammalian DNase I structure, which suggested that SMase adopts a structure similar to that of DNase I. The amino acid sequence alignment based on the prediction revealed that, despite the lack of overall sequence similarity (less than 10% identity), those residues of DNase I that are involved in the hydrolysis of the phosphodiester bond, including two histidine residues (His 134 and His 252) of the active center, are conserved in SMase. In addition, a conserved pentapeptide sequence motif was found, which includes two catalytically critical residues, Asp 251 and His 252. A sequence database search showed that the motif is highly specific to mammalian DNase I and bacterial SMase. The functional roles of SMase residues identified by the sequence comparison were consistent with the results from mutant studies. Two Bacillus cereus SMase mutants (H134A and H252A) were constructed by site‐directed mutagenesis. They completely abolished their catalytic activity. A model for the SMase‐sphingomyelin complex structure was built to investigate how the SMase specifically recognizes its substrate. The model suggested that a set of residues conserved among bacterial SMases, including Trp 28 and Phe 55, might be important in the substrate recognition. The predicted structural similarity and the conservation of the functionally important residues strongly suggest a distant evolutionary relationship between bacterial SMase and mammalian DNase I. These two phosphodiesterases must have acquired the specificity for different substrates in the course of evolution.
Author Tsukamoto, Kikuo
Ikezawa, Hiroh
Nakamura, Haruki
Matsuo, Yo
Tamura, Hiro‐Omi
Nishikawa, Ken
Yamada, Atsuko
AuthorAffiliation Protein Engineering Research Institute, Osaka, Japan
AuthorAffiliation_xml – name: Protein Engineering Research Institute, Osaka, Japan
Author_xml – sequence: 1
  givenname: Yo
  surname: Matsuo
  fullname: Matsuo, Yo
– sequence: 2
  givenname: Atsuko
  surname: Yamada
  fullname: Yamada, Atsuko
– sequence: 3
  givenname: Kikuo
  surname: Tsukamoto
  fullname: Tsukamoto, Kikuo
– sequence: 4
  givenname: Hiro‐Omi
  surname: Tamura
  fullname: Tamura, Hiro‐Omi
– sequence: 5
  givenname: Hiroh
  surname: Ikezawa
  fullname: Ikezawa, Hiroh
– sequence: 6
  givenname: Haruki
  surname: Nakamura
  fullname: Nakamura, Haruki
– sequence: 7
  givenname: Ken
  surname: Nishikawa
  fullname: Nishikawa, Ken
  email: knishika@genes.nig.ac.jp.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/8976554$$D View this record in MEDLINE/PubMed
BookMark eNqFkEtLAzEUhYNUtFa37oT8gal5TNJkIxSfhWJFFFwIQ2Zyp43MJMNkVPrvndLiY-Xq5ubkfOGcIzTwwQNCp5SMKSHsvGnDWAhJiKCMqD00pKnUidLyZYCGREuaKC7VITqK8Y0QklLGD9CB0hMpRDpEr1NsXeyM7zB8hOq9c8Gbdo1bqMzmHFeuwTl0nwAe56booHWmwrFZOb8M9Roq500EbLzFtalrUznj8dX95m52jPZLU0U42c0Rer65frq8S-aL29nldJ4UglCVCEZYCZaDUNKCNrrPkqe5Sa0tCAhZ8JTxouQ8V5aVTGpDLAjN9KR3TUjKR-hiy23e8xpsAb5rTZU1rav7LFkwLvureLfKluEjYzTlnMoeMN4CijbE2EL57aUk29Tc7yH7qbk3nP3-8fv5rtde11v901Ww_oeWPTwufrG_AD3Ujsg
CitedBy_id crossref_primary_10_1006_jmbi_2001_5382
crossref_primary_10_1111_j_1574_6968_2001_tb10832_x
crossref_primary_10_1074_jbc_M506800200
crossref_primary_10_1016_S0092_8674_01_00326_9
crossref_primary_10_1194_jlr_R800004_JLR200
crossref_primary_10_1002_pro_5560070312
crossref_primary_10_1006_bbrc_2001_5328
crossref_primary_10_1128_IAI_73_5_3053_3062_2005
crossref_primary_10_1155_2014_412827
crossref_primary_10_1128_JB_00741_07
crossref_primary_10_1016_j_bbrc_2013_01_002
crossref_primary_10_1110_ps_04966204
crossref_primary_10_1074_jbc_M003080200
crossref_primary_10_1016_j_ydbio_2017_06_028
crossref_primary_10_1074_jbc_M115_636951
crossref_primary_10_1371_journal_pone_0179174
crossref_primary_10_1016_j_abb_2005_02_019
crossref_primary_10_1016_j_fsi_2014_06_014
crossref_primary_10_1371_journal_ppat_1008016
crossref_primary_10_1074_jbc_M412437200
crossref_primary_10_1093_nar_gkr782
crossref_primary_10_1016_j_jbior_2014_10_002
crossref_primary_10_1111_ppa_13539
crossref_primary_10_1016_S0014_5793_98_01470_7
crossref_primary_10_1074_jbc_M006244200
crossref_primary_10_1006_jmbi_1999_2827
crossref_primary_10_1016_S0014_5793_02_03482_8
crossref_primary_10_1016_j_dci_2011_02_013
crossref_primary_10_1016_S0968_0004_00_01582_6
crossref_primary_10_1074_jbc_275_22_16484
crossref_primary_10_1111_j_1432_1033_1997_t01_2_00786_x
crossref_primary_10_1016_j_mimet_2022_106621
crossref_primary_10_1248_bpb_26_920
crossref_primary_10_1016_S0142_9612_03_00341_7
crossref_primary_10_1371_journal_pntd_0003952
crossref_primary_10_1248_yakushi_129_1233
crossref_primary_10_3389_fcimb_2016_00168
crossref_primary_10_3390_vaccines11020359
crossref_primary_10_1074_jbc_M109_004580
crossref_primary_10_1016_j_febslet_2011_01_015
crossref_primary_10_3412_jsb_66_159
crossref_primary_10_1016_j_copbio_2014_12_002
crossref_primary_10_1074_jbc_M805402200
crossref_primary_10_1016_j_bbrc_2012_04_120
crossref_primary_10_1016_S1388_1981_00_00059_7
crossref_primary_10_1002__SICI_1097_0282_1997_44_4_405__AID_BIP5_3_0_CO_2_L
crossref_primary_10_1016_j_fsi_2015_07_006
crossref_primary_10_3389_fcimb_2022_1015706
crossref_primary_10_1186_1471_2105_7_305
Cites_doi 10.1126/science.2643164
10.1038/338357a0
10.1016/S0022-2836(05)80337-7
10.1038/356539a0
10.1128/jb.171.2.744-753.1989
10.1002/pro.5560031118
10.1002/prot.340230303
10.1002/jcc.540070216
10.1126/science.1853201
10.1016/S0022-2836(05)80269-4
10.1093/oxfordjournals.jbchem.a124869
10.1016/0076-6879(91)02005-T
10.3109/15569549109077272
10.1093/nar/19.8.1817
10.1093/protein/6.8.811
10.1016/0097-8485(92)80010-W
10.1038/321620a0
10.1002/prot.340230308
10.1002/bip.360221211
10.1016/0041-0101(94)90211-9
10.1016/0022-2836(92)90693-E
10.1107/S0567739476001873
10.1128/IAI.58.7.2177-2185.1990
10.1093/nar/17.8.3305
10.1083/jcb.108.4.1363
10.1038/358086a0
10.1002/pro.5560031220
10.1016/S0021-9258(18)99008-3
10.1006/jmbi.1994.1109
10.1016/0022-2836(92)91064-V
10.1016/0167-4838(93)90039-T
10.1016/S0021-9258(19)47268-2
10.1002/prot.340160110
10.1016/0962-8924(92)90310-J
10.1016/S0021-9258(17)41834-5
10.1016/S0022-2836(05)80360-2
10.1002/prot.340230310
10.1073/pnas.90.4.1379
10.1016/0022-2836(86)90280-9
10.1016/S0022-2836(77)80200-3
10.1111/j.1432-1033.1988.tb14186.x
10.1107/S0021889891004399
10.1016/0092-8674(94)90275-5
10.1042/bj3090757
10.1016/0022-2836(92)90228-C
10.1006/jmbi.1993.1433
10.1002/j.1460-2075.1991.tb07683.x
10.1038/332464a0
10.1093/nar/16.21.10370
10.1016/0014-5793(94)00435-8
ContentType Journal Article
Copyright Copyright © 1996 The Protein Society
Copyright_xml – notice: Copyright © 1996 The Protein Society
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
5PM
DOI 10.1002/pro.5560051208
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
DatabaseTitleList MEDLINE

CrossRef

Database_xml – sequence: 1
  dbid: ECM
  name: MEDLINE
  url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
EISSN 1469-896X
EndPage 2467
ExternalDocumentID 10_1002_pro_5560051208
8976554
PRO5560051208
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Scientific Research from the Ministry of Education
GroupedDBID ---
.GJ
05W
0R~
123
1L6
1OC
24P
29P
2WC
31~
33P
3SF
3WU
4.4
52U
53G
5RE
6TJ
8-0
8-1
8UM
A00
A8Z
AAESR
AAEVG
AAHHS
AAIHA
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCUV
ABGDZ
ABLJU
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACIWK
ACPOU
ACPRK
ACQPF
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHMBA
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
AOIJS
ATUGU
AUFTA
AZVAB
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
C1A
C45
CAG
COF
CS3
DCZOG
DIK
DRFUL
DRSTM
DU5
E3Z
EBD
EBS
EJD
EMOBN
ESTFP
F5P
G-S
GODZA
GX1
HGLYW
HH5
HYE
HZ~
IH2
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
NNB
O66
O9-
OIG
OK1
OVD
P2P
P2W
P4E
PQQKQ
QRW
RCA
RIG
ROL
RPM
RWI
SJN
SUPJJ
SV3
TEORI
TR2
WBKPD
WIH
WIK
WIN
WNSPC
WOHZO
WOQ
WXSBR
WYISQ
WYJ
XV2
Y6R
YKV
ZGI
ZXP
ZZTAW
~02
~S-
CGR
CUY
CVF
ECM
EIF
NPM
AAMNL
AAYXX
CITATION
5PM
ID FETCH-LOGICAL-c5018-5202fed3e586de9a9051b4ba4ddc0e56c3423cf33b8d2f269a0de59297fed7043
IEDL.DBID RPM
ISSN 0961-8368
IngestDate Tue Sep 17 21:08:05 EDT 2024
Thu Nov 21 22:25:57 EST 2024
Sat Sep 28 07:37:34 EDT 2024
Sat Aug 24 00:53:29 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5018-5202fed3e586de9a9051b4ba4ddc0e56c3423cf33b8d2f269a0de59297fed7043
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/pro.5560051208
PMID 8976554
PageCount 9
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_2143316
crossref_primary_10_1002_pro_5560051208
pubmed_primary_8976554
wiley_primary_10_1002_pro_5560051208_PRO5560051208
PublicationCentury 1900
PublicationDate December 1996
PublicationDateYYYYMMDD 1996-12-01
PublicationDate_xml – month: 12
  year: 1996
  text: December 1996
PublicationDecade 1990
PublicationPlace Bristol
PublicationPlace_xml – name: Bristol
– name: United States
PublicationTitle Protein science
PublicationTitleAlternate Protein Sci
PublicationYear 1996
Publisher Cold Spring Harbor Laboratory Press
Publisher_xml – name: Cold Spring Harbor Laboratory Press
References 1991; 253
1991; 19
1994b; 3
1989; 338
1994; 235
1990; 58
1991; 10
1988; 16
1992; 226
1992; 227
1995; 118
1993; 90
1994a; 245
1992; 16
1993; 6
1976; 32
1992; 8
1990; 215
1991; 202
1991; 266
1990; 213
1993; 16
1994; 269
1989; 108
1986; 7
1991; 24
1986; 321
1995; 309
1995; 23
1992; 356
1989; 264
1989; 243
1992; 358
1994; 78
1989; 171
1986; 192
1988; 332
1988; 175
1977; 112
1994; 3
1992; 2
1983; 22
1989; 17
1994; 32
1993; 232
1993; 1203
3713845 - Nature. 1986 Jun 5-11;321(6070):620-5
875032 - J Mol Biol. 1977 May 25;112(3):535-42
2231712 - J Mol Biol. 1990 Oct 5;215(3):403-10
1709492 - Nucleic Acids Res. 1991 Apr 25;19(8):1817-23
2841128 - Eur J Biochem. 1988 Aug 1;175(2):213-20
7703851 - Protein Sci. 1994 Nov;3(11):2055-63
8309928 - Protein Eng. 1993 Nov;6(8):811-20
1518054 - J Mol Biol. 1992 Aug 20;226(4):1237-56
2647766 - J Cell Biol. 1989 Apr;108(4):1363-73
8107094 - J Mol Biol. 1994 Feb 4;235(5):1598-613
2170661 - J Mol Biol. 1990 Sep 20;215(2):207-10
8079375 - Toxicon. 1994 May;32(5):629-33
8433995 - Proc Natl Acad Sci U S A. 1993 Feb 15;90(4):1379-83
8106344 - J Biol Chem. 1994 Feb 4;269(5):3125-8
6667333 - Biopolymers. 1983 Dec;22(12):2577-637
8537303 - J Biochem. 1995 Jul;118(1):137-48
1522587 - J Mol Biol. 1992 Sep 5;227(1):227-38
2163985 - Infect Immun. 1990 Jul;58(7):2177-85
8710827 - Proteins. 1995 Nov;23(3):337-55
3352748 - Nature. 1988 Mar 31;332(6163):464-8
8355272 - J Mol Biol. 1993 Aug 5;232(3):805-25
7756990 - Protein Sci. 1994 Dec;3(12):2358-65
2536680 - J Bacteriol. 1989 Feb;171(2):744-53
7923351 - Cell. 1994 Sep 23;78(6):1005-15
1404392 - J Mol Biol. 1992 Oct 5;227(3):876-88
2359125 - J Mol Biol. 1990 Jun 20;213(4):859-83
1591615 - Comput Appl Biosci. 1992 Apr;8(2):189-91
2808413 - J Biol Chem. 1989 Nov 15;264(32):19076-80
1828804 - J Biol Chem. 1991 Jun 25;266(18):11661-8
14731480 - Trends Cell Biol. 1992 Aug;2(8):232-6
1710977 - EMBO J. 1991 Jul;10(7):1607-18
2643164 - Science. 1989 Jan 27;243(4890):500-7
e_1_2_1_20_1
e_1_2_1_41_1
e_1_2_1_24_1
e_1_2_1_45_1
e_1_2_1_22_1
e_1_2_1_43_1
e_1_2_1_28_1
e_1_2_1_49_1
e_1_2_1_26_1
e_1_2_1_47_1
e_1_2_1_31_1
e_1_2_1_8_1
e_1_2_1_6_1
e_1_2_1_12_1
e_1_2_1_35_1
e_1_2_1_50_1
e_1_2_1_4_1
e_1_2_1_10_1
e_1_2_1_33_1
e_1_2_1_52_1
e_1_2_1_2_1
e_1_2_1_16_1
e_1_2_1_39_1
e_1_2_1_14_1
e_1_2_1_37_1
e_1_2_1_18_1
Okazaki T (e_1_2_1_34_1) 1989; 264
Maruta H (e_1_2_1_23_1) 1991; 266
e_1_2_1_42_1
e_1_2_1_40_1
e_1_2_1_46_1
e_1_2_1_21_1
e_1_2_1_44_1
e_1_2_1_27_1
e_1_2_1_25_1
e_1_2_1_48_1
e_1_2_1_29_1
Higgins DG (e_1_2_1_11_1) 1992; 8
e_1_2_1_7_1
e_1_2_1_30_1
e_1_2_1_5_1
e_1_2_1_3_1
e_1_2_1_13_1
e_1_2_1_51_1
e_1_2_1_32_1
e_1_2_1_17_1
e_1_2_1_38_1
e_1_2_1_15_1
e_1_2_1_36_1
e_1_2_1_9_1
e_1_2_1_19_1
References_xml – volume: 356
  start-page: 539
  year: 1992
  end-page: 542
  article-title: The dead‐end elimination theorem and its use in protein side‐chain positioning
  publication-title: Nature
– volume: 358
  start-page: 86
  year: 1992
  end-page: 89
  article-title: A new approach to protein fold recognition
  publication-title: Nature
– volume: 6
  start-page: 811
  year: 1993
  end-page: 820
  article-title: Development of pseudoenergy potentials for assessing protein 3D‐1D compatibility and detecting weak homologies
  publication-title: Protein Eng
– volume: 309
  start-page: 757
  year: 1995
  end-page: 764
  article-title: Mutation in aspartic acids modifies catalytic and hemolytic activities of sphingomyelinase
  publication-title: Biochem J
– volume: 227
  start-page: 227
  year: 1992
  end-page: 238
  article-title: Topology fingerprint approach to the inverse protein folding problem
  publication-title: J Mol Biol
– volume: 227
  start-page: 876
  year: 1992
  end-page: 888
  article-title: Contact potential that recognizes the correct folding of globular proteins
  publication-title: J Mol Biol
– volume: 171
  start-page: 744
  year: 1989
  end-page: 753
  article-title: A cytolytic determinant, cereolysin AB, which comprises the phospholipase C and sphingomyelinase genes: Nucleotide sequence and genetic linkage
  publication-title: J Bacteriol
– volume: 16
  start-page: 243
  year: 1992
  end-page: 248
  article-title: PRESTO (PRotein Engineering SimulaTOr): A vectorized molecular mechanics program for biopolymers
  publication-title: Computers Chem
– volume: 243
  start-page: 500
  year: 1989
  end-page: 507
  article-title: Functions of sphingolipids and sphingolipid breakdown products in cellular regulation
  publication-title: Science
– volume: 58
  start-page: 2177
  year: 1990
  end-page: 2185
  article-title: Molecular analysis of a sphingomyelinase C gene from
  publication-title: Infect Immun
– volume: 7
  start-page: 230
  year: 1986
  end-page: 252
  article-title: An all atom force field for simulations of proteins and nucleic acids
  publication-title: J Comput Chem
– volume: 321
  start-page: 620
  year: 1986
  end-page: 625
  article-title: Structure of DNase I at 2.0 Å resolution suggests a mechanism for binding to and cutting DNA
  publication-title: Nature
– volume: 3
  start-page: 2358
  year: 1994
  end-page: 2365
  article-title: Determinants of protein side‐chain packing
  publication-title: Protein Sci
– volume: 23
  start-page: 337
  year: 1995
  end-page: 355
  article-title: Protein structure prediction by threading methods: Evaluation of current techniques
  publication-title: Proteins Struct Funct Genet
– volume: 10
  start-page: 169
  year: 1991
  end-page: 207
  article-title: Sphingomyelinase of as a bacterial hemolysin
  publication-title: J Toxicol‐Toxin Rev
– volume: 3
  start-page: 2055
  year: 1994b
  end-page: 2063
  article-title: Protein structural similarities detected by a sequence‐structure compatibility method
  publication-title: Protein Sci
– volume: 266
  start-page: 11661
  year: 1991
  end-page: 11668
  article-title: The residues of Ras and Rap proteins that determine their GAP specificities
  publication-title: J Biol Chem
– volume: 1203
  start-page: 85
  year: 1993
  end-page: 92
  article-title: The role of acidic amino‐acid residues in catalytic and adsorptive sites of sphingomyelinase
  publication-title: Biochim Biophys Acta
– volume: 202
  start-page: 31
  year: 1991
  end-page: 44
  article-title: Predicting protein secondary structure based on amino acid sequence
  publication-title: Methods Enzymol
– volume: 269
  start-page: 3125
  year: 1994
  end-page: 3128
  article-title: The sphingomyelin cycle and the second messenger function of ceramide
  publication-title: J Biol Chem
– volume: 118
  start-page: 137
  year: 1995
  end-page: 148
  article-title: Detection of protein 3D‐1D compatibility characterized by the evaluation of side‐chain packing and electrostatic interactions
  publication-title: J Biochem
– volume: 253
  start-page: 164
  year: 1991
  end-page: 170
  article-title: A method to identify protein sequences that fold into a known three‐dimensional structure
  publication-title: Science
– volume: 232
  start-page: 805
  year: 1993
  end-page: 825
  article-title: Prediction of protein structure by evaluation of sequence‐structure fitness: Aligning sequences to contact profiles derived from three‐dimensional structures
  publication-title: J Mol Biol
– volume: 22
  start-page: 2577
  year: 1983
  end-page: 2637
  article-title: Dictionary of protein secondary structure: Pattern recognition of hydrogen‐bonded and geometrical features
  publication-title: Biopolymers
– volume: 17
  start-page: 3305
  year: 1989
  article-title: Nucleotide sequence: The β‐hemolysin gene of
  publication-title: Nucleic Acids Res
– volume: 215
  start-page: 403
  year: 1990
  end-page: 410
  article-title: Basic local alignment search tool
  publication-title: J Mol Biol
– volume: 10
  start-page: 1607
  year: 1991
  end-page: 1618
  article-title: Crystal structure of P1 nuclease at 2.8 Å resolution
  publication-title: EMBO J
– volume: 245
  start-page: 23
  year: 1994a
  end-page: 26
  article-title: Prediction of the structural similarity between spermidine/putrescine‐binding protein and maltose‐binding protein
  publication-title: FEBS Lett
– volume: 264
  start-page: 19076
  year: 1989
  end-page: 19080
  article-title: Sphingomyelin turnover induced by vitamin D in HL‐60 cells: Role in cell differentiation
  publication-title: J Biol Chem
– volume: 90
  start-page: 1379
  year: 1993
  end-page: 1383
  article-title: Three‐dimensional profiles from residue‐pair preferences: Identification of sequences with β/α‐barrel fold
  publication-title: Proc Natl Acad Sci USA
– volume: 338
  start-page: 357
  year: 1989
  end-page: 360
  article-title: High‐resolution (1.5 Å) crystal structure of phospholipase C from
  publication-title: Nature
– volume: 2
  start-page: 232
  year: 1992
  end-page: 236
  article-title: Ceramide: A novel second messenger
  publication-title: Trends Cell Biol
– volume: 23
  start-page: 370
  year: 1995
  end-page: 375
  article-title: Assessment of a protein fold recognition method that takes into account four physicochemical properties: Side‐chain packing, solvation, hydrogen‐bonding, and local conformation
  publication-title: Proteins Struct Funct Genet
– volume: 19
  start-page: 1817
  year: 1991
  end-page: 1823
  article-title: Structural models of ribonuclease H domain in reverse transcriptases from retroviruses
  publication-title: Nucleic Acids Res
– volume: 108
  start-page: 1363
  year: 1989
  end-page: 1373
  article-title: Structure, biosynthesis, and localization of dipeptidyl aminopeptidase B, an integral membrane glycoprotein of the yeast vacuole
  publication-title: J Cell Biol
– volume: 24
  start-page: 946
  year: 1991
  end-page: 950
  article-title: MOLSCRIPT: A program to produce both detailed and schematic plots of protein structures
  publication-title: J Appl Cryst
– volume: 32
  start-page: 922
  year: 1976
  end-page: 923
  article-title: A solution for the best rotation to relate two sets of vectors
  publication-title: Acta Crystallogr A
– volume: 192
  start-page: 605
  year: 1986
  end-page: 632
  article-title: Crystallographic refinement and structure of DNase I at 2 Å resolution
  publication-title: J Mol Biol
– volume: 23
  start-page: ii
  year: 1995
  end-page: iv
  article-title: A large‐scale experiment to assess protein structure prediction methods
  publication-title: Proteins Struct Funct Genet
– volume: 175
  start-page: 213
  year: 1988
  end-page: 220
  article-title: Nucleotide sequence and expression in of the gene coding for sphingomyelinase of
  publication-title: Eur J Biochem
– volume: 16
  start-page: 92
  year: 1993
  end-page: 112
  article-title: An empirical energy function for threading protein sequence through the folding motif
  publication-title: Proteins Struct Funct Genet
– volume: 32
  start-page: 629
  year: 1994
  end-page: 633
  article-title: Inhibition of NGF‐induced neurite outgrowth of PC12 cells by sphingomyelinase, a bacterial hemolysin
  publication-title: Toxicon
– volume: 16
  start-page: 10370
  year: 1988
  article-title: strain SE‐ : Nucleotide sequence of the sphingomyelinase C gene
  publication-title: Nucleic Acids Res
– volume: 235
  start-page: 1598
  year: 1994
  end-page: 1613
  article-title: Factors influencing the ability of knowledge‐based potentials to identify native sequence‐structure matches
  publication-title: J Mol Biol
– volume: 332
  start-page: 464
  year: 1988
  end-page: 468
  article-title: Structure refined to 2 Å of a nicked DNA octanucleotide complex with DNase I
  publication-title: Nature
– volume: 226
  start-page: 1237
  year: 1992
  end-page: 1256
  article-title: X‐ray structure of the DNase I‐d(GGTATACC) complex at 2.3 Å resolution
  publication-title: J Mol Biol
– volume: 215
  start-page: 207
  year: 1990
  end-page: 210
  article-title: Crystallisation and preliminary crystallographic analysis of P nuclease from
  publication-title: J Mol Biol
– volume: 78
  start-page: 1005
  year: 1994
  end-page: 1015
  article-title: Functional dichotomy of neutral and acidic sphingomyelinases in tumor necrosis factor signaling
  publication-title: Cell
– volume: 112
  start-page: 535
  year: 1977
  end-page: 542
  article-title: The Protein Data Bank: A computer‐based archival file for macromolecular structures
  publication-title: J Mol Biol
– volume: 213
  start-page: 859
  year: 1990
  end-page: 883
  article-title: Calculation of conformational ensembles from potentials of mean force: An approach to the knowledge‐based prediction of local structures in globular proteins
  publication-title: J Mol Biol
– volume: 8
  start-page: 189
  year: 1992
  end-page: 191
  article-title: CLUSTAL V: Improved software for multiple sequence alignment
  publication-title: CABIOS
– ident: e_1_2_1_10_1
  doi: 10.1126/science.2643164
– ident: e_1_2_1_12_1
  doi: 10.1038/338357a0
– ident: e_1_2_1_20_1
  doi: 10.1016/S0022-2836(05)80337-7
– ident: e_1_2_1_6_1
  doi: 10.1038/356539a0
– ident: e_1_2_1_7_1
  doi: 10.1128/jb.171.2.744-753.1989
– ident: e_1_2_1_26_1
  doi: 10.1002/pro.5560031118
– ident: e_1_2_1_29_1
  doi: 10.1002/prot.340230303
– ident: e_1_2_1_48_1
  doi: 10.1002/jcc.540070216
– ident: e_1_2_1_4_1
  doi: 10.1126/science.1853201
– ident: e_1_2_1_39_1
  doi: 10.1016/S0022-2836(05)80269-4
– ident: e_1_2_1_24_1
  doi: 10.1093/oxfordjournals.jbchem.a124869
– ident: e_1_2_1_32_1
  doi: 10.1016/0076-6879(91)02005-T
– ident: e_1_2_1_45_1
  doi: 10.3109/15569549109077272
– ident: e_1_2_1_30_1
  doi: 10.1093/nar/19.8.1817
– ident: e_1_2_1_31_1
  doi: 10.1093/protein/6.8.811
– ident: e_1_2_1_28_1
  doi: 10.1016/0097-8485(92)80010-W
– ident: e_1_2_1_41_1
  doi: 10.1038/321620a0
– ident: e_1_2_1_21_1
  doi: 10.1002/prot.340230308
– ident: e_1_2_1_16_1
  doi: 10.1002/bip.360221211
– ident: e_1_2_1_42_1
  doi: 10.1016/0041-0101(94)90211-9
– ident: e_1_2_1_8_1
  doi: 10.1016/0022-2836(92)90693-E
– ident: e_1_2_1_15_1
  doi: 10.1107/S0567739476001873
– ident: e_1_2_1_38_1
  doi: 10.1128/IAI.58.7.2177-2185.1990
– ident: e_1_2_1_36_1
  doi: 10.1093/nar/17.8.3305
– ident: e_1_2_1_37_1
  doi: 10.1083/jcb.108.4.1363
– volume: 8
  start-page: 189
  year: 1992
  ident: e_1_2_1_11_1
  article-title: CLUSTAL V: Improved software for multiple sequence alignment
  publication-title: CABIOS
  contributor:
    fullname: Higgins DG
– ident: e_1_2_1_14_1
  doi: 10.1038/358086a0
– ident: e_1_2_1_44_1
  doi: 10.1002/pro.5560031220
– volume: 266
  start-page: 11661
  year: 1991
  ident: e_1_2_1_23_1
  article-title: The residues of Ras and Rap proteins that determine their GAP specificities
  publication-title: J Biol Chem
  doi: 10.1016/S0021-9258(18)99008-3
  contributor:
    fullname: Maruta H
– ident: e_1_2_1_17_1
  doi: 10.1006/jmbi.1994.1109
– ident: e_1_2_1_49_1
  doi: 10.1016/0022-2836(92)91064-V
– ident: e_1_2_1_46_1
  doi: 10.1016/0167-4838(93)90039-T
– volume: 264
  start-page: 19076
  year: 1989
  ident: e_1_2_1_34_1
  article-title: Sphingomyelin turnover induced by vitamin D3 in HL‐60 cells: Role in cell differentiation
  publication-title: J Biol Chem
  doi: 10.1016/S0021-9258(19)47268-2
  contributor:
    fullname: Okazaki T
– ident: e_1_2_1_5_1
  doi: 10.1002/prot.340160110
– ident: e_1_2_1_18_1
  doi: 10.1016/0962-8924(92)90310-J
– ident: e_1_2_1_9_1
  doi: 10.1016/S0021-9258(17)41834-5
– ident: e_1_2_1_2_1
  doi: 10.1016/S0022-2836(05)80360-2
– ident: e_1_2_1_27_1
  doi: 10.1002/prot.340230310
– ident: e_1_2_1_51_1
  doi: 10.1073/pnas.90.4.1379
– ident: e_1_2_1_33_1
  doi: 10.1016/0022-2836(86)90280-9
– ident: e_1_2_1_3_1
  doi: 10.1016/S0022-2836(77)80200-3
– ident: e_1_2_1_52_1
  doi: 10.1111/j.1432-1033.1988.tb14186.x
– ident: e_1_2_1_19_1
  doi: 10.1107/S0021889891004399
– ident: e_1_2_1_50_1
  doi: 10.1016/0092-8674(94)90275-5
– ident: e_1_2_1_43_1
  doi: 10.1042/bj3090757
– ident: e_1_2_1_22_1
  doi: 10.1016/0022-2836(92)90228-C
– ident: e_1_2_1_35_1
  doi: 10.1006/jmbi.1993.1433
– ident: e_1_2_1_47_1
  doi: 10.1002/j.1460-2075.1991.tb07683.x
– ident: e_1_2_1_40_1
  doi: 10.1038/332464a0
– ident: e_1_2_1_13_1
  doi: 10.1093/nar/16.21.10370
– ident: e_1_2_1_25_1
  doi: 10.1016/0014-5793(94)00435-8
SSID ssj0004123
Score 1.7878276
Snippet The three‐dimensional structure of bacterial sphingomyelinase (SMase) was predicted using a protein fold recognition method; the search of a library of known...
The three-dimensional structure of bacterial sphingomyelinase (SMase) was predicted using a protein fold recognition method; the search of a library of known...
SourceID pubmedcentral
crossref
pubmed
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 2459
SubjectTerms Amino Acid Sequence
Animals
Bacteria - enzymology
bacterial sphingomyelinase
Deoxyribonuclease I - genetics
DNase I
Evolution, Molecular
evolutionary relationship
Mammals
Molecular Sequence Data
Mutagenesis, Site-Directed
Sequence Alignment
Sequence Analysis
site‐directed mutagenesis
Sphingomyelin Phosphodiesterase - genetics
structure prediction
SummonAdditionalLinks – databaseName: Wiley-Blackwell
  dbid: 33P
  link: http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED5BF1h4tFSElzwgmEITp3GSsepDsJSKh8SAVNmxo3ZIWvWBxL_n7KQpYUGCMXEcRznb33enu88A1yJoh4mSTCs_Ruig-MwWnCe25wh0Hxzl-0LHIe-fg-Fb2OtrmZyyij_XhygDbnplmP1aL3Aulq2taChuMHe-xmuELFPti66CqeHwRtvCSJfmZ8kz1w49Fm5UGx3aqnavoFIJRT_TJL_TV4M_g8P_f_kRHBTck3TyyXIMOyqrQ6OTod-dfpIbYrJBTZi9DnvdzUlwDXjvEKlpZrYi6qOYqjg6WWwS6SbTOSkSvojI5Z9xnOVcR7fw1brkHcGS8EySlKepCa2Q3lDfeziB10H_pXtvF6cy2LEW_0PP1aFoXU_5IZMq4lrgS7QFb0sZo21ZrDUF48TzRChpQlnEHal8ZGEB9gqctteEWjbL1CkQx1HIj5hSUYhEzvU45QioseCJVNIXrgW3G6uM57n4xjiXWaZ4PRtvf6IFzdxW5XMh8iykShYEFSOW7VpWu9qSTSdGXpu6uoqMWUCNEX8ZeTx6etxenf2l0znsm1xwkyRzAbXVYq0uYXcp11dmOn8B_JH2mA
  priority: 102
  providerName: Wiley-Blackwell
Title A distant evolutionary relationship between bacterial sphingomyelinase and mammalian DNase I
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpro.5560051208
https://www.ncbi.nlm.nih.gov/pubmed/8976554
https://pubmed.ncbi.nlm.nih.gov/PMC2143316
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS-QwEB9cQfRF7vzAVU_yIPrU3TRp0uzjsiregeviB_ggLEmTsgu2LusH-N87Sdv11peDeymkaZuSGfjNDL_5BeDYpInKnZVe-bGHCYqQkdE6jzg1mD5QJ4TxdcjL23T4oM7OvUyOaHphAmk_M9NO-VR0yukkcCtnRdZteGLd0dWAxb7PR3Zb0MLYsEnRm2bImFXnx8s4UlyqRqmRMt_c1hEe4hHlqNqANYVgLESyhEkLIPpOkvw7eA3oc_EDNuuwkfSr3_sJK67cgu1-iSlz8UFOSCByhgr5FqwPmkPctuGxT6yPEMtX4t5rL9PzDzJvOHCT6YzUXC1iKuVmXOdl5gtT-GnfrY44R3RpSaGLIlRFyNnQ3_u9A_cX53eDy6g-UCHKvG4fJp2UoWG4E0pa19Nem8skRifWZmgWmXk5wCzn3CjLciZ7mlonMIBK8a2UJnwXVsvn0u0BodRhaCOd6ymMwWKumUYszIzOrbPCxG04bbZ0PKt0M8aVQjLD8fP4ywxt2K02evFcbZU2pEsWWMx7RezlGXSUoIxdO0YbWLDVP1Yej26uv0b7_73cAWwELncguRzC6uv8zf2C1ot9O4IW56Oj4KB4vf0z_ATuyOlb
link.rule.ids 230,315,729,782,786,887,1408,27933,27934,46064,46488,53800,53802
linkProvider National Library of Medicine
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8MwDLZ4HMaF98R45oDgVNambdodJx4aAsbEQ-KAVCVNqnFYmfZA4t9jp-vGuCAhjmmaJqqd-LNlfwE4VlEQZ0YLYn5soIMSCkdJmTm-q9B9cE0YKopDth6j9kt8cUk0Oc2yFqbgh5gG3Ghn2POaNjgFpOsz1lA8Yc5CMthos6jcdzkQqI1UxeF3ZqWRHi9ukxeeE_siLnkbXV6fHz9nl6bG6Gei5HcAay3Q1do_rH0dVifwkzULfdmABZNvwlYzR9e798lOmE0ItZH2Taicl5fBbcFrk2lCmvmImY-JtuL0bFDm0nXf-myS88VUwQCN8wz7FODCT1PVO9pLJnPNerLXs9EVdtGmZ9fb8Hx1-XTeciYXMzgp8f-h8-pyFLBvwlho05DE8aUCJQOtUxSvSIlWMM18X8WaZ1w0pKtNiEAswlGRG_hVWMrfc7MDzHUNQiRhTCNGLOf5kku0qamSmTY6VF4NTkuxJP2CfyMpmJY5tt-T2U-sQbUQ1vS9GKEWoqUaRHNSnPYTs_Z8T_7WtQzb3KNCMlEDbqX4y8xJ5-F-1tr9y6AjqLSe7m6T2-v2zR6s2NRwmzOzD0ujwdgcwOJQjw-tbn8BkDz6wA
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB2xSMCFHVFWHxCcAomdOOmxolQgUKlYJA5IkR07KoeGihYk_p4Zp00pFyQ4Jo7jKGP7vRnNPAMc6ThMcmskKT_W0UGJpKeVyj3ha3QffBtFmuKQl_dx-ylpXpBMTlXFX-pDVAE3Whluv6YF3jf52UQ0FDeY04jwGiGLqn3nQ-TipJ4vRGdSGRnw8jB5GXiJkMlYttHnZ9P9p2CpwqKfeZLf-asDoNbK_z99FZZH5JM1ytmyBjO2WIeNRoGOd--THTOXDuri7OuweD4-Cm4DnhvMEM8shsx-jOYqjs7expl03Zc-G2V8MV3qP-M4gz6Ft_DVVPOOaMlUYVhP9XoutsKabbp3tQmPrYuH80tvdCyDl5H6H7quPkfzChsl0ti6IoUvHWoVGpOhcWVGooJZLoRODM-5rCvf2AhpWIy9Yj8UWzBXvBZ2G5jvWyRI0tp6gkwuEIorRNRMq9xYE-mgBidjq6T9Un0jLXWWOV6_ppOfWIOt0lbVcwkSLeRKNYinjFi1k672dEvx0nX62jygMjJZA-6M-MvIaefudnK185dOh7DQabbSm6v29S4subxwlzCzB3PDt3e7D7MD837gZvYXh6z5Zg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+distant+evolutionary+relationship+between+bacterial+sphingomyelinase+and+mammalian+DNase+I&rft.jtitle=Protein+science&rft.au=Matsuo%2C+Yo&rft.au=Yamada%2C+Atsuko&rft.au=Tsukamoto%2C+Kikuo&rft.au=Tamura%2C+Hiro%E2%80%90Omi&rft.date=1996-12-01&rft.pub=Cold+Spring+Harbor+Laboratory+Press&rft.issn=0961-8368&rft.eissn=1469-896X&rft.volume=5&rft.issue=12&rft.spage=2459&rft.epage=2467&rft_id=info:doi/10.1002%2Fpro.5560051208&rft.externalDBID=10.1002%252Fpro.5560051208&rft.externalDocID=PRO5560051208
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0961-8368&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0961-8368&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0961-8368&client=summon