A distant evolutionary relationship between bacterial sphingomyelinase and mammalian DNase I
The three‐dimensional structure of bacterial sphingomyelinase (SMase) was predicted using a protein fold recognition method; the search of a library of known structures showed that the SMase sequence is highly compatible with the mammalian DNase I structure, which suggested that SMase adopts a struc...
Saved in:
Published in: | Protein science Vol. 5; no. 12; pp. 2459 - 2467 |
---|---|
Main Authors: | , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Bristol
Cold Spring Harbor Laboratory Press
01-12-1996
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | The three‐dimensional structure of bacterial sphingomyelinase (SMase) was predicted using a protein fold recognition method; the search of a library of known structures showed that the SMase sequence is highly compatible with the mammalian DNase I structure, which suggested that SMase adopts a structure similar to that of DNase I. The amino acid sequence alignment based on the prediction revealed that, despite the lack of overall sequence similarity (less than 10% identity), those residues of DNase I that are involved in the hydrolysis of the phosphodiester bond, including two histidine residues (His 134 and His 252) of the active center, are conserved in SMase. In addition, a conserved pentapeptide sequence motif was found, which includes two catalytically critical residues, Asp 251 and His 252. A sequence database search showed that the motif is highly specific to mammalian DNase I and bacterial SMase. The functional roles of SMase residues identified by the sequence comparison were consistent with the results from mutant studies. Two Bacillus cereus SMase mutants (H134A and H252A) were constructed by site‐directed mutagenesis. They completely abolished their catalytic activity. A model for the SMase‐sphingomyelin complex structure was built to investigate how the SMase specifically recognizes its substrate. The model suggested that a set of residues conserved among bacterial SMases, including Trp 28 and Phe 55, might be important in the substrate recognition. The predicted structural similarity and the conservation of the functionally important residues strongly suggest a distant evolutionary relationship between bacterial SMase and mammalian DNase I. These two phosphodiesterases must have acquired the specificity for different substrates in the course of evolution. |
---|---|
AbstractList | The three-dimensional structure of bacterial sphingomyelinase (SMase) was predicted using a protein fold recognition method; the search of a library of known structures showed that the SMase sequence is highly compatible with the mammalian DNase I structure, which suggested that SMase adopts a structure similar to that of DNase I. The amino acid sequence alignment based on the prediction revealed that, despite the lack of overall sequence similarity (less than 10% identity), those residues of DNase I that are involved in the hydrolysis of the phosphodiester bond, including two histidine residues (His 134 and His 252) of the active center, are conserved in SMase. In addition, a conserved pentapeptide sequence motif was found, which includes two catalytically critical residues, Asp 251 and His 252. A sequence database search showed that the motif is highly specific to mammalian DNase I and bacterial SMase. The functional roles of SMase residues identified by the sequence comparison were consistent with the results from mutant studies. Two Bacillus cereus SMase mutants (H134A and H252A) were constructed by site-directed mutagenesis. They completely abolished their catalytic activity. A model for the SMase-sphingomyelin complex structure was built to investigate how the SMase specifically recognizes its substrate. The model suggested that a set of residues conserved among bacterial SMases, including Trp 28 and Phe 55, might be important in the substrate recognition. The predicted structural similarity and the conservation of the functionally important residues strongly suggest a distant evolutionary relationship between bacterial SMase and mammalian DNase I. These two phosphodiesterases must have acquired the specificity for different substrates in the course of evolution. The three‐dimensional structure of bacterial sphingomyelinase (SMase) was predicted using a protein fold recognition method; the search of a library of known structures showed that the SMase sequence is highly compatible with the mammalian DNase I structure, which suggested that SMase adopts a structure similar to that of DNase I. The amino acid sequence alignment based on the prediction revealed that, despite the lack of overall sequence similarity (less than 10% identity), those residues of DNase I that are involved in the hydrolysis of the phosphodiester bond, including two histidine residues (His 134 and His 252) of the active center, are conserved in SMase. In addition, a conserved pentapeptide sequence motif was found, which includes two catalytically critical residues, Asp 251 and His 252. A sequence database search showed that the motif is highly specific to mammalian DNase I and bacterial SMase. The functional roles of SMase residues identified by the sequence comparison were consistent with the results from mutant studies. Two Bacillus cereus SMase mutants (H134A and H252A) were constructed by site‐directed mutagenesis. They completely abolished their catalytic activity. A model for the SMase‐sphingomyelin complex structure was built to investigate how the SMase specifically recognizes its substrate. The model suggested that a set of residues conserved among bacterial SMases, including Trp 28 and Phe 55, might be important in the substrate recognition. The predicted structural similarity and the conservation of the functionally important residues strongly suggest a distant evolutionary relationship between bacterial SMase and mammalian DNase I. These two phosphodiesterases must have acquired the specificity for different substrates in the course of evolution. |
Author | Tsukamoto, Kikuo Ikezawa, Hiroh Nakamura, Haruki Matsuo, Yo Tamura, Hiro‐Omi Nishikawa, Ken Yamada, Atsuko |
AuthorAffiliation | Protein Engineering Research Institute, Osaka, Japan |
AuthorAffiliation_xml | – name: Protein Engineering Research Institute, Osaka, Japan |
Author_xml | – sequence: 1 givenname: Yo surname: Matsuo fullname: Matsuo, Yo – sequence: 2 givenname: Atsuko surname: Yamada fullname: Yamada, Atsuko – sequence: 3 givenname: Kikuo surname: Tsukamoto fullname: Tsukamoto, Kikuo – sequence: 4 givenname: Hiro‐Omi surname: Tamura fullname: Tamura, Hiro‐Omi – sequence: 5 givenname: Hiroh surname: Ikezawa fullname: Ikezawa, Hiroh – sequence: 6 givenname: Haruki surname: Nakamura fullname: Nakamura, Haruki – sequence: 7 givenname: Ken surname: Nishikawa fullname: Nishikawa, Ken email: knishika@genes.nig.ac.jp. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/8976554$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkEtLAzEUhYNUtFa37oT8gal5TNJkIxSfhWJFFFwIQ2Zyp43MJMNkVPrvndLiY-Xq5ubkfOGcIzTwwQNCp5SMKSHsvGnDWAhJiKCMqD00pKnUidLyZYCGREuaKC7VITqK8Y0QklLGD9CB0hMpRDpEr1NsXeyM7zB8hOq9c8Gbdo1bqMzmHFeuwTl0nwAe56booHWmwrFZOb8M9Roq500EbLzFtalrUznj8dX95m52jPZLU0U42c0Rer65frq8S-aL29nldJ4UglCVCEZYCZaDUNKCNrrPkqe5Sa0tCAhZ8JTxouQ8V5aVTGpDLAjN9KR3TUjKR-hiy23e8xpsAb5rTZU1rav7LFkwLvureLfKluEjYzTlnMoeMN4CijbE2EL57aUk29Tc7yH7qbk3nP3-8fv5rtde11v901Ww_oeWPTwufrG_AD3Ujsg |
CitedBy_id | crossref_primary_10_1006_jmbi_2001_5382 crossref_primary_10_1111_j_1574_6968_2001_tb10832_x crossref_primary_10_1074_jbc_M506800200 crossref_primary_10_1016_S0092_8674_01_00326_9 crossref_primary_10_1194_jlr_R800004_JLR200 crossref_primary_10_1002_pro_5560070312 crossref_primary_10_1006_bbrc_2001_5328 crossref_primary_10_1128_IAI_73_5_3053_3062_2005 crossref_primary_10_1155_2014_412827 crossref_primary_10_1128_JB_00741_07 crossref_primary_10_1016_j_bbrc_2013_01_002 crossref_primary_10_1110_ps_04966204 crossref_primary_10_1074_jbc_M003080200 crossref_primary_10_1016_j_ydbio_2017_06_028 crossref_primary_10_1074_jbc_M115_636951 crossref_primary_10_1371_journal_pone_0179174 crossref_primary_10_1016_j_abb_2005_02_019 crossref_primary_10_1016_j_fsi_2014_06_014 crossref_primary_10_1371_journal_ppat_1008016 crossref_primary_10_1074_jbc_M412437200 crossref_primary_10_1093_nar_gkr782 crossref_primary_10_1016_j_jbior_2014_10_002 crossref_primary_10_1111_ppa_13539 crossref_primary_10_1016_S0014_5793_98_01470_7 crossref_primary_10_1074_jbc_M006244200 crossref_primary_10_1006_jmbi_1999_2827 crossref_primary_10_1016_S0014_5793_02_03482_8 crossref_primary_10_1016_j_dci_2011_02_013 crossref_primary_10_1016_S0968_0004_00_01582_6 crossref_primary_10_1074_jbc_275_22_16484 crossref_primary_10_1111_j_1432_1033_1997_t01_2_00786_x crossref_primary_10_1016_j_mimet_2022_106621 crossref_primary_10_1248_bpb_26_920 crossref_primary_10_1016_S0142_9612_03_00341_7 crossref_primary_10_1371_journal_pntd_0003952 crossref_primary_10_1248_yakushi_129_1233 crossref_primary_10_3389_fcimb_2016_00168 crossref_primary_10_3390_vaccines11020359 crossref_primary_10_1074_jbc_M109_004580 crossref_primary_10_1016_j_febslet_2011_01_015 crossref_primary_10_3412_jsb_66_159 crossref_primary_10_1016_j_copbio_2014_12_002 crossref_primary_10_1074_jbc_M805402200 crossref_primary_10_1016_j_bbrc_2012_04_120 crossref_primary_10_1016_S1388_1981_00_00059_7 crossref_primary_10_1002__SICI_1097_0282_1997_44_4_405__AID_BIP5_3_0_CO_2_L crossref_primary_10_1016_j_fsi_2015_07_006 crossref_primary_10_3389_fcimb_2022_1015706 crossref_primary_10_1186_1471_2105_7_305 |
Cites_doi | 10.1126/science.2643164 10.1038/338357a0 10.1016/S0022-2836(05)80337-7 10.1038/356539a0 10.1128/jb.171.2.744-753.1989 10.1002/pro.5560031118 10.1002/prot.340230303 10.1002/jcc.540070216 10.1126/science.1853201 10.1016/S0022-2836(05)80269-4 10.1093/oxfordjournals.jbchem.a124869 10.1016/0076-6879(91)02005-T 10.3109/15569549109077272 10.1093/nar/19.8.1817 10.1093/protein/6.8.811 10.1016/0097-8485(92)80010-W 10.1038/321620a0 10.1002/prot.340230308 10.1002/bip.360221211 10.1016/0041-0101(94)90211-9 10.1016/0022-2836(92)90693-E 10.1107/S0567739476001873 10.1128/IAI.58.7.2177-2185.1990 10.1093/nar/17.8.3305 10.1083/jcb.108.4.1363 10.1038/358086a0 10.1002/pro.5560031220 10.1016/S0021-9258(18)99008-3 10.1006/jmbi.1994.1109 10.1016/0022-2836(92)91064-V 10.1016/0167-4838(93)90039-T 10.1016/S0021-9258(19)47268-2 10.1002/prot.340160110 10.1016/0962-8924(92)90310-J 10.1016/S0021-9258(17)41834-5 10.1016/S0022-2836(05)80360-2 10.1002/prot.340230310 10.1073/pnas.90.4.1379 10.1016/0022-2836(86)90280-9 10.1016/S0022-2836(77)80200-3 10.1111/j.1432-1033.1988.tb14186.x 10.1107/S0021889891004399 10.1016/0092-8674(94)90275-5 10.1042/bj3090757 10.1016/0022-2836(92)90228-C 10.1006/jmbi.1993.1433 10.1002/j.1460-2075.1991.tb07683.x 10.1038/332464a0 10.1093/nar/16.21.10370 10.1016/0014-5793(94)00435-8 |
ContentType | Journal Article |
Copyright | Copyright © 1996 The Protein Society |
Copyright_xml | – notice: Copyright © 1996 The Protein Society |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 5PM |
DOI | 10.1002/pro.5560051208 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef |
DatabaseTitleList | MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: ECM name: MEDLINE url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry |
EISSN | 1469-896X |
EndPage | 2467 |
ExternalDocumentID | 10_1002_pro_5560051208 8976554 PRO5560051208 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Scientific Research from the Ministry of Education |
GroupedDBID | --- .GJ 05W 0R~ 123 1L6 1OC 24P 29P 2WC 31~ 33P 3SF 3WU 4.4 52U 53G 5RE 6TJ 8-0 8-1 8UM A00 A8Z AAESR AAEVG AAHHS AAIHA AANLZ AAONW AASGY AAXRX AAZKR ABCUV ABGDZ ABLJU ACAHQ ACCFJ ACCZN ACFBH ACGFO ACGFS ACIWK ACPOU ACPRK ACQPF ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHMBA AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB AOIJS ATUGU AUFTA AZVAB BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI C1A C45 CAG COF CS3 DCZOG DIK DRFUL DRSTM DU5 E3Z EBD EBS EJD EMOBN ESTFP F5P G-S GODZA GX1 HGLYW HH5 HYE HZ~ IH2 LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ NNB O66 O9- OIG OK1 OVD P2P P2W P4E PQQKQ QRW RCA RIG ROL RPM RWI SJN SUPJJ SV3 TEORI TR2 WBKPD WIH WIK WIN WNSPC WOHZO WOQ WXSBR WYISQ WYJ XV2 Y6R YKV ZGI ZXP ZZTAW ~02 ~S- CGR CUY CVF ECM EIF NPM AAMNL AAYXX CITATION 5PM |
ID | FETCH-LOGICAL-c5018-5202fed3e586de9a9051b4ba4ddc0e56c3423cf33b8d2f269a0de59297fed7043 |
IEDL.DBID | RPM |
ISSN | 0961-8368 |
IngestDate | Tue Sep 17 21:08:05 EDT 2024 Thu Nov 21 22:25:57 EST 2024 Sat Sep 28 07:37:34 EDT 2024 Sat Aug 24 00:53:29 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5018-5202fed3e586de9a9051b4ba4ddc0e56c3423cf33b8d2f269a0de59297fed7043 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/pro.5560051208 |
PMID | 8976554 |
PageCount | 9 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_2143316 crossref_primary_10_1002_pro_5560051208 pubmed_primary_8976554 wiley_primary_10_1002_pro_5560051208_PRO5560051208 |
PublicationCentury | 1900 |
PublicationDate | December 1996 |
PublicationDateYYYYMMDD | 1996-12-01 |
PublicationDate_xml | – month: 12 year: 1996 text: December 1996 |
PublicationDecade | 1990 |
PublicationPlace | Bristol |
PublicationPlace_xml | – name: Bristol – name: United States |
PublicationTitle | Protein science |
PublicationTitleAlternate | Protein Sci |
PublicationYear | 1996 |
Publisher | Cold Spring Harbor Laboratory Press |
Publisher_xml | – name: Cold Spring Harbor Laboratory Press |
References | 1991; 253 1991; 19 1994b; 3 1989; 338 1994; 235 1990; 58 1991; 10 1988; 16 1992; 226 1992; 227 1995; 118 1993; 90 1994a; 245 1992; 16 1993; 6 1976; 32 1992; 8 1990; 215 1991; 202 1991; 266 1990; 213 1993; 16 1994; 269 1989; 108 1986; 7 1991; 24 1986; 321 1995; 309 1995; 23 1992; 356 1989; 264 1989; 243 1992; 358 1994; 78 1989; 171 1986; 192 1988; 332 1988; 175 1977; 112 1994; 3 1992; 2 1983; 22 1989; 17 1994; 32 1993; 232 1993; 1203 3713845 - Nature. 1986 Jun 5-11;321(6070):620-5 875032 - J Mol Biol. 1977 May 25;112(3):535-42 2231712 - J Mol Biol. 1990 Oct 5;215(3):403-10 1709492 - Nucleic Acids Res. 1991 Apr 25;19(8):1817-23 2841128 - Eur J Biochem. 1988 Aug 1;175(2):213-20 7703851 - Protein Sci. 1994 Nov;3(11):2055-63 8309928 - Protein Eng. 1993 Nov;6(8):811-20 1518054 - J Mol Biol. 1992 Aug 20;226(4):1237-56 2647766 - J Cell Biol. 1989 Apr;108(4):1363-73 8107094 - J Mol Biol. 1994 Feb 4;235(5):1598-613 2170661 - J Mol Biol. 1990 Sep 20;215(2):207-10 8079375 - Toxicon. 1994 May;32(5):629-33 8433995 - Proc Natl Acad Sci U S A. 1993 Feb 15;90(4):1379-83 8106344 - J Biol Chem. 1994 Feb 4;269(5):3125-8 6667333 - Biopolymers. 1983 Dec;22(12):2577-637 8537303 - J Biochem. 1995 Jul;118(1):137-48 1522587 - J Mol Biol. 1992 Sep 5;227(1):227-38 2163985 - Infect Immun. 1990 Jul;58(7):2177-85 8710827 - Proteins. 1995 Nov;23(3):337-55 3352748 - Nature. 1988 Mar 31;332(6163):464-8 8355272 - J Mol Biol. 1993 Aug 5;232(3):805-25 7756990 - Protein Sci. 1994 Dec;3(12):2358-65 2536680 - J Bacteriol. 1989 Feb;171(2):744-53 7923351 - Cell. 1994 Sep 23;78(6):1005-15 1404392 - J Mol Biol. 1992 Oct 5;227(3):876-88 2359125 - J Mol Biol. 1990 Jun 20;213(4):859-83 1591615 - Comput Appl Biosci. 1992 Apr;8(2):189-91 2808413 - J Biol Chem. 1989 Nov 15;264(32):19076-80 1828804 - J Biol Chem. 1991 Jun 25;266(18):11661-8 14731480 - Trends Cell Biol. 1992 Aug;2(8):232-6 1710977 - EMBO J. 1991 Jul;10(7):1607-18 2643164 - Science. 1989 Jan 27;243(4890):500-7 e_1_2_1_20_1 e_1_2_1_41_1 e_1_2_1_24_1 e_1_2_1_45_1 e_1_2_1_22_1 e_1_2_1_43_1 e_1_2_1_28_1 e_1_2_1_49_1 e_1_2_1_26_1 e_1_2_1_47_1 e_1_2_1_31_1 e_1_2_1_8_1 e_1_2_1_6_1 e_1_2_1_12_1 e_1_2_1_35_1 e_1_2_1_50_1 e_1_2_1_4_1 e_1_2_1_10_1 e_1_2_1_33_1 e_1_2_1_52_1 e_1_2_1_2_1 e_1_2_1_16_1 e_1_2_1_39_1 e_1_2_1_14_1 e_1_2_1_37_1 e_1_2_1_18_1 Okazaki T (e_1_2_1_34_1) 1989; 264 Maruta H (e_1_2_1_23_1) 1991; 266 e_1_2_1_42_1 e_1_2_1_40_1 e_1_2_1_46_1 e_1_2_1_21_1 e_1_2_1_44_1 e_1_2_1_27_1 e_1_2_1_25_1 e_1_2_1_48_1 e_1_2_1_29_1 Higgins DG (e_1_2_1_11_1) 1992; 8 e_1_2_1_7_1 e_1_2_1_30_1 e_1_2_1_5_1 e_1_2_1_3_1 e_1_2_1_13_1 e_1_2_1_51_1 e_1_2_1_32_1 e_1_2_1_17_1 e_1_2_1_38_1 e_1_2_1_15_1 e_1_2_1_36_1 e_1_2_1_9_1 e_1_2_1_19_1 |
References_xml | – volume: 356 start-page: 539 year: 1992 end-page: 542 article-title: The dead‐end elimination theorem and its use in protein side‐chain positioning publication-title: Nature – volume: 358 start-page: 86 year: 1992 end-page: 89 article-title: A new approach to protein fold recognition publication-title: Nature – volume: 6 start-page: 811 year: 1993 end-page: 820 article-title: Development of pseudoenergy potentials for assessing protein 3D‐1D compatibility and detecting weak homologies publication-title: Protein Eng – volume: 309 start-page: 757 year: 1995 end-page: 764 article-title: Mutation in aspartic acids modifies catalytic and hemolytic activities of sphingomyelinase publication-title: Biochem J – volume: 227 start-page: 227 year: 1992 end-page: 238 article-title: Topology fingerprint approach to the inverse protein folding problem publication-title: J Mol Biol – volume: 227 start-page: 876 year: 1992 end-page: 888 article-title: Contact potential that recognizes the correct folding of globular proteins publication-title: J Mol Biol – volume: 171 start-page: 744 year: 1989 end-page: 753 article-title: A cytolytic determinant, cereolysin AB, which comprises the phospholipase C and sphingomyelinase genes: Nucleotide sequence and genetic linkage publication-title: J Bacteriol – volume: 16 start-page: 243 year: 1992 end-page: 248 article-title: PRESTO (PRotein Engineering SimulaTOr): A vectorized molecular mechanics program for biopolymers publication-title: Computers Chem – volume: 243 start-page: 500 year: 1989 end-page: 507 article-title: Functions of sphingolipids and sphingolipid breakdown products in cellular regulation publication-title: Science – volume: 58 start-page: 2177 year: 1990 end-page: 2185 article-title: Molecular analysis of a sphingomyelinase C gene from publication-title: Infect Immun – volume: 7 start-page: 230 year: 1986 end-page: 252 article-title: An all atom force field for simulations of proteins and nucleic acids publication-title: J Comput Chem – volume: 321 start-page: 620 year: 1986 end-page: 625 article-title: Structure of DNase I at 2.0 Å resolution suggests a mechanism for binding to and cutting DNA publication-title: Nature – volume: 3 start-page: 2358 year: 1994 end-page: 2365 article-title: Determinants of protein side‐chain packing publication-title: Protein Sci – volume: 23 start-page: 337 year: 1995 end-page: 355 article-title: Protein structure prediction by threading methods: Evaluation of current techniques publication-title: Proteins Struct Funct Genet – volume: 10 start-page: 169 year: 1991 end-page: 207 article-title: Sphingomyelinase of as a bacterial hemolysin publication-title: J Toxicol‐Toxin Rev – volume: 3 start-page: 2055 year: 1994b end-page: 2063 article-title: Protein structural similarities detected by a sequence‐structure compatibility method publication-title: Protein Sci – volume: 266 start-page: 11661 year: 1991 end-page: 11668 article-title: The residues of Ras and Rap proteins that determine their GAP specificities publication-title: J Biol Chem – volume: 1203 start-page: 85 year: 1993 end-page: 92 article-title: The role of acidic amino‐acid residues in catalytic and adsorptive sites of sphingomyelinase publication-title: Biochim Biophys Acta – volume: 202 start-page: 31 year: 1991 end-page: 44 article-title: Predicting protein secondary structure based on amino acid sequence publication-title: Methods Enzymol – volume: 269 start-page: 3125 year: 1994 end-page: 3128 article-title: The sphingomyelin cycle and the second messenger function of ceramide publication-title: J Biol Chem – volume: 118 start-page: 137 year: 1995 end-page: 148 article-title: Detection of protein 3D‐1D compatibility characterized by the evaluation of side‐chain packing and electrostatic interactions publication-title: J Biochem – volume: 253 start-page: 164 year: 1991 end-page: 170 article-title: A method to identify protein sequences that fold into a known three‐dimensional structure publication-title: Science – volume: 232 start-page: 805 year: 1993 end-page: 825 article-title: Prediction of protein structure by evaluation of sequence‐structure fitness: Aligning sequences to contact profiles derived from three‐dimensional structures publication-title: J Mol Biol – volume: 22 start-page: 2577 year: 1983 end-page: 2637 article-title: Dictionary of protein secondary structure: Pattern recognition of hydrogen‐bonded and geometrical features publication-title: Biopolymers – volume: 17 start-page: 3305 year: 1989 article-title: Nucleotide sequence: The β‐hemolysin gene of publication-title: Nucleic Acids Res – volume: 215 start-page: 403 year: 1990 end-page: 410 article-title: Basic local alignment search tool publication-title: J Mol Biol – volume: 10 start-page: 1607 year: 1991 end-page: 1618 article-title: Crystal structure of P1 nuclease at 2.8 Å resolution publication-title: EMBO J – volume: 245 start-page: 23 year: 1994a end-page: 26 article-title: Prediction of the structural similarity between spermidine/putrescine‐binding protein and maltose‐binding protein publication-title: FEBS Lett – volume: 264 start-page: 19076 year: 1989 end-page: 19080 article-title: Sphingomyelin turnover induced by vitamin D in HL‐60 cells: Role in cell differentiation publication-title: J Biol Chem – volume: 90 start-page: 1379 year: 1993 end-page: 1383 article-title: Three‐dimensional profiles from residue‐pair preferences: Identification of sequences with β/α‐barrel fold publication-title: Proc Natl Acad Sci USA – volume: 338 start-page: 357 year: 1989 end-page: 360 article-title: High‐resolution (1.5 Å) crystal structure of phospholipase C from publication-title: Nature – volume: 2 start-page: 232 year: 1992 end-page: 236 article-title: Ceramide: A novel second messenger publication-title: Trends Cell Biol – volume: 23 start-page: 370 year: 1995 end-page: 375 article-title: Assessment of a protein fold recognition method that takes into account four physicochemical properties: Side‐chain packing, solvation, hydrogen‐bonding, and local conformation publication-title: Proteins Struct Funct Genet – volume: 19 start-page: 1817 year: 1991 end-page: 1823 article-title: Structural models of ribonuclease H domain in reverse transcriptases from retroviruses publication-title: Nucleic Acids Res – volume: 108 start-page: 1363 year: 1989 end-page: 1373 article-title: Structure, biosynthesis, and localization of dipeptidyl aminopeptidase B, an integral membrane glycoprotein of the yeast vacuole publication-title: J Cell Biol – volume: 24 start-page: 946 year: 1991 end-page: 950 article-title: MOLSCRIPT: A program to produce both detailed and schematic plots of protein structures publication-title: J Appl Cryst – volume: 32 start-page: 922 year: 1976 end-page: 923 article-title: A solution for the best rotation to relate two sets of vectors publication-title: Acta Crystallogr A – volume: 192 start-page: 605 year: 1986 end-page: 632 article-title: Crystallographic refinement and structure of DNase I at 2 Å resolution publication-title: J Mol Biol – volume: 23 start-page: ii year: 1995 end-page: iv article-title: A large‐scale experiment to assess protein structure prediction methods publication-title: Proteins Struct Funct Genet – volume: 175 start-page: 213 year: 1988 end-page: 220 article-title: Nucleotide sequence and expression in of the gene coding for sphingomyelinase of publication-title: Eur J Biochem – volume: 16 start-page: 92 year: 1993 end-page: 112 article-title: An empirical energy function for threading protein sequence through the folding motif publication-title: Proteins Struct Funct Genet – volume: 32 start-page: 629 year: 1994 end-page: 633 article-title: Inhibition of NGF‐induced neurite outgrowth of PC12 cells by sphingomyelinase, a bacterial hemolysin publication-title: Toxicon – volume: 16 start-page: 10370 year: 1988 article-title: strain SE‐ : Nucleotide sequence of the sphingomyelinase C gene publication-title: Nucleic Acids Res – volume: 235 start-page: 1598 year: 1994 end-page: 1613 article-title: Factors influencing the ability of knowledge‐based potentials to identify native sequence‐structure matches publication-title: J Mol Biol – volume: 332 start-page: 464 year: 1988 end-page: 468 article-title: Structure refined to 2 Å of a nicked DNA octanucleotide complex with DNase I publication-title: Nature – volume: 226 start-page: 1237 year: 1992 end-page: 1256 article-title: X‐ray structure of the DNase I‐d(GGTATACC) complex at 2.3 Å resolution publication-title: J Mol Biol – volume: 215 start-page: 207 year: 1990 end-page: 210 article-title: Crystallisation and preliminary crystallographic analysis of P nuclease from publication-title: J Mol Biol – volume: 78 start-page: 1005 year: 1994 end-page: 1015 article-title: Functional dichotomy of neutral and acidic sphingomyelinases in tumor necrosis factor signaling publication-title: Cell – volume: 112 start-page: 535 year: 1977 end-page: 542 article-title: The Protein Data Bank: A computer‐based archival file for macromolecular structures publication-title: J Mol Biol – volume: 213 start-page: 859 year: 1990 end-page: 883 article-title: Calculation of conformational ensembles from potentials of mean force: An approach to the knowledge‐based prediction of local structures in globular proteins publication-title: J Mol Biol – volume: 8 start-page: 189 year: 1992 end-page: 191 article-title: CLUSTAL V: Improved software for multiple sequence alignment publication-title: CABIOS – ident: e_1_2_1_10_1 doi: 10.1126/science.2643164 – ident: e_1_2_1_12_1 doi: 10.1038/338357a0 – ident: e_1_2_1_20_1 doi: 10.1016/S0022-2836(05)80337-7 – ident: e_1_2_1_6_1 doi: 10.1038/356539a0 – ident: e_1_2_1_7_1 doi: 10.1128/jb.171.2.744-753.1989 – ident: e_1_2_1_26_1 doi: 10.1002/pro.5560031118 – ident: e_1_2_1_29_1 doi: 10.1002/prot.340230303 – ident: e_1_2_1_48_1 doi: 10.1002/jcc.540070216 – ident: e_1_2_1_4_1 doi: 10.1126/science.1853201 – ident: e_1_2_1_39_1 doi: 10.1016/S0022-2836(05)80269-4 – ident: e_1_2_1_24_1 doi: 10.1093/oxfordjournals.jbchem.a124869 – ident: e_1_2_1_32_1 doi: 10.1016/0076-6879(91)02005-T – ident: e_1_2_1_45_1 doi: 10.3109/15569549109077272 – ident: e_1_2_1_30_1 doi: 10.1093/nar/19.8.1817 – ident: e_1_2_1_31_1 doi: 10.1093/protein/6.8.811 – ident: e_1_2_1_28_1 doi: 10.1016/0097-8485(92)80010-W – ident: e_1_2_1_41_1 doi: 10.1038/321620a0 – ident: e_1_2_1_21_1 doi: 10.1002/prot.340230308 – ident: e_1_2_1_16_1 doi: 10.1002/bip.360221211 – ident: e_1_2_1_42_1 doi: 10.1016/0041-0101(94)90211-9 – ident: e_1_2_1_8_1 doi: 10.1016/0022-2836(92)90693-E – ident: e_1_2_1_15_1 doi: 10.1107/S0567739476001873 – ident: e_1_2_1_38_1 doi: 10.1128/IAI.58.7.2177-2185.1990 – ident: e_1_2_1_36_1 doi: 10.1093/nar/17.8.3305 – ident: e_1_2_1_37_1 doi: 10.1083/jcb.108.4.1363 – volume: 8 start-page: 189 year: 1992 ident: e_1_2_1_11_1 article-title: CLUSTAL V: Improved software for multiple sequence alignment publication-title: CABIOS contributor: fullname: Higgins DG – ident: e_1_2_1_14_1 doi: 10.1038/358086a0 – ident: e_1_2_1_44_1 doi: 10.1002/pro.5560031220 – volume: 266 start-page: 11661 year: 1991 ident: e_1_2_1_23_1 article-title: The residues of Ras and Rap proteins that determine their GAP specificities publication-title: J Biol Chem doi: 10.1016/S0021-9258(18)99008-3 contributor: fullname: Maruta H – ident: e_1_2_1_17_1 doi: 10.1006/jmbi.1994.1109 – ident: e_1_2_1_49_1 doi: 10.1016/0022-2836(92)91064-V – ident: e_1_2_1_46_1 doi: 10.1016/0167-4838(93)90039-T – volume: 264 start-page: 19076 year: 1989 ident: e_1_2_1_34_1 article-title: Sphingomyelin turnover induced by vitamin D3 in HL‐60 cells: Role in cell differentiation publication-title: J Biol Chem doi: 10.1016/S0021-9258(19)47268-2 contributor: fullname: Okazaki T – ident: e_1_2_1_5_1 doi: 10.1002/prot.340160110 – ident: e_1_2_1_18_1 doi: 10.1016/0962-8924(92)90310-J – ident: e_1_2_1_9_1 doi: 10.1016/S0021-9258(17)41834-5 – ident: e_1_2_1_2_1 doi: 10.1016/S0022-2836(05)80360-2 – ident: e_1_2_1_27_1 doi: 10.1002/prot.340230310 – ident: e_1_2_1_51_1 doi: 10.1073/pnas.90.4.1379 – ident: e_1_2_1_33_1 doi: 10.1016/0022-2836(86)90280-9 – ident: e_1_2_1_3_1 doi: 10.1016/S0022-2836(77)80200-3 – ident: e_1_2_1_52_1 doi: 10.1111/j.1432-1033.1988.tb14186.x – ident: e_1_2_1_19_1 doi: 10.1107/S0021889891004399 – ident: e_1_2_1_50_1 doi: 10.1016/0092-8674(94)90275-5 – ident: e_1_2_1_43_1 doi: 10.1042/bj3090757 – ident: e_1_2_1_22_1 doi: 10.1016/0022-2836(92)90228-C – ident: e_1_2_1_35_1 doi: 10.1006/jmbi.1993.1433 – ident: e_1_2_1_47_1 doi: 10.1002/j.1460-2075.1991.tb07683.x – ident: e_1_2_1_40_1 doi: 10.1038/332464a0 – ident: e_1_2_1_13_1 doi: 10.1093/nar/16.21.10370 – ident: e_1_2_1_25_1 doi: 10.1016/0014-5793(94)00435-8 |
SSID | ssj0004123 |
Score | 1.7878276 |
Snippet | The three‐dimensional structure of bacterial sphingomyelinase (SMase) was predicted using a protein fold recognition method; the search of a library of known... The three-dimensional structure of bacterial sphingomyelinase (SMase) was predicted using a protein fold recognition method; the search of a library of known... |
SourceID | pubmedcentral crossref pubmed wiley |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 2459 |
SubjectTerms | Amino Acid Sequence Animals Bacteria - enzymology bacterial sphingomyelinase Deoxyribonuclease I - genetics DNase I Evolution, Molecular evolutionary relationship Mammals Molecular Sequence Data Mutagenesis, Site-Directed Sequence Alignment Sequence Analysis site‐directed mutagenesis Sphingomyelin Phosphodiesterase - genetics structure prediction |
SummonAdditionalLinks | – databaseName: Wiley-Blackwell dbid: 33P link: http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED5BF1h4tFSElzwgmEITp3GSsepDsJSKh8SAVNmxo3ZIWvWBxL_n7KQpYUGCMXEcRznb33enu88A1yJoh4mSTCs_Ruig-MwWnCe25wh0Hxzl-0LHIe-fg-Fb2OtrmZyyij_XhygDbnplmP1aL3Aulq2taChuMHe-xmuELFPti66CqeHwRtvCSJfmZ8kz1w49Fm5UGx3aqnavoFIJRT_TJL_TV4M_g8P_f_kRHBTck3TyyXIMOyqrQ6OTod-dfpIbYrJBTZi9DnvdzUlwDXjvEKlpZrYi6qOYqjg6WWwS6SbTOSkSvojI5Z9xnOVcR7fw1brkHcGS8EySlKepCa2Q3lDfeziB10H_pXtvF6cy2LEW_0PP1aFoXU_5IZMq4lrgS7QFb0sZo21ZrDUF48TzRChpQlnEHal8ZGEB9gqctteEWjbL1CkQx1HIj5hSUYhEzvU45QioseCJVNIXrgW3G6uM57n4xjiXWaZ4PRtvf6IFzdxW5XMh8iykShYEFSOW7VpWu9qSTSdGXpu6uoqMWUCNEX8ZeTx6etxenf2l0znsm1xwkyRzAbXVYq0uYXcp11dmOn8B_JH2mA priority: 102 providerName: Wiley-Blackwell |
Title | A distant evolutionary relationship between bacterial sphingomyelinase and mammalian DNase I |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpro.5560051208 https://www.ncbi.nlm.nih.gov/pubmed/8976554 https://pubmed.ncbi.nlm.nih.gov/PMC2143316 |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS-QwEB9cQfRF7vzAVU_yIPrU3TRp0uzjsiregeviB_ggLEmTsgu2LusH-N87Sdv11peDeymkaZuSGfjNDL_5BeDYpInKnZVe-bGHCYqQkdE6jzg1mD5QJ4TxdcjL23T4oM7OvUyOaHphAmk_M9NO-VR0yukkcCtnRdZteGLd0dWAxb7PR3Zb0MLYsEnRm2bImFXnx8s4UlyqRqmRMt_c1hEe4hHlqNqANYVgLESyhEkLIPpOkvw7eA3oc_EDNuuwkfSr3_sJK67cgu1-iSlz8UFOSCByhgr5FqwPmkPctuGxT6yPEMtX4t5rL9PzDzJvOHCT6YzUXC1iKuVmXOdl5gtT-GnfrY44R3RpSaGLIlRFyNnQ3_u9A_cX53eDy6g-UCHKvG4fJp2UoWG4E0pa19Nem8skRifWZmgWmXk5wCzn3CjLciZ7mlonMIBK8a2UJnwXVsvn0u0BodRhaCOd6ymMwWKumUYszIzOrbPCxG04bbZ0PKt0M8aVQjLD8fP4ywxt2K02evFcbZU2pEsWWMx7RezlGXSUoIxdO0YbWLDVP1Yej26uv0b7_73cAWwELncguRzC6uv8zf2C1ot9O4IW56Oj4KB4vf0z_ATuyOlb |
link.rule.ids | 230,315,729,782,786,887,1408,27933,27934,46064,46488,53800,53802 |
linkProvider | National Library of Medicine |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8MwDLZ4HMaF98R45oDgVNambdodJx4aAsbEQ-KAVCVNqnFYmfZA4t9jp-vGuCAhjmmaJqqd-LNlfwE4VlEQZ0YLYn5soIMSCkdJmTm-q9B9cE0YKopDth6j9kt8cUk0Oc2yFqbgh5gG3Ghn2POaNjgFpOsz1lA8Yc5CMthos6jcdzkQqI1UxeF3ZqWRHi9ukxeeE_siLnkbXV6fHz9nl6bG6Gei5HcAay3Q1do_rH0dVifwkzULfdmABZNvwlYzR9e798lOmE0ItZH2Taicl5fBbcFrk2lCmvmImY-JtuL0bFDm0nXf-myS88VUwQCN8wz7FODCT1PVO9pLJnPNerLXs9EVdtGmZ9fb8Hx1-XTeciYXMzgp8f-h8-pyFLBvwlho05DE8aUCJQOtUxSvSIlWMM18X8WaZ1w0pKtNiEAswlGRG_hVWMrfc7MDzHUNQiRhTCNGLOf5kku0qamSmTY6VF4NTkuxJP2CfyMpmJY5tt-T2U-sQbUQ1vS9GKEWoqUaRHNSnPYTs_Z8T_7WtQzb3KNCMlEDbqX4y8xJ5-F-1tr9y6AjqLSe7m6T2-v2zR6s2NRwmzOzD0ujwdgcwOJQjw-tbn8BkDz6wA |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB2xSMCFHVFWHxCcAomdOOmxolQgUKlYJA5IkR07KoeGihYk_p4Zp00pFyQ4Jo7jKGP7vRnNPAMc6ThMcmskKT_W0UGJpKeVyj3ha3QffBtFmuKQl_dx-ylpXpBMTlXFX-pDVAE3Whluv6YF3jf52UQ0FDeY04jwGiGLqn3nQ-TipJ4vRGdSGRnw8jB5GXiJkMlYttHnZ9P9p2CpwqKfeZLf-asDoNbK_z99FZZH5JM1ytmyBjO2WIeNRoGOd--THTOXDuri7OuweD4-Cm4DnhvMEM8shsx-jOYqjs7expl03Zc-G2V8MV3qP-M4gz6Ft_DVVPOOaMlUYVhP9XoutsKabbp3tQmPrYuH80tvdCyDl5H6H7quPkfzChsl0ti6IoUvHWoVGpOhcWVGooJZLoRODM-5rCvf2AhpWIy9Yj8UWzBXvBZ2G5jvWyRI0tp6gkwuEIorRNRMq9xYE-mgBidjq6T9Un0jLXWWOV6_ppOfWIOt0lbVcwkSLeRKNYinjFi1k672dEvx0nX62jygMjJZA-6M-MvIaefudnK185dOh7DQabbSm6v29S4subxwlzCzB3PDt3e7D7MD837gZvYXh6z5Zg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+distant+evolutionary+relationship+between+bacterial+sphingomyelinase+and+mammalian+DNase+I&rft.jtitle=Protein+science&rft.au=Matsuo%2C+Yo&rft.au=Yamada%2C+Atsuko&rft.au=Tsukamoto%2C+Kikuo&rft.au=Tamura%2C+Hiro%E2%80%90Omi&rft.date=1996-12-01&rft.pub=Cold+Spring+Harbor+Laboratory+Press&rft.issn=0961-8368&rft.eissn=1469-896X&rft.volume=5&rft.issue=12&rft.spage=2459&rft.epage=2467&rft_id=info:doi/10.1002%2Fpro.5560051208&rft.externalDBID=10.1002%252Fpro.5560051208&rft.externalDocID=PRO5560051208 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0961-8368&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0961-8368&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0961-8368&client=summon |