Energy optimization of bioethanol production via gasification of switchgrass
In this article, we address the conceptual design of the bioethanol process from switchgrass via gasification. A superstructure is postulated for optimizing energy use that embeds direct or indirect gasification, followed by steam reforming or partial oxidation. Next, the gas composition is adjusted...
Saved in:
Published in: | AIChE journal Vol. 57; no. 12; pp. 3408 - 3428 |
---|---|
Main Authors: | , |
Format: | Journal Article |
Language: | English |
Published: |
Hoboken
Wiley Subscription Services, Inc., A Wiley Company
01-12-2011
Wiley American Institute of Chemical Engineers |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this article, we address the conceptual design of the bioethanol process from switchgrass via gasification. A superstructure is postulated for optimizing energy use that embeds direct or indirect gasification, followed by steam reforming or partial oxidation. Next, the gas composition is adjusted with membrane‐PSA or water gas shift. Membrane separation, absorption with ethanol‐amines and PSA are considered for the removal of sour gases. Finally, two synthetic paths are considered, high alcohols catalytic process with two possible distillation sequences, and syngas fermentation with distillation, corn grits, molecular sieves and pervaporation as alternative dehydration processes. The optimization of the superstructure is formulated as an mixed‐integer nonlinear programming problem using short‐cut models, and solved through a special decomposition scheme that is followed by heat integration. The optimal process consists of direct gasification followed by steam reforming, removal of the excess of hydrogen and catalytic synthesis, yielding a potential operating cost of $0.41/gal. © 2011 American Institute of Chemical Engineers AIChE J, 2011 |
---|---|
Bibliography: | ark:/67375/WNG-NBHH8CX6-5 Ministry of Education and Science of Spain and Fulbright commission providing a MICINN-Fulbright Postdoctoral fellowship istex:53F4140607BF1C74E51127E3401F1F26C5DF0255 NSF Grant - No. CBET0966524 ArticleID:AIC12544 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0001-1541 1547-5905 |
DOI: | 10.1002/aic.12544 |