Land-Use Type Effects on Soil Organic Carbon and Microbial Properties in a Semi-arid Region of Northeast Brazil
ABSTRACT Land‐use change is one of the most important anthropogenic environmental change drivers affecting the biodiversity and functioning of ecosystems. However, there is limited knowledge of the consequences for soil processes in many regions around the globe. The Brazilian semi‐arid ecosystem kn...
Saved in:
Published in: | Land degradation & development Vol. 27; no. 2; pp. 171 - 178 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
Chichester
Blackwell Publishing Ltd
01-02-2016
Wiley Subscription Services, Inc |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | ABSTRACT
Land‐use change is one of the most important anthropogenic environmental change drivers affecting the biodiversity and functioning of ecosystems. However, there is limited knowledge of the consequences for soil processes in many regions around the globe. The Brazilian semi‐arid ecosystem known as Caatinga has experienced the transformation from native forest into agricultural land, with heretofore unknown effects on soil processes and microbial properties. The aim of this study was to evaluate the impact of five land‐use changes (to maize and cowpea cropland, grape orchard, and cut and grazed pasture) on total organic C (TOC) and total N (TN) stocks and soil microbial properties of Ultisol from Caatinga. Soil samples (0–10 and 10–20 cm depth) were collected during the wet and dry periods. Split–split plot analysis of variance was used to test the effects of land use, soil depth, season and the interaction between land‐use and soil depth on soil microbial properties, TOC and TN stocks. Land‐use effects were more pronounced in the top soil layer than in the lower layer, while the pattern was less consistent in soil microbial properties. Land conversion from native forest to cropland may cause C losses from the soil, but conversion to pastures may even increase the potential of soils to function as C sinks. Grazed pastures showed not only high C and N stocks but also the highest soil microbial biomass and lowest respiratory quotients, all indications for elevated soil C sequestration. Thus, grazed pastures may represent a land‐use form with high ecosystem multifunctionality in Caatinga. Copyright © 2014 John Wiley & Sons, Ltd. |
---|---|
AbstractList | Land-use change is one of the most important anthropogenic environmental change drivers affecting the biodiversity and functioning of ecosystems. However, there is limited knowledge of the consequences for soil processes in many regions around the globe. The Brazilian semi-arid ecosystem known as Caatinga has experienced the transformation from native forest into agricultural land, with heretofore unknown effects on soil processes and microbial properties. The aim of this study was to evaluate the impact of five land-use changes (to maize and cowpea cropland, grape orchard, and cut and grazed pasture) on total organic C (TOC) and total N (TN) stocks and soil microbial properties of Ultisol from Caatinga. Soil samples (0-10 and 10-20cm depth) were collected during the wet and dry periods. Split-split plot analysis of variance was used to test the effects of land use, soil depth, season and the interaction between land-use and soil depth on soil microbial properties, TOC and TN stocks. Land-use effects were more pronounced in the top soil layer than in the lower layer, while the pattern was less consistent in soil microbial properties. Land conversion from native forest to cropland may cause C losses from the soil, but conversion to pastures may even increase the potential of soils to function as C sinks. Grazed pastures showed not only high C and N stocks but also the highest soil microbial biomass and lowest respiratory quotients, all indications for elevated soil C sequestration. Thus, grazed pastures may represent a land-use form with high ecosystem multifunctionality in Caatinga. Copyright © 2014 John Wiley & Sons, Ltd. Land-use change is one of the most important anthropogenic environmental change drivers affecting the biodiversity and functioning of ecosystems. However, there is limited knowledge of the consequences for soil processes in many regions around the globe. The Brazilian semi-arid ecosystem known as Caatinga has experienced the transformation from native forest into agricultural land, with heretofore unknown effects on soil processes and microbial properties. The aim of this study was to evaluate the impact of five land-use changes (to maize and cowpea cropland, grape orchard, and cut and grazed pasture) on total organic C (TOC) and total N (TN) stocks and soil microbial properties of Ultisol from Caatinga. Soil samples (0-10 and 10-20cm depth) were collected during the wet and dry periods. Split-split plot analysis of variance was used to test the effects of land use, soil depth, season and the interaction between land-use and soil depth on soil microbial properties, TOC and TN stocks. Land-use effects were more pronounced in the top soil layer than in the lower layer, while the pattern was less consistent in soil microbial properties. Land conversion from native forest to cropland may cause C losses from the soil, but conversion to pastures may even increase the potential of soils to function as C sinks. Grazed pastures showed not only high C and N stocks but also the highest soil microbial biomass and lowest respiratory quotients, all indications for elevated soil C sequestration. Thus, grazed pastures may represent a land-use form with high ecosystem multifunctionality in Caatinga. Land‐use change is one of the most important anthropogenic environmental change drivers affecting the biodiversity and functioning of ecosystems. However, there is limited knowledge of the consequences for soil processes in many regions around the globe. The Brazilian semi‐arid ecosystem known as Caatinga has experienced the transformation from native forest into agricultural land, with heretofore unknown effects on soil processes and microbial properties. The aim of this study was to evaluate the impact of five land‐use changes (to maize and cowpea cropland, grape orchard, and cut and grazed pasture) on total organic C (TOC) and total N (TN) stocks and soil microbial properties of Ultisol from Caatinga. Soil samples (0–10 and 10–20 cm depth) were collected during the wet and dry periods. Split–split plot analysis of variance was used to test the effects of land use, soil depth, season and the interaction between land‐use and soil depth on soil microbial properties, TOC and TN stocks. Land‐use effects were more pronounced in the top soil layer than in the lower layer, while the pattern was less consistent in soil microbial properties. Land conversion from native forest to cropland may cause C losses from the soil, but conversion to pastures may even increase the potential of soils to function as C sinks. Grazed pastures showed not only high C and N stocks but also the highest soil microbial biomass and lowest respiratory quotients, all indications for elevated soil C sequestration. Thus, grazed pastures may represent a land‐use form with high ecosystem multifunctionality in Caatinga. Copyright © 2014 John Wiley & Sons, Ltd. ABSTRACT Land‐use change is one of the most important anthropogenic environmental change drivers affecting the biodiversity and functioning of ecosystems. However, there is limited knowledge of the consequences for soil processes in many regions around the globe. The Brazilian semi‐arid ecosystem known as Caatinga has experienced the transformation from native forest into agricultural land, with heretofore unknown effects on soil processes and microbial properties. The aim of this study was to evaluate the impact of five land‐use changes (to maize and cowpea cropland, grape orchard, and cut and grazed pasture) on total organic C (TOC) and total N (TN) stocks and soil microbial properties of Ultisol from Caatinga. Soil samples (0–10 and 10–20 cm depth) were collected during the wet and dry periods. Split–split plot analysis of variance was used to test the effects of land use, soil depth, season and the interaction between land‐use and soil depth on soil microbial properties, TOC and TN stocks. Land‐use effects were more pronounced in the top soil layer than in the lower layer, while the pattern was less consistent in soil microbial properties. Land conversion from native forest to cropland may cause C losses from the soil, but conversion to pastures may even increase the potential of soils to function as C sinks. Grazed pastures showed not only high C and N stocks but also the highest soil microbial biomass and lowest respiratory quotients, all indications for elevated soil C sequestration. Thus, grazed pastures may represent a land‐use form with high ecosystem multifunctionality in Caatinga. Copyright © 2014 John Wiley & Sons, Ltd. |
Author | Eisenhauer, Nico Leite, Luiz Fernando Carvalho Ferreira, Ana Carolina Câmara de Araújo, Ademir Sérgio Ferreira |
Author_xml | – sequence: 1 givenname: Ana Carolina Câmara surname: Ferreira fullname: Ferreira, Ana Carolina Câmara organization: Embrapa Mid-North, Av. Duque de Caxias, PI, Teresina, Brazil – sequence: 2 givenname: Luiz Fernando Carvalho surname: Leite fullname: Leite, Luiz Fernando Carvalho email: Correspondence to: L. F. C. Leite, Embrapa Mid-North, Av. Duque de Caxias, Teresina, PI, Brazil., luiz.f.leite@embrapa.br organization: Embrapa Mid-North, Av. Duque de Caxias, PI, Teresina, Brazil – sequence: 3 givenname: Ademir Sérgio Ferreira surname: de Araújo fullname: de Araújo, Ademir Sérgio Ferreira organization: Soil Quality Lab., Agricultural Science Center, Federal University of Piauí, PI, Teresina, Brazil – sequence: 4 givenname: Nico surname: Eisenhauer fullname: Eisenhauer, Nico organization: Institute of Ecology, Friedrich Schiller University Jena, Dornburger Str. 159, 07743, Jena, Germany |
BookMark | eNqF0U1r3DAQBmBRUmiSBvoTBLnk4nQkWZZ0bJ2PFrabJR-kNyHb41Sp19pIXtLtr6-WlEAKJReNmHkYkN49sjOGEQn5wOCYAfCPQxePOdf8DdllYEzBSvl9Z3vXshBc6XdkL6V7AGCqVLskzNzYFTcJ6fVmhfS077GdEg0jvQp-oBfxzo2-pbWLTe5lS7_5NobGu4EuYlhhnDwm6vOMXuHSFy76jl7inc889HQe4vQDXZro5-h---E9edu7IeHB37pPbs5Or-svxezi_Gv9aVa0EhgvFIemEZ2oTNv2AgxAw6QxCL02rGXItamEllBJVvW84warSihlTO4Z3nCxT46e9q5ieFhjmuzSpxaHwY0Y1skyDVAaKLl4nSoteckV05ke_kPvwzqO-SFZVaVgHPL5vDB_VEoRe7uKfunixjKw25BsDsluQ8q0eKKPfsDNf52dnVy-9D5N-OvZu_jTVkooaW_n57Ze3HK5qOd2Lv4ALJygGQ |
CODEN | LDDEF6 |
CitedBy_id | crossref_primary_10_1371_journal_pone_0244322 crossref_primary_10_1038_s41598_021_99075_5 crossref_primary_10_1016_j_geodrs_2023_e00647 crossref_primary_10_1093_femsec_fiy236 crossref_primary_10_1016_j_scitotenv_2018_06_254 crossref_primary_10_1016_j_geoderma_2021_115466 crossref_primary_10_1002_ldr_2328 crossref_primary_10_1016_j_jenvman_2024_120807 crossref_primary_10_3832_ifor1410_007 crossref_primary_10_1007_s42832_022_0159_x crossref_primary_10_1134_S1064229321070048 crossref_primary_10_2136_sssaj2017_09_0340 crossref_primary_10_3390_su15021204 crossref_primary_10_1016_j_ejsobi_2020_103186 crossref_primary_10_1016_j_jaridenv_2022_104861 crossref_primary_10_1007_s10457_021_00654_2 crossref_primary_10_1016_j_ecolind_2020_106324 crossref_primary_10_1016_j_uclim_2022_101263 crossref_primary_10_1080_00103624_2022_2055054 crossref_primary_10_5194_se_6_243_2015 crossref_primary_10_1111_btp_12813 crossref_primary_10_1111_geb_12663 crossref_primary_10_1016_j_catena_2021_106002 crossref_primary_10_3390_agronomy11091815 crossref_primary_10_1016_j_catena_2016_08_031 crossref_primary_10_1016_j_scitotenv_2020_136526 crossref_primary_10_30910_turkjans_1171662 crossref_primary_10_1080_15324982_2020_1763515 crossref_primary_10_4236_ajps_2017_812214 crossref_primary_10_1002_saj2_20077 crossref_primary_10_1080_15324982_2018_1555871 crossref_primary_10_1002_ldr_4416 crossref_primary_10_1016_j_agee_2024_109020 crossref_primary_10_1002_ldr_3803 crossref_primary_10_1016_j_ejsobi_2018_07_006 crossref_primary_10_1080_27658511_2024_2333631 crossref_primary_10_1016_j_scitotenv_2016_10_123 crossref_primary_10_1016_j_still_2018_12_011 crossref_primary_10_1007_s11356_017_8687_0 crossref_primary_10_5194_soil_1_173_2015 crossref_primary_10_1016_j_scitotenv_2020_139388 crossref_primary_10_1007_s42729_021_00466_4 crossref_primary_10_1016_j_rser_2017_06_080 crossref_primary_10_1590_1678_4499_20200242 crossref_primary_10_1016_j_landusepol_2022_106336 crossref_primary_10_7717_peerj_5714 crossref_primary_10_3389_fmicb_2023_1283675 crossref_primary_10_1016_j_catena_2021_105326 crossref_primary_10_1002_ird_2805 crossref_primary_10_1186_s13717_023_00431_2 crossref_primary_10_1016_j_geodrs_2020_e00304 crossref_primary_10_1007_s11258_017_0727_9 crossref_primary_10_1088_1755_1315_512_1_012039 crossref_primary_10_1016_j_still_2019_104544 crossref_primary_10_3390_agronomy10020305 crossref_primary_10_1007_s11676_019_00982_1 crossref_primary_10_1016_j_jenvman_2020_110254 crossref_primary_10_1080_17583004_2021_1962978 crossref_primary_10_1002_ldr_2385 crossref_primary_10_1111_gcb_16481 crossref_primary_10_1080_03650340_2018_1523544 crossref_primary_10_1007_s13199_020_00672_1 crossref_primary_10_1016_j_jclepro_2019_119659 crossref_primary_10_3389_fmicb_2019_02293 crossref_primary_10_1016_j_catena_2020_104563 crossref_primary_10_1016_j_scitotenv_2017_11_290 crossref_primary_10_3390_agriculture11040290 crossref_primary_10_1111_1462_2920_15520 crossref_primary_10_3390_ijerph19020903 crossref_primary_10_1016_j_scitotenv_2016_08_015 crossref_primary_10_1007_s13399_021_01915_x crossref_primary_10_1002_ldr_3823 crossref_primary_10_1002_ldr_2417 crossref_primary_10_1016_j_wasman_2024_06_010 crossref_primary_10_3390_ijerph20064820 crossref_primary_10_3390_su12219226 crossref_primary_10_1002_ldr_2570 crossref_primary_10_3390_agronomy13071897 crossref_primary_10_1007_s40333_022_0102_0 crossref_primary_10_1016_j_scitotenv_2023_164009 crossref_primary_10_1002_ldr_4873 crossref_primary_10_1016_j_jenvman_2021_112144 crossref_primary_10_1111_1440_1703_12229 crossref_primary_10_3389_fpls_2022_1020344 crossref_primary_10_1016_j_scitotenv_2022_154827 crossref_primary_10_3390_land13040452 |
Cites_doi | 10.1071/SR9920195 10.1007/s11104-004-0907-y 10.1002/ldr.2218 10.1016/j.agee.2011.11.009 10.1046/j.1461-0248.2002.00322.x 10.1016/j.catena.2010.01.007 10.1016/j.soilbio.2006.07.002 10.1590/S1519-69842012000400004 10.1016/j.geoderma.2011.11.007 10.1016/S0038-0717(01)00168-7 10.1002/ldr.1055 10.1017/CBO9780511753398.003 10.1016/S0929-1393(96)00126-6 10.1007/s10533-004-2222-3 10.1007/s00374-002-0541-x 10.1016/j.apsoil.2004.03.008 10.1007/BF00336143 10.1016/0038-0717(87)90052-6 10.1016/0038-0717(90)90094-G 10.1002/ldr.2205 10.1890/1051-0761(2003)013[0327:MSOCCI]2.0.CO;2 10.1002/ldr.993 10.1016/j.agee.2005.03.003 10.2134/agronmonogr9.2.2ed.c31 10.1590/S0100-06832012000500019 10.1016/j.still.2004.03.018 10.1038/376472a0 10.1016/j.agee.2010.04.002 10.4236/ojss.2013.31006 10.1080/00103628809368027 10.1093/oso/9780195131871.001.0001 10.1016/S1002-0160(11)60194-X 10.1016/S0038-0717(02)00251-1 10.1007/s11368-012-0617-7 10.5424/sjar/2010084-1411 10.1002/ldr.2169 10.1002/ldr.2194 10.1023/A:1004756416281 10.1016/j.still.2004.09.013 10.1016/j.agee.2012.10.001 10.1007/s10021-009-9275-z 10.1016/j.catena.2013.02.010 |
ContentType | Journal Article |
Copyright | Copyright © 2014 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd. |
Copyright_xml | – notice: Copyright © 2014 John Wiley & Sons, Ltd. – notice: Copyright © 2016 John Wiley & Sons, Ltd. |
DBID | BSCLL AAYXX CITATION 7ST 8FD C1K FR3 KR7 SOI 7U6 |
DOI | 10.1002/ldr.2282 |
DatabaseName | Istex CrossRef Environment Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Civil Engineering Abstracts Environment Abstracts Sustainability Science Abstracts |
DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Environment Abstracts Environmental Sciences and Pollution Management Sustainability Science Abstracts |
DatabaseTitleList | Civil Engineering Abstracts Technology Research Database CrossRef Environment Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 1099-145X |
EndPage | 178 |
ExternalDocumentID | 3948441561 10_1002_ldr_2282 LDR2282 ark_67375_WNG_CPW25PCN_N |
Genre | article |
GeographicLocations | ASW, Brazil |
GeographicLocations_xml | – name: ASW, Brazil |
GroupedDBID | .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABOGM ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFZJQ AGHSJ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS ECGQY EDH EJD F00 F01 F04 FEDTE G-S G.N GNP GODZA H.T H.X HF~ HGLYW HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M62 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2P P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RWI RX1 SAMSI SUPJJ UB1 W8V W99 WBKPD WIB WIH WIK WOHZO WQJ WRC WUPDE WXSBR WYISQ XG1 XPP XV2 Y6R ZZTAW ~IA ~KM ~WT AAMNL AAYXX CITATION 7ST 8FD C1K FR3 KR7 SOI 7U6 |
ID | FETCH-LOGICAL-c5012-720bb3d369ccf30900b1599e0f891c1e289638506516f2d29e663779985092b23 |
IEDL.DBID | 33P |
ISSN | 1085-3278 |
IngestDate | Fri Aug 16 06:31:15 EDT 2024 Fri Aug 16 22:13:08 EDT 2024 Tue Nov 19 05:24:25 EST 2024 Thu Nov 21 22:30:27 EST 2024 Sat Aug 24 00:49:12 EDT 2024 Wed Oct 30 09:57:52 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5012-720bb3d369ccf30900b1599e0f891c1e289638506516f2d29e663779985092b23 |
Notes | istex:C45BA57E4928730F44BBBD999738DE7C1B786976 ArticleID:LDR2282 ark:/67375/WNG-CPW25PCN-N ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | http://ainfo.cnptia.embrapa.br/digital/bitstream/item/127593/1/ArtigoLuizFernandoLandDegradDevelop2014.pdf |
PQID | 1764312064 |
PQPubID | 1016359 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_1800490423 proquest_miscellaneous_1785242718 proquest_journals_1764312064 crossref_primary_10_1002_ldr_2282 wiley_primary_10_1002_ldr_2282_LDR2282 istex_primary_ark_67375_WNG_CPW25PCN_N |
PublicationCentury | 2000 |
PublicationDate | February 2016 |
PublicationDateYYYYMMDD | 2016-02-01 |
PublicationDate_xml | – month: 02 year: 2016 text: February 2016 |
PublicationDecade | 2010 |
PublicationPlace | Chichester |
PublicationPlace_xml | – name: Chichester |
PublicationTitle | Land degradation & development |
PublicationTitleAlternate | Land Degrad. Develop |
PublicationYear | 2016 |
Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc |
References | Franzluebbers K, Weaver RV, Juo ASR, Franzluebbers AJ. 1995. Mineralization of carbon and nitrogen from cowpea leaves and activity in soil with different levels of microbial biomass. Biology & Fertility of Soils 19: 100-102. Nunes JS, Araújo ASF, Nunes LAPL, Lima LM, Carneiro RFV, Tsai SM, Salviano AAC. 2012. Land degradation on soil microbial biomass and activity in Northeast Brazil. Pedosphere 22: 88-95. Menezes RSC, Sampaio EVSB, Giongo V, Perez-Marin AM. 2012. Biogeochemical cycling in terrestrial ecosystems of the Caatinga Biome. Brazilian Journal of Biology 72: 643-653. Barbera V, Poma I, Gristina L, Novara A, Egli M. 2012. Long-term cropping systems and tillage management effects on soil organic carbon stock and steady state level of c sequestration rates in a semiarid environment. Land Degradation & Development 23: 82-91. DOI: 10.1002/ldr.1055. Jarecki MK, Lal R, James R. 2005. Crop management effects on soil carbon sequestration on selected farmers' fields in northeastern Ohio. Soil & Tillage Research 81: 265-276. Rasse DP, Rumpel C, Dignac MF. 2005. Is soil carbon mostly root carbon? Mechanisms for a specific stabilization. Plant & Soil 269: 341-356. Yu WT, Bi ML, Xu YG, Zhou H, Qiang M, Jiang Jiang CM. 2013b. Microbial biomass and community composition in a Luvisol soil as influenced by long-term land use and fertilization. Catena 107: 89-95. Ussiri DAN, Lal R. 2013. Land management effects on carbon sequestration and soil properties in reclaimed farmland of Eastern Ohio, USA. Open Journal of Soil Science 3: 46-57. Sá JCM, Séguy L, Tivet F, Lal R, Bouzinac S, Borszowskei PR, Briedis C, Santos JB, Hartman DC, Bertoloni CG, Rosa J, Friedrich T. 2013. Carbon depletion by plowing and its restoration by no-till cropping systems in oxisols of subtropical and tropical agro-ecoregions in Brazil. Land Degradation & Development. DOI: 10.1002/ldr.2218. Fracetto FJC, Fracetto GGM, Cerri CC, Feigl BJ, Neto MS. 2012. Estoques de carbono e nitrogênio no solo cultivado com mamona na Caatinga. Revista Brasileira de Ciência do Solo 36: 1545-1552. Jórdan A, Zavala LM, Gil J. 2010. Effects of mulching on soil physical properties and runoff under semi-arid conditions in Southern Spain. Catena 8: 77-85. Sparling GP. 1992. Ratio of microbial biomass carbon to soil organic carbon as a sensitive indicator of changes in soil organic matter. Australian Journal of Soil Research 30: 195-207. Wilsey BJ, Parent G, Roulet NT, Moore TR, Potvin C. 2002. Tropical pasture carbon cycling: relationships between C source/sink strength, above-ground biomass and grazing. Ecology Letters 5: 367-376. Wick B, Tiessen H, Menezes RSC. 2000. Land quality changes following the conversion of the natural vegetation into silvo-pastoral systems in semi-arid NE Brazil. Plant & Soil 222: 59-70. Alef K, Nannipieri P. 1995. Methods in applied soil microbiology and biochemistry. Academic Press: London; 576. Fierer N, Schimel JP, Holden PA. 2003. Variations in microbial community composition through two soil depth profiles. Soil Biology & Biochemistry 35: 167-176. Santos VB, Leite LFC, Nunes LAPL, Melo WJ. 2012. Soil microbial biomass and organic matter fractions during transition from conventional to organic farming systems. Geoderma 170: 227-231. Cunha FF, Ramos MM, Alencar CAB, Martins CE, Cóser AC, Oliveira RA. 2011. Sistema radicular de seis gramíneas irrigadas em diferentes adubações nitrogenadas e manejos. Acta Scientiarum Agronomy 32: 351-357. Scheiner SM, Gurevitch J. 2001. Design and analysis of ecological experiments (2nd edn.), Oxford University Press: New York. Eisenhauer N, Straube D, Johnson EA, Parkinson D, Scheu S. 2009. Exotic ecosystem engineers change the emergence of plants from the seed bank of a deciduous forest. Ecosystems 12: 1008-1016. Fernandes AP, Bettiol W, Cerri CC. 2005. Effect of sewage sludge on microbial biomass, basal respiration, metabolic quotient and soil enzymatic activity. Applied Soil Ecology 30: 65-77. Anderson JM, Domsch KH. 1990. Application of ecophysiological quotients (qCO2 and qD) on microbial biomass from soils of different cropping histories. Soil Biology & Biochemistry 22: 251-255. Iyyemperumal K, Israel DW, Shi W. 2007. Soil microbial biomass, activity and potential nitrogen mineralization in a pasture: impact of stock camping activity. Soil Biology & Biochemistry 39: 149-157. Vance ED, Brookes PC, Jenkinson DS. 1987. An extraction method for measuring soil microbial biomass C. Soil Biology & Biochemistry 19: 703-707. Ekenler M, Tabatabai MA. 2002. β-Glucosaminidase activity of soils: effect of cropping systems and its relationship to nitrogen mineralization. Biology & Fertility of Soils 36: 367-376. EMBRAPA - Empresa Brasileira de Pesquisa Agropecuária. 1997. Manual de métodos de análise de solo, Rio de Janeiro, RJ (2nd edn). Centro Nacional de Pesquisa de Solos: rev. atual. Rio de Janeiro; 212. Grayston SJ, Vaughan D, Jones D. 1996. Rhizosphere carbon flow in trees, in comparison with annual plants: the importance of root exudation and its impact on microbial activity and nutrient availability. Applied Soil Ecology 5: 29-56. Sousa FP, Ferreira TO, Mendonça ES, Romero RE, Oliveira JGB. 2012. Carbon and nitrogen in degraded Brazilian semi-arid soils undergoing desertification. Agriculture, Ecosystems & Environment 148: 11-21. Yeomans JC, Bremner JM. 1988. A rapid and precise method for routine determination of organic carbon in soil. Communications in Soil Science & Plant Analysis 19: 1467-1476. Araujo ASF, Silva EFL, Nunes LAPL, Carneiro RFV. 2010. Effect of converting native savanna to Eucalyptus grandis forest on soil microbial biomass. Land Degradation & Development 21: 540-545. DOI: 10.1002/ldr.993. Agbenin JO, Adeniyi T. 2005. The microbial biomass properties of a savanna soil under improved grass and legume pastures in northern Nigeria. Agriculture, Ecosystem & Environment 109: 245-254. Islan KR, Weil RR. 2000. Soil quality indicator proprieties in mid-Atlantic soils as influenced by conservation management. Journal of Soil & Water Conservation 55: 69-78. Song GH, Li LQ, Pan GX, Zhang Q. 2005. Topsoil organic carbon storage of China and its loss by cultivation. Biogeochemistry 74: 47-62. Bruun TB, Elberling B, De Neergaard A, Magid J. 2013. Organic carbon dynamics in different soil types after conversion of forest to agriculture. Land Degradation & Development. DOI: 10.1002/ldr.2205. Smith P, Fallow P. 2005. Carbon sequestration in European croplands. SEB Experimental Biology Service 21: 47-55. Lopes MM, Salviano AAC, Araújo ASF, Nunes LAPL, Oliveira ME. 2010. Changes in soil microbial biomass and activity in different Brazilian pastures. Spanish Journal of Agricultural Research 8: 1253-1259. Muñoz-Rojas M, Jordán A, Zavala LM, De La Rosa D, Abd-Elmabod SK, Anaya-Romero M. 2013. Impact of land use and land cover changes on organic carbon stocks in Mediterranean soils (1956-2007). Land Degradation & Development. DOI: 10.1002/ldr.2194. Assis CP, Oliveira TS, Dantas JAN, Mendonça ES. 2010. Organic matter and phosphorus fractions in irrigated agroecosystems in a semi-arid region of Northeastern Brazil. Agriculture, Ecosystems & Environment 138: 74-82. Yu B, Stott P, Di XY, Yu HX. 2013a. Assessment of land cover changes and their effect on soil organic carbon and soil total nitrogen in Daqing Prefecture, China. Land Degradation & Development. DOI: 10.1002/ldr.2169. Albaladejo J, Ortiz R, Garcia-Franco N, Navarro AR, Almagro M, Pintado JG, Martínez-Mena M. 2013. Land use and climate change impacts on soil organic carbon stocks in semi-arid Spain. Journal of Soil & Sediments 13: 265-277. Stockmann U, Adams MA, Crawford JW, Field DJ, Henakaarchchi N, Jenkins M, Minasny B, McBratney AB, Courcelles VR, Singh K, Wheeler I, Abbott L, Angers DA, Baldock J, Bird M, Brookes PC, Chenu C, Jastrow JD, Lal R, Lehmann MJ, O'Donnell AG, Parton WJ, Whitehead D, Zimmermann M. 2013. The known and unknowns of sequestration of soil organic carbon. Agriculture, Ecosystems & Environment 164: 80-99. Davidson EA, Nepstad DC, Klink C, Trumbore SE. 2002. Pasture soils as carbon sink. Nature 376: 472-473. Li CS, Zhuang Y, Frolking S, Galloway J, Harriss R, Moore B, Schimel D, Wang XK. 2003. Modeling soil organic carbon change in croplands of China. Ecological Application 13: 327-336. Puget P, Lal R. 2005. Soil organic carbon and nitrogen in a Mollisol in central Ohio as affected by tillage and land use. Soil & Tillage Research 80: 201-213. Wilkinson S, Anderson J, Scardelis S, Tisiafouli M, Taylor A, Wolters V. 2002. PLFA profiles of microbial communities in decomposing conifer litters subject to moisture stress. Soil Biology & Biochemistry 34: 189-200. 2007; 39 2002; 36 2013; 3 1988; 19 2002; 34 2002; 5 2002; 376 2003; 35 2003; 13 1997 1995 2011; 32 2005; 21 2005; 80 2005; 81 1995; 19 2013a 2013; 164 2012; 36 2012; 148 1987; 19 1992; 30 2009; 12 2012; 72 2010; 21 1990; 22 2001 1982; 2 2013; 13 2010; 138 2000; 55 2005; 269 2012; 170 2005; 30 2005; 74 2005; 109 2013 2000; 222 1996; 5 2012; 23 2012; 22 2013b; 107 2010; 8 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_8_1 EMBRAPA ‐ Empresa Brasileira de Pesquisa Agropecuária (e_1_2_7_15_1) 1997 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_2_1 e_1_2_7_41_1 e_1_2_7_14_1 e_1_2_7_42_1 Cunha FF (e_1_2_7_11_1) 2011; 32 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_45_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_29_1 Alef K (e_1_2_7_4_1) 1995 Islan KR (e_1_2_7_21_1) 2000; 55 Smith P (e_1_2_7_36_1) 2005; 21 e_1_2_7_30_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_20_1 e_1_2_7_37_1 e_1_2_7_38_1 Scheiner SM (e_1_2_7_35_1) 2001 e_1_2_7_39_1 Sparling GP (e_1_2_7_40_1) 1997 Bremner JM (e_1_2_7_9_1) 1982 |
References_xml | – volume: 23 start-page: 82 year: 2012 end-page: 91 article-title: Long‐term cropping systems and tillage management effects on soil organic carbon stock and steady state level of c sequestration rates in a semiarid environment publication-title: Land Degradation & Development – volume: 222 start-page: 59 year: 2000 end-page: 70 article-title: Land quality changes following the conversion of the natural vegetation into silvo‐pastoral systems in semi‐arid NE Brazil publication-title: Plant & Soil – start-page: 97 year: 1997 end-page: 120 – start-page: 212 year: 1997 – volume: 35 start-page: 167 year: 2003 end-page: 176 article-title: Variations in microbial community composition through two soil depth profiles publication-title: Soil Biology & Biochemistry – year: 2013 article-title: Organic carbon dynamics in different soil types after conversion of forest to agriculture publication-title: Land Degradation & Development – volume: 39 start-page: 149 year: 2007 end-page: 157 article-title: Soil microbial biomass, activity and potential nitrogen mineralization in a pasture: impact of stock camping activity publication-title: Soil Biology & Biochemistry – volume: 8 start-page: 1253 year: 2010 end-page: 1259 article-title: Changes in soil microbial biomass and activity in different Brazilian pastures publication-title: Spanish Journal of Agricultural Research – volume: 12 start-page: 1008 year: 2009 end-page: 1016 article-title: Exotic ecosystem engineers change the emergence of plants from the seed bank of a deciduous forest publication-title: Ecosystems – year: 2001 – volume: 55 start-page: 69 year: 2000 end-page: 78 article-title: Soil quality indicator proprieties in mid‐Atlantic soils as influenced by conservation management publication-title: Journal of Soil & Water Conservation – year: 2013 article-title: Carbon depletion by plowing and its restoration by no‐till cropping systems in oxisols of subtropical and tropical agro‐ecoregions in Brazil publication-title: Land Degradation & Development – volume: 30 start-page: 195 year: 1992 end-page: 207 article-title: Ratio of microbial biomass carbon to soil organic carbon as a sensitive indicator of changes in soil organic matter publication-title: Australian Journal of Soil Research – volume: 19 start-page: 1467 year: 1988 end-page: 1476 article-title: A rapid and precise method for routine determination of organic carbon in soil publication-title: Communications in Soil Science & Plant Analysis – volume: 80 start-page: 201 year: 2005 end-page: 213 article-title: Soil organic carbon and nitrogen in a Mollisol in central Ohio as affected by tillage and land use publication-title: Soil & Tillage Research – volume: 3 start-page: 46 year: 2013 end-page: 57 article-title: Land management effects on carbon sequestration and soil properties in reclaimed farmland of Eastern Ohio, USA publication-title: Open Journal of Soil Science – volume: 21 start-page: 47 year: 2005 end-page: 55 article-title: Carbon sequestration in European croplands publication-title: SEB Experimental Biology Service – volume: 109 start-page: 245 year: 2005 end-page: 254 article-title: The microbial biomass properties of a savanna soil under improved grass and legume pastures in northern Nigeria publication-title: Agriculture, Ecosystem & Environment – volume: 22 start-page: 88 year: 2012 end-page: 95 article-title: Land degradation on soil microbial biomass and activity in Northeast Brazil publication-title: Pedosphere – volume: 34 start-page: 189 year: 2002 end-page: 200 article-title: PLFA profiles of microbial communities in decomposing conifer litters subject to moisture stress publication-title: Soil Biology & Biochemistry – volume: 19 start-page: 100 year: 1995 end-page: 102 article-title: Mineralization of carbon and nitrogen from cowpea leaves and activity in soil with different levels of microbial biomass publication-title: Biology & Fertility of Soils – volume: 19 start-page: 703 year: 1987 end-page: 707 article-title: An extraction method for measuring soil microbial biomass C publication-title: Soil Biology & Biochemistry – volume: 13 start-page: 265 year: 2013 end-page: 277 article-title: Land use and climate change impacts on soil organic carbon stocks in semi‐arid Spain publication-title: Journal of Soil & Sediments – year: 2013 article-title: Impact of land use and land cover changes on organic carbon stocks in Mediterranean soils (1956–2007) publication-title: Land Degradation & Development – volume: 2 start-page: 595 year: 1982 end-page: 624 – year: 2013a article-title: Assessment of land cover changes and their effect on soil organic carbon and soil total nitrogen in Daqing Prefecture, China publication-title: Land Degradation & Development – volume: 5 start-page: 367 year: 2002 end-page: 376 article-title: Tropical pasture carbon cycling: relationships between C source/sink strength, above‐ground biomass and grazing publication-title: Ecology Letters – volume: 170 start-page: 227 year: 2012 end-page: 231 article-title: Soil microbial biomass and organic matter fractions during transition from conventional to organic farming systems publication-title: Geoderma – start-page: 576 year: 1995 – volume: 36 start-page: 367 year: 2002 end-page: 376 article-title: β‐Glucosaminidase activity of soils: effect of cropping systems and its relationship to nitrogen mineralization publication-title: Biology & Fertility of Soils – volume: 376 start-page: 472 year: 2002 end-page: 473 article-title: Pasture soils as carbon sink publication-title: Nature – volume: 32 start-page: 351 year: 2011 end-page: 357 article-title: Sistema radicular de seis gramíneas irrigadas em diferentes adubações nitrogenadas e manejos publication-title: Acta Scientiarum Agronomy – start-page: 34 year: 1995 end-page: 63 – volume: 22 start-page: 251 year: 1990 end-page: 255 article-title: Application of ecophysiological quotients ( CO and D) on microbial biomass from soils of different cropping histories publication-title: Soil Biology & Biochemistry – volume: 21 start-page: 540 year: 2010 end-page: 545 article-title: Effect of converting native savanna to forest on soil microbial biomass publication-title: Land Degradation & Development – volume: 5 start-page: 29 year: 1996 end-page: 56 article-title: Rhizosphere carbon flow in trees, in comparison with annual plants: the importance of root exudation and its impact on microbial activity and nutrient availability publication-title: Applied Soil Ecology – volume: 74 start-page: 47 year: 2005 end-page: 62 article-title: Topsoil organic carbon storage of China and its loss by cultivation publication-title: Biogeochemistry – volume: 72 start-page: 643 year: 2012 end-page: 653 article-title: Biogeochemical cycling in terrestrial ecosystems of the Caatinga Biome publication-title: Brazilian Journal of Biology – volume: 269 start-page: 341 year: 2005 end-page: 356 article-title: Is soil carbon mostly root carbon? Mechanisms for a specific stabilization publication-title: Plant & Soil – volume: 8 start-page: 77 year: 2010 end-page: 85 article-title: Effects of mulching on soil physical properties and runoff under semi‐arid conditions in Southern Spain publication-title: Catena – volume: 138 start-page: 74 year: 2010 end-page: 82 article-title: Organic matter and phosphorus fractions in irrigated agroecosystems in a semi‐arid region of Northeastern Brazil publication-title: Agriculture, Ecosystems & Environment – volume: 81 start-page: 265 year: 2005 end-page: 276 article-title: Crop management effects on soil carbon sequestration on selected farmers' fields in northeastern Ohio publication-title: Soil & Tillage Research – volume: 148 start-page: 11 year: 2012 end-page: 21 article-title: Carbon and nitrogen in degraded Brazilian semi‐arid soils undergoing desertification publication-title: Agriculture, Ecosystems & Environment – volume: 36 start-page: 1545 year: 2012 end-page: 1552 article-title: Estoques de carbono e nitrogênio no solo cultivado com mamona na Caatinga publication-title: Revista Brasileira de Ciência do Solo – volume: 107 start-page: 89 year: 2013b end-page: 95 article-title: Microbial biomass and community composition in a Luvisol soil as influenced by long‐term land use and fertilization publication-title: Catena – volume: 30 start-page: 65 year: 2005 end-page: 77 article-title: Effect of sewage sludge on microbial biomass, basal respiration, metabolic quotient and soil enzymatic activity publication-title: Applied Soil Ecology – volume: 13 start-page: 327 year: 2003 end-page: 336 article-title: Modeling soil organic carbon change in croplands of China publication-title: Ecological Application – volume: 164 start-page: 80 year: 2013 end-page: 99 article-title: The known and unknowns of sequestration of soil organic carbon publication-title: Agriculture, Ecosystems & Environment – ident: e_1_2_7_39_1 doi: 10.1071/SR9920195 – ident: e_1_2_7_31_1 doi: 10.1007/s11104-004-0907-y – ident: e_1_2_7_32_1 doi: 10.1002/ldr.2218 – ident: e_1_2_7_38_1 doi: 10.1016/j.agee.2011.11.009 – ident: e_1_2_7_46_1 doi: 10.1046/j.1461-0248.2002.00322.x – ident: e_1_2_7_24_1 doi: 10.1016/j.catena.2010.01.007 – ident: e_1_2_7_22_1 doi: 10.1016/j.soilbio.2006.07.002 – ident: e_1_2_7_27_1 doi: 10.1590/S1519-69842012000400004 – ident: e_1_2_7_34_1 doi: 10.1016/j.geoderma.2011.11.007 – ident: e_1_2_7_45_1 doi: 10.1016/S0038-0717(01)00168-7 – ident: e_1_2_7_8_1 doi: 10.1002/ldr.1055 – ident: e_1_2_7_33_1 doi: 10.1017/CBO9780511753398.003 – ident: e_1_2_7_20_1 doi: 10.1016/S0929-1393(96)00126-6 – ident: e_1_2_7_37_1 doi: 10.1007/s10533-004-2222-3 – ident: e_1_2_7_14_1 doi: 10.1007/s00374-002-0541-x – start-page: 576 volume-title: Methods in applied soil microbiology and biochemistry year: 1995 ident: e_1_2_7_4_1 contributor: fullname: Alef K – ident: e_1_2_7_16_1 doi: 10.1016/j.apsoil.2004.03.008 – ident: e_1_2_7_19_1 doi: 10.1007/BF00336143 – ident: e_1_2_7_43_1 doi: 10.1016/0038-0717(87)90052-6 – ident: e_1_2_7_5_1 doi: 10.1016/0038-0717(90)90094-G – start-page: 212 volume-title: Manual de métodos de análise de solo year: 1997 ident: e_1_2_7_15_1 contributor: fullname: EMBRAPA ‐ Empresa Brasileira de Pesquisa Agropecuária – ident: e_1_2_7_10_1 doi: 10.1002/ldr.2205 – ident: e_1_2_7_25_1 doi: 10.1890/1051-0761(2003)013[0327:MSOCCI]2.0.CO;2 – ident: e_1_2_7_6_1 doi: 10.1002/ldr.993 – ident: e_1_2_7_2_1 doi: 10.1016/j.agee.2005.03.003 – start-page: 595 volume-title: Methods of soil analysis: chemical and microbiological properties year: 1982 ident: e_1_2_7_9_1 doi: 10.2134/agronmonogr9.2.2ed.c31 contributor: fullname: Bremner JM – ident: e_1_2_7_18_1 doi: 10.1590/S0100-06832012000500019 – ident: e_1_2_7_30_1 doi: 10.1016/j.still.2004.03.018 – ident: e_1_2_7_12_1 doi: 10.1038/376472a0 – volume: 55 start-page: 69 year: 2000 ident: e_1_2_7_21_1 article-title: Soil quality indicator proprieties in mid‐Atlantic soils as influenced by conservation management publication-title: Journal of Soil & Water Conservation contributor: fullname: Islan KR – ident: e_1_2_7_7_1 doi: 10.1016/j.agee.2010.04.002 – ident: e_1_2_7_42_1 doi: 10.4236/ojss.2013.31006 – ident: e_1_2_7_47_1 doi: 10.1080/00103628809368027 – volume-title: Design and analysis of ecological experiments year: 2001 ident: e_1_2_7_35_1 doi: 10.1093/oso/9780195131871.001.0001 contributor: fullname: Scheiner SM – ident: e_1_2_7_29_1 doi: 10.1016/S1002-0160(11)60194-X – ident: e_1_2_7_17_1 doi: 10.1016/S0038-0717(02)00251-1 – ident: e_1_2_7_3_1 doi: 10.1007/s11368-012-0617-7 – ident: e_1_2_7_26_1 doi: 10.5424/sjar/2010084-1411 – ident: e_1_2_7_48_1 doi: 10.1002/ldr.2169 – start-page: 97 volume-title: Biological indicators of soil health year: 1997 ident: e_1_2_7_40_1 contributor: fullname: Sparling GP – ident: e_1_2_7_28_1 doi: 10.1002/ldr.2194 – ident: e_1_2_7_44_1 doi: 10.1023/A:1004756416281 – volume: 32 start-page: 351 year: 2011 ident: e_1_2_7_11_1 article-title: Sistema radicular de seis gramíneas irrigadas em diferentes adubações nitrogenadas e manejos publication-title: Acta Scientiarum Agronomy contributor: fullname: Cunha FF – ident: e_1_2_7_23_1 doi: 10.1016/j.still.2004.09.013 – volume: 21 start-page: 47 year: 2005 ident: e_1_2_7_36_1 article-title: Carbon sequestration in European croplands publication-title: SEB Experimental Biology Service contributor: fullname: Smith P – ident: e_1_2_7_41_1 doi: 10.1016/j.agee.2012.10.001 – ident: e_1_2_7_13_1 doi: 10.1007/s10021-009-9275-z – ident: e_1_2_7_49_1 doi: 10.1016/j.catena.2013.02.010 |
SSID | ssj0001747 |
Score | 2.4659665 |
Snippet | ABSTRACT
Land‐use change is one of the most important anthropogenic environmental change drivers affecting the biodiversity and functioning of ecosystems.... Land‐use change is one of the most important anthropogenic environmental change drivers affecting the biodiversity and functioning of ecosystems. However,... Land-use change is one of the most important anthropogenic environmental change drivers affecting the biodiversity and functioning of ecosystems. However,... |
SourceID | proquest crossref wiley istex |
SourceType | Aggregation Database Publisher |
StartPage | 171 |
SubjectTerms | Brazil Caatinga Ecosystems Forests Land Land use microbial biomass Microorganisms pasture Raw materials Soil (material) soil organic matter soil quality Vitaceae Zea mays |
Title | Land-Use Type Effects on Soil Organic Carbon and Microbial Properties in a Semi-arid Region of Northeast Brazil |
URI | https://api.istex.fr/ark:/67375/WNG-CPW25PCN-N/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fldr.2282 https://www.proquest.com/docview/1764312064 https://search.proquest.com/docview/1785242718 https://search.proquest.com/docview/1800490423 |
Volume | 27 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NjtMwELagXJbDLrAguluQkVbcsk2cuE64lf7AoVtV7Vbdm2UnDoooySrZSogTj8Az8iTMOEmhh0VInCLFE8fyeDzf2OPPhFx4XKWpHxsn5b52AqEHjhJgeCb1As3RpSt7ie1KzG_C8QRpct61Z2Fqfoj9ghtahp2v0cCVrvq_SUO3SXnJIGCA6ReCBHt6w1_sJ2EA2qLNrfeZCFveWZf12w8PPNEj7NSvBzDzT7Bqvc305H_a-YQcNxiTDutB8ZQ8MPkz8nj4qWx4NswpqWYqT35-_7GuDMVQlNYsxhUtcroqsi2tz2jGdKRKDe9Aml5llrQJal7gCn6JVKw0gzK6Ml8yqAzC7oQuDWY40yKldksIrwai70v1Lds-J-vp5Hr00WnuX3BiDn7LEczV2k_8QRTHqe9GrqsB_ETGTcPIiz0DsRpYLwcQ4w1SlrDIAHwRAgI4QCFMM_8F6eRFbl4SGgSRFp7ScWyiQAQaWccEM8EACeh0yLvkTasLeVvTbMiaUJlJ6ECJHdglb62S9gKq_IxpaYLLzfyDHC02jC9Gcznvkl6rRdlYZCU9AdjLY4DA4F_7YrAl3CBRuSl2KBNygCzgrv8iE9rNUkCh0B6r93sbLGfjJT7P_lXwnBwBHmuSwnukc1fuzCvysEp2r-3o_gWBHvsg |
link.rule.ids | 315,782,786,1408,27933,27934,46064,46488 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB7R9gAc-K9YKMVIiFto4sRxIk5l21LENlp1W5WbZScOilgSlLAS4sQj8Iw8CTNOsqUHEBKnSPHEsTwezzf2-DPA80Dosgxz65UiNF4kTexpiYZnyyAygly6dpfYLmT2Pjk4JJqcV-NZmJ4fYr3gRpbh5msycFqQ3rtkDV0W7UuOEcMGbEUxjkM6vxHO19MwQm05ZteHXCYj86zP98Yvr_iiLerWr1eA5u9w1fmbo9v_1dI7cGuAmWy_Hxd34Zqt78HN_Q_tQLVh70M303Xx8_uP884yikZZT2TcsaZmi6Zasv6YZs6mujX4DqXZSeV4m7DmOS3it8TGyiosYwv7qcLKMPIu2KmlJGfWlMztCtHtQOx1q79VywdwfnR4Nj32hisYvFyg6_Ik940JizBO87wM_dT3DeKf1PplkgZ5YDFcQwMWiGOCuOQFTy0iGCkxhkMgwg0Pt2Gzbmr7EFgUpUYG2uS5TSMZGSIek9xGMXHQmURM4NmoDPW5Z9pQPacyV9iBijpwAi-cltYCuv1ImWlSqIvsjZrOL7iYTzOVTWBnVKMajLJTgUT4FXAEYfivdTGaE-2R6No2K5JJBKIW9Nh_kUncfikCUWyPU_wfG6xmB6f0fPSvgk_h-vHZyUzN3mbvHsMNhGdDjvgObH5pV_YJbHTFatcN9V9c-f9I |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELZoKyE48F-xUMBIiFtoYsfrhFvZ7QJiiaIuVblZdmKjiCWpElZCnHgEnpEnYcZJFnoAIXGKFE8cy-PxfGOPPxPyJBLaOV7YwAlugliaaaAlGJ51UWwEunTtL7Fdyex9Mj9Gmpzn41mYnh9iu-CGluHnazTw89Id_iINXZftMwYBww7ZiwGFI28-5_l2FgakLcfkes5kMhLPhuxw_PKCK9rDXv1yAWf-jla9u1lc_5-G3iDXBpBJj_pRcZNcsvUtcvXoQzsQbdjbpFvquvzx7ftpZynGorSnMe5oU9NVU61pf0izoDPdGngH0vRt5VmboOYcl_Bb5GKlFZTRlf1UQWUQd5f0xGKKM20c9XtCeDcQfdHqr9X6DjldHL-bvQqGCxiCQoDjCiQLjeEln6ZF4XiYhqEB9JPa0CVpVEQWgjUwXwEoJpo6VrLUAn6REiI4gCHMML5PduumtncJjePUyEiborBpLGODtGOS2XiKDHQmERPyeNSFOu95NlTPqMwUdKDCDpyQp15JWwHdfsS8NCnUWfZSzfIzJvJZprIJORi1qAaT7FQkAXxFDEYK_GtbDMaEOyS6ts0GZRIBmAX89V9kEr9bCjAU2uP1_scGq-X8BJ_3_lXwEbmczxdq-Tp7c59cAWw2JIgfkN3P7cY-IDtduXnoB_pPQd_97g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Land%E2%80%90Use+Type+Effects+on+Soil+Organic+Carbon+and+Microbial+Properties+in+a+Semi%E2%80%90arid+Region+of+Northeast+Brazil&rft.jtitle=Land+degradation+%26+development&rft.au=Ferreira%2C+Ana+Carolina+C%C3%A2mara&rft.au=Leite%2C+Luiz+Fernando+Carvalho&rft.au=Ara%C3%BAjo%2C+Ademir+S%C3%A9rgio+Ferreira&rft.au=Eisenhauer%2C+Nico&rft.date=2016-02-01&rft.issn=1085-3278&rft.eissn=1099-145X&rft.volume=27&rft.issue=2&rft.spage=171&rft.epage=178&rft_id=info:doi/10.1002%2Fldr.2282&rft.externalDBID=10.1002%252Fldr.2282&rft.externalDocID=LDR2282 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1085-3278&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1085-3278&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1085-3278&client=summon |