Spatial occupancy models for predicting metapopulation dynamics and viability following reintroduction

The reintroduction of a species into its historic range is a critical component of conservation programmes designed to restore extirpated metapopulations. However, many reintroduction efforts fail, and the lack of rigorous monitoring programmes and statistical models have prevented a general underst...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of applied ecology Vol. 52; no. 5; pp. 1325 - 1333
Main Authors: Chandler, Richard B, Muths, Erin, Sigafus, Brent H, Schwalbe, Cecil R, Jarchow, Christopher J, Hossack, Blake R, Müller, Jörg
Format: Journal Article
Language:English
Published: Oxford Blackwell Scientific Publications 01-10-2015
John Wiley & Sons Ltd
Blackwell Publishing Ltd
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The reintroduction of a species into its historic range is a critical component of conservation programmes designed to restore extirpated metapopulations. However, many reintroduction efforts fail, and the lack of rigorous monitoring programmes and statistical models have prevented a general understanding of the factors affecting metapopulation viability following reintroduction. Spatially explicit metapopulation theory provides the basis for understanding the dynamics of fragmented populations linked by dispersal, but the theory has rarely been used to guide reintroduction programmes because most spatial metapopulation models require presence–absence data from every site in the network, and they do not allow for observation error such as imperfect detection. We develop a spatial occupancy model that relaxes these restrictive assumptions and allows for inference about metapopulation extinction risk and connectivity. We demonstrate the utility of the model using six years of data on the Chiricahua leopard frog Lithobates chiricahuensis, a threatened desert‐breeding amphibian that was reintroduced to a network of sites in Arizona USA in 2003. Our results indicate that the model can generate precise predictions of extinction risk and produce connectivity maps that can guide conservation efforts following reintroduction. In the case of L. chiricahuensis, many sites were functionally isolated, and 82% of sites were characterized by intermittent water availability and high local extinction probabilities (0·84, 95% CI: 0·64–0·99). However, under the current hydrological conditions and spatial arrangement of sites, the risk of metapopulation extinction is estimated to be <3% over a 50‐year time horizon. Low metapopulation extinction risk appears to result from the high dispersal capability of the species, the high density of sites in the region and the existence of predator‐free permanent wetlands with low local extinction probabilities. Should management be required, extinction risk can be reduced by either increasing the hydroperiod of existing sites or by creating new sites to increase connectivity. Synthesis and applications. This work demonstrates how spatio‐temporal statistical models based on ecological theory can be applied to forecast the outcomes of conservation actions such as reintroduction. Our spatial occupancy model should be particularly useful when management agencies lack the funds to collect intensive individual‐level data.
AbstractList Summary The reintroduction of a species into its historic range is a critical component of conservation programmes designed to restore extirpated metapopulations. However, many reintroduction efforts fail, and the lack of rigorous monitoring programmes and statistical models have prevented a general understanding of the factors affecting metapopulation viability following reintroduction. Spatially explicit metapopulation theory provides the basis for understanding the dynamics of fragmented populations linked by dispersal, but the theory has rarely been used to guide reintroduction programmes because most spatial metapopulation models require presence–absence data from every site in the network, and they do not allow for observation error such as imperfect detection. We develop a spatial occupancy model that relaxes these restrictive assumptions and allows for inference about metapopulation extinction risk and connectivity. We demonstrate the utility of the model using six years of data on the Chiricahua leopard frog Lithobates chiricahuensis, a threatened desert‐breeding amphibian that was reintroduced to a network of sites in Arizona USA in 2003. Our results indicate that the model can generate precise predictions of extinction risk and produce connectivity maps that can guide conservation efforts following reintroduction. In the case of L. chiricahuensis, many sites were functionally isolated, and 82% of sites were characterized by intermittent water availability and high local extinction probabilities (0·84, 95% CI: 0·64–0·99). However, under the current hydrological conditions and spatial arrangement of sites, the risk of metapopulation extinction is estimated to be <3% over a 50‐year time horizon. Low metapopulation extinction risk appears to result from the high dispersal capability of the species, the high density of sites in the region and the existence of predator‐free permanent wetlands with low local extinction probabilities. Should management be required, extinction risk can be reduced by either increasing the hydroperiod of existing sites or by creating new sites to increase connectivity. Synthesis and applications. This work demonstrates how spatio‐temporal statistical models based on ecological theory can be applied to forecast the outcomes of conservation actions such as reintroduction. Our spatial occupancy model should be particularly useful when management agencies lack the funds to collect intensive individual‐level data. This work demonstrates how spatio‐temporal statistical models based on ecological theory can be applied to forecast the outcomes of conservation actions such as reintroduction. Our spatial occupancy model should be particularly useful when management agencies lack the funds to collect intensive individual‐level data.
The reintroduction of a species into its historic range is a critical component of conservation programmes designed to restore extirpated metapopulations. However, many reintroduction efforts fail, and the lack of rigorous monitoring programmes and statistical models have prevented a general understanding of the factors affecting metapopulation viability following reintroduction. Spatially explicit metapopulation theory provides the basis for understanding the dynamics of fragmented populations linked by dispersal, but the theory has rarely been used to guide reintroduction programmes because most spatial metapopulation models require presence–absence data from every site in the network, and they do not allow for observation error such as imperfect detection. We develop a spatial occupancy model that relaxes these restrictive assumptions and allows for inference about metapopulation extinction risk and connectivity. We demonstrate the utility of the model using six years of data on the Chiricahua leopard frog Lithobates chiricahuensis, a threatened desert‐breeding amphibian that was reintroduced to a network of sites in Arizona USA in 2003. Our results indicate that the model can generate precise predictions of extinction risk and produce connectivity maps that can guide conservation efforts following reintroduction. In the case of L. chiricahuensis, many sites were functionally isolated, and 82% of sites were characterized by intermittent water availability and high local extinction probabilities (0·84, 95% CI: 0·64–0·99). However, under the current hydrological conditions and spatial arrangement of sites, the risk of metapopulation extinction is estimated to be <3% over a 50‐year time horizon. Low metapopulation extinction risk appears to result from the high dispersal capability of the species, the high density of sites in the region and the existence of predator‐free permanent wetlands with low local extinction probabilities. Should management be required, extinction risk can be reduced by either increasing the hydroperiod of existing sites or by creating new sites to increase connectivity. Synthesis and applications. This work demonstrates how spatio‐temporal statistical models based on ecological theory can be applied to forecast the outcomes of conservation actions such as reintroduction. Our spatial occupancy model should be particularly useful when management agencies lack the funds to collect intensive individual‐level data.
1. The reintroduction of a species into its historic range is a critical component of conservation programmes designed to restore extirpated metapopulations. However, many reintroduction efforts fail, and the lack of rigorous monitoring programmes and statistical models have prevented a general understanding of the factors affecting metapopulation viability following reintroduction. 2. Spatially explicit metapopulation theory provides the basis for understanding the dynamics of fragmented populations linked by dispersal, but the theory has rarely been used to guide reintroduction programmes because most spatial metapopulation models require presenceabsence data from every site in the network, and they do not allow for observation error such as imperfect detection. 3. We develop a spatial occupancy model that relaxes these restrictive assumptions and allows for inference about metapopulation extinction risk and connectivity. We demonstrate the utility of the model using six years of data on the Chiricahua leopard frog Lithobates chiricahuensis, a threatened desert-breeding amphibian that was reintroduced to a network of sites in Arizona USA in 2003. 4. Our results indicate that the model can generate precise predictions of extinction risk and produce connectivity maps that can guide conservation efforts following reintroduction. In the case of L. chiricahuensis, many sites were functionally isolated, and 82% of sites were characterized by intermittent water availability and high local extinction probabilities (0.84, 95% CI: 0.64-0.99). However, under the current hydrological conditions and spatial arrangement of sites, the risk of metapopulation extinction is estimated to be < 3% over a 50-year time horizon. 5. Low metapopulation extinction risk appears to result from the high dispersal capability of the species, the high density of sites in the region and the existence of predator-free permanent wetlands with low local extinction probabilities. Should management be required, extinction risk can be reduced by either increasing the hydroperiod of existing sites or by creating new sites to increase connectivity. 6. Synthesis and applications. This work demonstrates how spatio-temporal statistical models based on ecological theory can be applied to forecast the outcomes of conservation actions such as reintroduction. Our spatial occupancy model should be particularly useful when management agencies lack the funds to collect intensive individual-level data.
1. The reintroduction of a species into its historic range is a critical component of conservation programmes designed to restore extirpated metapopulations. However, many reintroduction efforts fail, and the lack of rigorous monitoring programmes and statistical models have prevented a general understanding of the factors affecting metapopulation viability following reintroduction. 2. Spatially explicit metapopulation theory provides the basis for understanding the dynamics of fragmented populations linked by dispersal, but the theory has rarely been used to guide reintroduction programmes because most spatial metapopulation models require presence-absence data from every site in the network, and they do not allow for observation error such as imperfect detection. 3. We develop a spatial occupancy model that relaxes these restrictive assumptions and allows for inference about metapopulation extinction risk and connectivity. We demonstrate the utility of the model using six years of data on the Chiricahua leopard frog Lithobates chiricahuensis, a threatened desert-breeding amphibian that was reintroduced to a network of sites in Arizona USA in 2003. 4. Our results indicate that the model can generate precise predictions of extinction risk and produce connectivity maps that can guide conservation efforts following reintroduction. In the case of L. chiricahuensis, many sites were functionally isolated, and 82% of sites were characterized by intermittent water availability and high local extinction probabilities (0.84, 95% CI: 0.64-0.99). However, under the current hydrological conditions and spatial arrangement of sites, the risk of metapopulation extinction is estimated to be <3% over a 50-year time horizon. 5. Low metapopulation extinction risk appears to result from the high dispersal capability of the species, the high density of sites in the region and the existence of predator-free permanent wetlands with low local extinction probabilities. Should management be required, extinction risk can be reduced by either increasing the hydroperiod of existing sites or by creating new sites to increase connectivity. 6. Synthesis and applications. This work demonstrates how spatio-temporal statistical models based on ecological theory can be applied to forecast the outcomes of conservation actions such as reintroduction. Our spatial occupancy model should be particularly useful when management agencies lack the funds to collect intensive individual-level data. This work demonstrates how spatio-temporal statistical models based on ecological theory can be applied to forecast the outcomes of conservation actions such as reintroduction. Our spatial occupancy model should be particularly useful when management agencies lack the funds to collect intensive individual-level data.
The reintroduction of a species into its historic range is a critical component of conservation programmes designed to restore extirpated metapopulations. However, many reintroduction efforts fail, and the lack of rigorous monitoring programmes and statistical models have prevented a general understanding of the factors affecting metapopulation viability following reintroduction. Spatially explicit metapopulation theory provides the basis for understanding the dynamics of fragmented populations linked by dispersal, but the theory has rarely been used to guide reintroduction programmes because most spatial metapopulation models require presence–absence data from every site in the network, and they do not allow for observation error such as imperfect detection. We develop a spatial occupancy model that relaxes these restrictive assumptions and allows for inference about metapopulation extinction risk and connectivity. We demonstrate the utility of the model using six years of data on the Chiricahua leopard frog Lithobates chiricahuensis , a threatened desert‐breeding amphibian that was reintroduced to a network of sites in Arizona USA in 2003. Our results indicate that the model can generate precise predictions of extinction risk and produce connectivity maps that can guide conservation efforts following reintroduction. In the case of L. chiricahuensis , many sites were functionally isolated, and 82% of sites were characterized by intermittent water availability and high local extinction probabilities (0·84, 95% CI: 0·64–0·99). However, under the current hydrological conditions and spatial arrangement of sites, the risk of metapopulation extinction is estimated to be <3% over a 50‐year time horizon. Low metapopulation extinction risk appears to result from the high dispersal capability of the species, the high density of sites in the region and the existence of predator‐free permanent wetlands with low local extinction probabilities. Should management be required, extinction risk can be reduced by either increasing the hydroperiod of existing sites or by creating new sites to increase connectivity. Synthesis and applications . This work demonstrates how spatio‐temporal statistical models based on ecological theory can be applied to forecast the outcomes of conservation actions such as reintroduction. Our spatial occupancy model should be particularly useful when management agencies lack the funds to collect intensive individual‐level data. This work demonstrates how spatio‐temporal statistical models based on ecological theory can be applied to forecast the outcomes of conservation actions such as reintroduction. Our spatial occupancy model should be particularly useful when management agencies lack the funds to collect intensive individual‐level data.
The reintroduction of a species into its historic range is a critical component of conservation programmes designed to restore extirpated metapopulations. However, many reintroduction efforts fail, and the lack of rigorous monitoring programmes and statistical models have prevented a general understanding of the factors affecting metapopulation viability following reintroduction. Spatially explicit metapopulation theory provides the basis for understanding the dynamics of fragmented populations linked by dispersal, but the theory has rarely been used to guide reintroduction programmes because most spatial metapopulation models require presence-absence data from every site in the network, and they do not allow for observation error such as imperfect detection. We develop a spatial occupancy model that relaxes these restrictive assumptions and allows for inference about metapopulation extinction risk and connectivity. We demonstrate the utility of the model using six years of data on the Chiricahua leopard frog Lithobates chiricahuensis, a threatened desert-breeding amphibian that was reintroduced to a network of sites in Arizona USA in 2003. Our results indicate that the model can generate precise predictions of extinction risk and produce connectivity maps that can guide conservation efforts following reintroduction. In the case of L. chiricahuensis, many sites were functionally isolated, and 82% of sites were characterized by intermittent water availability and high local extinction probabilities (0.84, 95% CI: 0.64-0.99). However, under the current hydrological conditions and spatial arrangement of sites, the risk of metapopulation extinction is estimated to be <3% over a 50-year time horizon. Low metapopulation extinction risk appears to result from the high dispersal capability of the species, the high density of sites in the region and the existence of predator-free permanent wetlands with low local extinction probabilities. Should management be required, extinction risk can be reduced by either increasing the hydroperiod of existing sites or by creating new sites to increase connectivity. This work demonstrates how spatio-temporal statistical models based on ecological theory can be applied to forecast the outcomes of conservation actions such as reintroduction. Our spatial occupancy model should be particularly useful when management agencies lack the funds to collect intensive individual-level data.
Author Muths, Erin
Müller, Jörg
Chandler, Richard B
Schwalbe, Cecil R
Jarchow, Christopher J
Sigafus, Brent H
Hossack, Blake R
Author_xml – sequence: 1
  fullname: Chandler, Richard B
– sequence: 2
  fullname: Muths, Erin
– sequence: 3
  fullname: Sigafus, Brent H
– sequence: 4
  fullname: Schwalbe, Cecil R
– sequence: 5
  fullname: Jarchow, Christopher J
– sequence: 6
  fullname: Hossack, Blake R
– sequence: 7
  fullname: Müller, Jörg
BookMark eNqFkUtr3TAQRkVJoDdJ112VGrrpxolGsh5elpA-QiCBNGuhK8tBF1lyJTvB_75y3WbRTbQZ0JwzDN-coKMQg0XoPeBzKO8CKGc14bw5B9JIeIN2Lz9HaIcxgVq2GN6ik5wPGOOWUbpD_f2oJ6d9FY2ZRx3MUg2xsz5XfUzVmGznzOTCYzXYSY9xnH3BY6i6JejBmVzp0FVPTu-dd9NSJO_j88on68KUYjeblT9Dx7322b77W0_Rw9ern5ff65vbbz8uv9zUhmGA2kAPwnDCZddSIblge82lYC0RTcuwaDUjWFvTt7C3moi-B2I7q7GEfZnQ0FP0eZs7pvhrtnlSg8vGeq-DjXNWIKRoJW0YFPTTf-ghzimU7QoFXAAQzAp1sVEmxZyT7dWY3KDTogCrNXe1pqzWlNWf3IvBNuPZebu8hqvru6t_3ofNO-QpphevoZK3FPPS_7j1ex2Vfkwuq4d7goGV0xKKhaS_ASnNmgU
CODEN JAPEAI
CitedBy_id crossref_primary_10_1007_s10980_022_01567_w
crossref_primary_10_1002_eap_2038
crossref_primary_10_1111_2041_210X_13905
crossref_primary_10_1371_journal_pone_0237516
crossref_primary_10_3390_su10051470
crossref_primary_10_1111_2041_210X_12946
crossref_primary_10_1111_ecog_06985
crossref_primary_10_3356_JRR_20_100
crossref_primary_10_1002_fee_2450
crossref_primary_10_1002_wsb_1069
crossref_primary_10_1111_1365_2664_12664
crossref_primary_10_1214_19_BA1152
crossref_primary_10_1002_ecs2_3023
crossref_primary_10_1007_s10980_016_0380_z
crossref_primary_10_1002_ecm_1515
crossref_primary_10_1670_16_093
crossref_primary_10_1016_j_tplants_2018_06_009
crossref_primary_10_59517_oc_e383
crossref_primary_10_3354_meps14141
crossref_primary_10_3354_esr01063
crossref_primary_10_1002_eap_1859
crossref_primary_10_1007_s11355_024_00602_z
crossref_primary_10_1111_ibi_13076
crossref_primary_10_1670_14_172
crossref_primary_10_1016_j_biocon_2019_05_028
crossref_primary_10_1016_j_gecco_2021_e01630
crossref_primary_10_1111_fwb_13204
crossref_primary_10_1016_j_biocon_2019_05_022
crossref_primary_10_1111_2041_210X_13881
crossref_primary_10_1111_cobi_13384
crossref_primary_10_1071_WR21066
crossref_primary_10_1111_1365_2664_12729
crossref_primary_10_1007_s13253_023_00533_6
crossref_primary_10_1002_eap_1564
crossref_primary_10_1038_srep35746
crossref_primary_10_1655_0018_0831_76_2_240
crossref_primary_10_1111_mec_15693
crossref_primary_10_1002_wat2_1449
crossref_primary_10_1007_s10980_022_01400_4
crossref_primary_10_1111_conl_12970
crossref_primary_10_1111_ecog_02445
crossref_primary_10_1111_ecog_05552
crossref_primary_10_1002_rra_4259
crossref_primary_10_1007_s10980_021_01197_8
crossref_primary_10_1894_0038_4909_64_1_69
crossref_primary_10_1002_ecy_1960
crossref_primary_10_1016_j_gecco_2022_e02078
crossref_primary_10_1038_s41598_019_55593_x
crossref_primary_10_1111_2041_210X_13134
crossref_primary_10_1126_science_aax8992
crossref_primary_10_1007_s13157_019_01201_7
crossref_primary_10_1007_s00442_018_4220_5
crossref_primary_10_1007_s10980_020_01030_8
crossref_primary_10_1016_j_jnc_2023_126409
crossref_primary_10_1111_ddi_12791
crossref_primary_10_1111_1365_2664_12855
crossref_primary_10_1002_eap_2202
crossref_primary_10_1016_j_biocon_2017_03_004
crossref_primary_10_1007_s12080_020_00463_w
crossref_primary_10_1002_aqc_3190
crossref_primary_10_1002_ecy_2546
crossref_primary_10_1111_ele_13460
crossref_primary_10_1111_ele_13384
crossref_primary_10_1111_cobi_14281
crossref_primary_10_1002_ecy_2189
crossref_primary_10_1007_s10393_016_1117_9
crossref_primary_10_1016_j_biocon_2022_109774
crossref_primary_10_1007_s10980_024_01865_5
crossref_primary_10_1111_2041_210X_12690
crossref_primary_10_1643_CE_16_406
Cites_doi 10.1007/s00442-004-1641-0
10.1006/tpbi.1995.1034
10.1670/14‐172
10.1111/j.2517-6161.1974.tb00999.x
10.1016/B978-012323448-3/50007-6
10.1111/j.1523-1739.2006.00627.x
10.1034/j.1600-0706.2001.950117.x
10.1890/12-2151.1
10.1111/acv.12146
10.1016/j.biocon.2014.02.034
10.2307/1935620
10.1890/11-0192.1
10.1111/j.1365-2745.2006.01151.x
10.1111/oik.01008
10.1016/j.baae.2004.03.001
10.1007/s10531-004-2933-8
10.1073/pnas.0806080105
10.2307/3802704
10.1890/12-0172.1
10.1046/j.1523-1739.1996.10020578.x
10.1034/j.1600-0706.2001.950116.x
10.1002/jwmg.472
10.1890/11-1709.1
10.1002/9781444355833.ch1
10.1890/09-1877.1
10.1890/14-0384.1
10.1093/acprof:oso/9780199608898.001.0001
10.1034/j.1600-0706.2002.960313.x
10.1890/02-5078
10.2980/1195-6860(2007)14[440:IOTAEF]2.0.CO;2
10.2193/0022-541X(2006)70[1805:DVNSFC]2.0.CO;2
10.1890/02-3090
10.1890/06-0669.1
10.1007/s13157-012-0273-0
10.1038/23876
10.1046/j.1523-1739.2002.00215.x
10.3996/082011-JFWM-045
10.1525/california/9780520235922.003.0037
10.1038/35008063
10.1016/S0040-5809(03)00022-4
10.1890/09-2402.1
10.1002/ece3.858
10.1016/j.tree.2007.10.003
10.1023/A:1008054906030
10.1002/9781444355833.ch7
10.1890/13-0559.1
10.1002/9781444355833
10.1111/ddi.12052
10.1890/1051-0761(2003)13[990:RMERFP]2.0.CO;2
ContentType Journal Article
Copyright 2015 British Ecological Society
2015 The Authors. Journal of Applied Ecology © 2015 British Ecological Society
Copyright Blackwell Publishing Ltd. Oct 2015
Copyright_xml – notice: 2015 British Ecological Society
– notice: 2015 The Authors. Journal of Applied Ecology © 2015 British Ecological Society
– notice: Copyright Blackwell Publishing Ltd. Oct 2015
DBID FBQ
AAYXX
CITATION
7SN
7SS
7T7
7U7
8FD
C1K
FR3
M7N
P64
RC3
DOI 10.1111/1365-2664.12481
DatabaseName AGRIS
CrossRef
Ecology Abstracts
Entomology Abstracts (Full archive)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
DatabaseTitle CrossRef
Entomology Abstracts
Genetics Abstracts
Technology Research Database
Toxicology Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Engineering Research Database
Ecology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList


Ecology Abstracts
CrossRef
Entomology Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
Biology
EISSN 1365-2664
Editor Müller, Jörg
Editor_xml – sequence: 1
  givenname: Jörg
  surname: Müller
  fullname: Müller, Jörg
EndPage 1333
ExternalDocumentID 3818678791
10_1111_1365_2664_12481
JPE12481
43869306
US201500223078
Genre article
Feature
GeographicLocations Arizona
GeographicLocations_xml – name: Arizona
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
1OC
24P
29J
2AX
2WC
31~
33P
3SF
4.4
42X
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHKG
AAISJ
AAKGQ
AANLZ
AAONW
AASGY
AAXRX
AAYJJ
AAZKR
ABBHK
ABCQN
ABCUV
ABEFU
ABEML
ABHUG
ABJNI
ABPLY
ABPPZ
ABPTK
ABPVW
ABTAH
ABTLG
ABWRO
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACNCT
ACPOU
ACPRK
ACSCC
ACSTJ
ACXBN
ACXME
ACXQS
ADAWD
ADBBV
ADDAD
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADULT
ADXAS
ADZLD
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AESBF
AEUPB
AEUQT
AEUYR
AFAZZ
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFVGU
AFZJQ
AGJLS
AGUYK
AI.
AIRJO
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ANHSF
AS~
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
CBGCD
COF
CS3
CUYZI
CWIXF
D-E
D-F
DCZOG
DEVKO
DOOOF
DPXWK
DR2
DRFUL
DRSTM
DU5
DWIUU
E3Z
EBS
ECGQY
EJD
EQZMY
ESX
F00
F01
F04
F5P
FBQ
G-S
G.N
GODZA
GTFYD
H.T
H.X
HF~
HGD
HQ2
HTVGU
HZI
HZ~
IHE
IX1
J0M
JAAYA
JBMMH
JBS
JEB
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSODD
JST
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OK1
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
R.K
ROL
RX1
SA0
SUPJJ
UB1
VH1
VOH
W8V
W99
WBKPD
WH7
WHG
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XIH
YQT
YYP
ZY4
ZZTAW
~02
~IA
~KM
~WT
ABXSQ
AHBTC
AQVQM
AAHBH
ADACV
AITYG
HGLYW
IPSME
OIG
AAMNL
AAYXX
ADMHG
AHXOZ
AILXY
CITATION
7SN
7SS
7T7
7U7
8FD
C1K
FR3
M7N
P64
RC3
ID FETCH-LOGICAL-c5011-c1f17c6268d9378675ba6875927495079a520aecf91bea27ff12edea081bc5043
IEDL.DBID 33P
ISSN 0021-8901
IngestDate Fri Oct 25 21:31:20 EDT 2024
Tue Nov 19 05:14:21 EST 2024
Thu Nov 21 21:47:21 EST 2024
Sat Aug 24 00:56:06 EDT 2024
Fri Feb 02 07:49:32 EST 2024
Wed Dec 27 19:14:45 EST 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5011-c1f17c6268d9378675ba6875927495079a520aecf91bea27ff12edea081bc5043
Notes http://dx.doi.org/10.1111/1365-2664.12481
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/1365-2664.12481
PQID 1716711205
PQPubID 37791
PageCount 9
ParticipantIDs proquest_miscellaneous_1787983451
proquest_journals_1716711205
crossref_primary_10_1111_1365_2664_12481
wiley_primary_10_1111_1365_2664_12481_JPE12481
jstor_primary_43869306
fao_agris_US201500223078
PublicationCentury 2000
PublicationDate October 2015
PublicationDateYYYYMMDD 2015-10-01
PublicationDate_xml – month: 10
  year: 2015
  text: October 2015
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle The Journal of applied ecology
PublicationYear 2015
Publisher Blackwell Scientific Publications
John Wiley & Sons Ltd
Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Scientific Publications
– name: John Wiley & Sons Ltd
– name: Blackwell Publishing Ltd
References 2002; 16
2006; 70
2013; 3
2002; 96
2013; 24
2003; 13
2004; 5
2014; 24
2014; 172
2008; 105
1998; 396
2013; 19
2000; 404
2008; 23
2011; 21
2014; 17
2007; 21
2014; 95
2003; 84
2001; 95
2014; 123
1998; 13
1974; 36
2006; 94
2011; 2
2012
2011
2004; 141
2011; 81
2006; 15
2007
2006
2005
2004
1969; 15
2012; 32
1996; 10
2007; 14
1999
2012; 93
2013; 77
1977; 58
1995; 48
2011; 92
2015
2013
2007; 88
2003; 64
2003; 67
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_17_1
e_1_2_7_15_1
Levins R. (e_1_2_7_34_1) 1969; 15
e_1_2_7_41_1
USFWS (e_1_2_7_56_1) 2011
e_1_2_7_13_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
Hanski I. (e_1_2_7_25_1) 1999
e_1_2_7_50_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_37_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
R Core Team (e_1_2_7_43_1) 2013
e_1_2_7_16_1
MacKenzie D.I. (e_1_2_7_36_1) 2006
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_24_1
e_1_2_7_32_1
USFWS (e_1_2_7_55_1) 2007
e_1_2_7_22_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_38_1
References_xml – volume: 48
  start-page: 333
  year: 1995
  end-page: 360
  article-title: A stochastic metapopulation model with variability in patch size and position
  publication-title: Theoretical Population Biology
– year: 2011
– volume: 94
  start-page: 980
  year: 2006
  end-page: 986
  article-title: How biased are estimates of extinction probability in revisitation studies?
  publication-title: Journal of Ecology
– volume: 70
  start-page: 1805
  year: 2006
  end-page: 1808
  article-title: Diurnal versus nocturnal surveys for California red‐legged frogs
  publication-title: Journal of Wildlife Management.
– volume: 77
  start-page: 1145
  year: 2013
  end-page: 1156
  article-title: A matter of tradeoffs: reintroduction as a multiple objective decision
  publication-title: The Journal of Wildlife Management
– start-page: 223
  year: 2012
  end-page: 255
– volume: 13
  start-page: 1790
  year: 2003
  end-page: 1801
  article-title: Improving precision and reducing bias in biological surveys: estimating false‐negative error rates
  publication-title: Ecological Applications
– volume: 64
  start-page: 119
  year: 2003
  end-page: 127
  article-title: Metapopulation theory for fragmented landscapes
  publication-title: Theoretical Population Biology
– volume: 16
  start-page: 1074
  year: 2002
  end-page: 1085
  article-title: Dynamics and viability of a New Zealand robin population reintroduced to regenerating fragmented habitat
  publication-title: Conservation Biology
– volume: 141
  start-page: 652
  year: 2004
  end-page: 660
  article-title: The relationship between species detection probability and local extinction probability
  publication-title: Oecologia
– volume: 95
  start-page: 3149
  year: 2014
  end-page: 3160
  article-title: A demographic, spatially explicit patch occupancy model for describing and predicting metapopulation dynamics and persistence
  publication-title: Ecology
– volume: 81
  start-page: 581
  year: 2011
  end-page: 598
  article-title: Bayesian state‐space modeling of metapopulation dynamics in the Glanville fritillary butterfly
  publication-title: Ecological Monographs
– volume: 5
  start-page: 213
  year: 2004
  end-page: 224
  article-title: The classical metapopulation theory and the real, natural world: a critical appraisal
  publication-title: Basic and Applied Ecology
– volume: 14
  start-page: 440
  year: 2007
  end-page: 451
  article-title: Importance of the Allee effect for reintroductions
  publication-title: Ecoscience
– volume: 23
  start-page: 20
  year: 2008
  end-page: 25
  article-title: Directions in reintroduction biology
  publication-title: Trends in Ecology & Evolution
– year: 2015
  article-title: Modeling habitat connectivity to inform reintroductions: a case study with the Chiricahua Leopard Frog
  publication-title: Journal of Herpetology
– volume: 105
  start-page: 20770
  year: 2008
  end-page: 20775
  article-title: Effect of habitat area and isolation on fragmented animal populations
  publication-title: Proceedings of the National Academy of Sciences
– volume: 10
  start-page: 578
  year: 1996
  end-page: 590
  article-title: The quantitative incidence function model and persistence of an endangered butterfly metapopulation
  publication-title: Conservation Biology
– volume: 96
  start-page: 516
  year: 2002
  end-page: 530
  article-title: Implications of empirical data quality to metapopulation model parameter estimation and application
  publication-title: Oikos
– start-page: 105
  year: 2004
  end-page: 132
– volume: 396
  start-page: 41
  year: 1998
  end-page: 49
  article-title: Metapopulation dynamics
  publication-title: Nature
– volume: 92
  start-page: 462
  year: 2011
  end-page: 474
  article-title: A robust‐design formulation of the incidence function model of metapopulation dynamics applied to two species of rails
  publication-title: Ecology
– volume: 3
  start-page: 4896
  year: 2013
  end-page: 4909
  article-title: Dynamic occupancy models for analyzing species' range dynamics across large geographic scales
  publication-title: Ecology and Evolution
– volume: 36
  start-page: 192
  year: 1974
  end-page: 236
  article-title: Spatial interaction and the statistical analysis of lattice systems
  publication-title: Journal of the Royal Statistical Society. Series B (Methodological)
– year: 2007
– start-page: 265
  year: 2005
  end-page: 270
– volume: 32
  start-page: 379
  year: 2012
  end-page: 389
  article-title: Estimating occupancy in large landscapes: evaluation of amphibian monitoring in the Greater Yellowstone Ecosystem
  publication-title: Wetlands
– volume: 172
  start-page: 200
  year: 2014
  end-page: 208
  article-title: Animal reintroductions: an innovative assessment of survival
  publication-title: Biological Conservation
– volume: 19
  start-page: 555
  year: 2013
  end-page: 566
  article-title: A Bayesian model of metapopulation viability, with application to an endangered amphibian
  publication-title: Diversity and Distributions
– volume: 24
  start-page: 927
  year: 2014
  end-page: 937
  article-title: Demography of a reintroduced population: moving toward management models for an endangered species, the whooping crane
  publication-title: Ecological Applications
– volume: 84
  start-page: 2200
  year: 2003
  end-page: 2207
  article-title: Estimating site occupancy, colonization, and local extinction when a species is detected imperfectly
  publication-title: Ecology
– volume: 15
  start-page: 237
  year: 1969
  end-page: 240
  article-title: Some demographic and genetic consequences of environmental heterogeneity for biological control
  publication-title: Bulletin of the ESA
– volume: 21
  start-page: 303
  year: 2007
  end-page: 312
  article-title: Developing the science of reintroduction biology
  publication-title: Conservation Biology
– volume: 58
  start-page: 445
  year: 1977
  end-page: 449
  article-title: Turnover rates in insular biogeography: effect of immigration on extinction
  publication-title: Ecology
– year: 2012
– volume: 24
  start-page: 363
  year: 2013
  end-page: 374
  article-title: Spatial occupancy models applied to Atlas data show Southern Ground Hornbills strongly depend on protected areas
  publication-title: Ecological Applications
– volume: 13
  start-page: 990
  year: 2003
  end-page: 998
  article-title: Ranking metapopulation extinction risk: from patterns in data to conservation management decisions
  publication-title: Ecological Applications
– volume: 93
  start-page: 2465
  year: 2012
  end-page: 2473
  article-title: Multi‐scale processes in metapopulations: contributions of stage structure, rescue effect, and correlated extinctions
  publication-title: Ecology
– volume: 123
  start-page: 662
  year: 2014
  end-page: 676
  article-title: Testing metapopulation concepts: effects of patch characteristics and neighborhood occupancy on the dynamics of an endangered lagomorph
  publication-title: Oikos
– volume: 93
  start-page: 1953
  year: 2012
  end-page: 1966
  article-title: Neighborhood and habitat effects on vital rates: expansion of the Barred Owl in the Oregon Coast Ranges
  publication-title: Ecology
– volume: 15
  start-page: 899
  year: 2006
  end-page: 919
  article-title: Connectivity, probabilities and persistence: comparing reserve selection strategies
  publication-title: Biodiversity & Conservation
– volume: 17
  start-page: 74
  year: 2014
  end-page: 81
  article-title: Reintroduction objectives, decisions and outcomes: global perspectives from the herpetofauna
  publication-title: Animal Conservation
– volume: 2
  start-page: 220
  year: 2011
  end-page: 233
  article-title: An introduction to adaptive management for threatened and endangered species
  publication-title: Journal of Fish and Wildlife Management
– year: 2006
– start-page: 1
  year: 2012
  end-page: 32
– volume: 88
  start-page: 1813
  year: 2007
  end-page: 1823
  article-title: A Bayesian state‐space formulation of dynamic occupancy models
  publication-title: Ecology
– volume: 404
  start-page: 755
  year: 2000
  end-page: 758
  article-title: The metapopulation capacity of a fragmented landscape
  publication-title: Nature
– volume: 13
  start-page: 363
  year: 1998
  end-page: 379
  article-title: Spatial aspects of metapopulation survival–from model results to rules of thumb for landscape management
  publication-title: Landscape Ecology
– volume: 67
  start-page: 467
  year: 2003
  end-page: 476
  article-title: Demographic characteristics of a reintroduced elk population in Kentucky
  publication-title: The Journal of Wildlife Management
– volume: 95
  start-page: 152
  year: 2001
  end-page: 155
  article-title: On the use of connectivity measures in spatial ecology. A reply
  publication-title: Oikos
– volume: 21
  start-page: 290
  year: 2011
  end-page: 302
  article-title: Hierarchical modeling of an invasive spread: the Eurasian Collared‐Dove Streptopelia decaocto in the United States
  publication-title: Ecological Applications
– year: 1999
– volume: 95
  start-page: 147
  year: 2001
  end-page: 151
  article-title: On the use of connectivity measures in spatial ecology
  publication-title: Oikos
– year: 2013
– ident: e_1_2_7_2_1
  doi: 10.1007/s00442-004-1641-0
– ident: e_1_2_7_13_1
  doi: 10.1006/tpbi.1995.1034
– ident: e_1_2_7_31_1
  doi: 10.1670/14‐172
– ident: e_1_2_7_6_1
  doi: 10.1111/j.2517-6161.1974.tb00999.x
– ident: e_1_2_7_18_1
  doi: 10.1016/B978-012323448-3/50007-6
– ident: e_1_2_7_47_1
  doi: 10.1111/j.1523-1739.2006.00627.x
– ident: e_1_2_7_53_1
  doi: 10.1034/j.1600-0706.2001.950117.x
– ident: e_1_2_7_9_1
  doi: 10.1890/12-2151.1
– ident: e_1_2_7_20_1
  doi: 10.1111/acv.12146
– ident: e_1_2_7_39_1
  doi: 10.1016/j.biocon.2014.02.034
– ident: e_1_2_7_10_1
  doi: 10.2307/1935620
– ident: e_1_2_7_29_1
  doi: 10.1890/11-0192.1
– ident: e_1_2_7_32_1
  doi: 10.1111/j.1365-2745.2006.01151.x
– ident: e_1_2_7_17_1
  doi: 10.1111/oik.01008
– volume: 15
  start-page: 237
  year: 1969
  ident: e_1_2_7_34_1
  article-title: Some demographic and genetic consequences of environmental heterogeneity for biological control
  publication-title: Bulletin of the ESA
  contributor:
    fullname: Levins R.
– ident: e_1_2_7_5_1
  doi: 10.1016/j.baae.2004.03.001
– ident: e_1_2_7_52_1
  doi: 10.1007/s10531-004-2933-8
– ident: e_1_2_7_42_1
  doi: 10.1073/pnas.0806080105
– ident: e_1_2_7_33_1
  doi: 10.2307/3802704
– ident: e_1_2_7_41_1
– ident: e_1_2_7_50_1
  doi: 10.1890/12-0172.1
– ident: e_1_2_7_28_1
  doi: 10.1046/j.1523-1739.1996.10020578.x
– ident: e_1_2_7_38_1
  doi: 10.1034/j.1600-0706.2001.950116.x
– volume-title: Occupancy Estimation and Modeling: Inferring Patterns and Dynamics of Species Occurrence
  year: 2006
  ident: e_1_2_7_36_1
  contributor:
    fullname: MacKenzie D.I.
– ident: e_1_2_7_12_1
  doi: 10.1002/jwmg.472
– volume-title: R: A Language and Environment for Statistical Computing
  year: 2013
  ident: e_1_2_7_43_1
  contributor:
    fullname: R Core Team
– ident: e_1_2_7_57_1
  doi: 10.1890/11-1709.1
– ident: e_1_2_7_48_1
  doi: 10.1002/9781444355833.ch1
– ident: e_1_2_7_8_1
  doi: 10.1890/09-1877.1
– ident: e_1_2_7_51_1
  doi: 10.1890/14-0384.1
– ident: e_1_2_7_11_1
  doi: 10.1093/acprof:oso/9780199608898.001.0001
– ident: e_1_2_7_37_1
  doi: 10.1034/j.1600-0706.2002.960313.x
– ident: e_1_2_7_54_1
  doi: 10.1890/02-5078
– ident: e_1_2_7_14_1
  doi: 10.2980/1195-6860(2007)14[440:IOTAEF]2.0.CO;2
– ident: e_1_2_7_21_1
  doi: 10.2193/0022-541X(2006)70[1805:DVNSFC]2.0.CO;2
– volume-title: Metapopulation Ecology
  year: 1999
  ident: e_1_2_7_25_1
  contributor:
    fullname: Hanski I.
– ident: e_1_2_7_35_1
  doi: 10.1890/02-3090
– volume-title: Chiricahua Leopard Frog (Lithobates chiricahuensis) 5‐year Status Review
  year: 2011
  ident: e_1_2_7_56_1
  contributor:
    fullname: USFWS
– ident: e_1_2_7_45_1
  doi: 10.1890/06-0669.1
– ident: e_1_2_7_23_1
  doi: 10.1007/s13157-012-0273-0
– ident: e_1_2_7_24_1
  doi: 10.1038/23876
– ident: e_1_2_7_3_1
  doi: 10.1046/j.1523-1739.2002.00215.x
– ident: e_1_2_7_46_1
  doi: 10.3996/082011-JFWM-045
– ident: e_1_2_7_15_1
  doi: 10.1525/california/9780520235922.003.0037
– ident: e_1_2_7_26_1
  doi: 10.1038/35008063
– ident: e_1_2_7_27_1
  doi: 10.1016/S0040-5809(03)00022-4
– ident: e_1_2_7_44_1
  doi: 10.1890/09-2402.1
– ident: e_1_2_7_7_1
  doi: 10.1002/ece3.858
– ident: e_1_2_7_4_1
  doi: 10.1016/j.tree.2007.10.003
– ident: e_1_2_7_22_1
  doi: 10.1023/A:1008054906030
– ident: e_1_2_7_40_1
  doi: 10.1002/9781444355833.ch7
– ident: e_1_2_7_49_1
  doi: 10.1890/13-0559.1
– ident: e_1_2_7_19_1
  doi: 10.1002/9781444355833
– volume-title: Chiricahua Leopard Frog (Rana chiricahuensis) Recovery Plan
  year: 2007
  ident: e_1_2_7_55_1
  contributor:
    fullname: USFWS
– ident: e_1_2_7_30_1
  doi: 10.1111/ddi.12052
– ident: e_1_2_7_16_1
  doi: 10.1890/1051-0761(2003)13[990:RMERFP]2.0.CO;2
SSID ssj0009533
Score 2.4956474
Snippet The reintroduction of a species into its historic range is a critical component of conservation programmes designed to restore extirpated metapopulations....
1. The reintroduction of a species into its historic range is a critical component of conservation programmes designed to restore extirpated metapopulations....
Summary The reintroduction of a species into its historic range is a critical component of conservation programmes designed to restore extirpated...
SourceID proquest
crossref
wiley
jstor
fao
SourceType Aggregation Database
Publisher
StartPage 1325
SubjectTerms Allee effects
amphibian
Animal populations
Anura
connectivity
Conservation
conservation programs
Dispersal
ecological forecasts
Extinction
Frogs
hierarchical models
hydrology
Lithobates
Lithobates chiricahuensis
Modelling in ecology
monitoring
population
prediction
risk
Risk assessment
spatial correlation
spatio‐temporal models
species reintroduction
statistical models
translocation
viability
wetlands
SummonAdditionalLinks – databaseName: JSTOR Life Sciences Collection
  dbid: JLS
  link: http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fS8MwED6cIOiDv8XqlAgKvnS2Xdqmj0M3hg8iqOBbSNtUhNmO1Sn-994l7ZgPom-F_gp3Se675Mt3AOceVyLK-9z1YhW7HDuNq8JEuUaKJEp1JMyp9_FDfPcsboYkk3PRnoUhWqXhBZpdfARI6URf8b6gin1RBzrCE5a3t6Ssa-vFE9dAYHRr9HuIrtNQuCLewygm_B-hp1OoquUg_kCXyxjVBJnR1j-btw2bDYpkA-v2HVjR5S5sDF5mjZKG3oU1W2Xyaw8KKjuM3YxVRlEYZ1Nm6t_UDAErm85oq4bIz-xNv6vpoqAXy22x-pqpMmcfr1bQ-wtfmkyqT3p-pl-J555bAdp9eBoNH6_HblNewc1CWhjN_MKPM0xoRI4YRWDmkKoI05cEE9UEYWKiwsBTOisSP9UqiIvCD3SuFYKINCPhswNYLatSHwLjWZ9jJqlUkiMi8DFljBCJZT5PEY8FcerAZWt5ObUqGrLNPshJkpwkjZMcOETPSIUWq-XTQ0ArMogzcCoSDhwY2y8-0RregW7rP9kMwVqSDlCMaNILHThb3MbBQzsiqtTVnJ4RcSL6PMTf9ozf_2qevL0fmouj3xpzDOvUaEv468Lq-2yuT6BT5_NT03G_AfGq4g4
  priority: 102
  providerName: JSTOR
Title Spatial occupancy models for predicting metapopulation dynamics and viability following reintroduction
URI https://www.jstor.org/stable/43869306
https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1365-2664.12481
https://www.proquest.com/docview/1716711205
https://search.proquest.com/docview/1787983451
Volume 52
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dS-QwEB9UEM4Hv07Z-rFE8OFeKts2bdPH1VuRezgEFe4tTNtUBG2Xrav43zuTtMvqiwj3UgpN2jSTSX6TzPwG4HQkUSVlJP1RiqkvadD4GGfoWyqSJDeJslHvVzfp33_q94RpcsZ9LIzjh1hsuLFm2PmaFRzzdknJO_-sRJ7REmWDr8lWsEEc0fUS7a5LJs-OCIqWvo7ch315PtX_sC6tVtj0DoofoOcygLUr0OXWf2j7Nmx28FOM3XjZgRVT78LG-H7WUXCYXVh36SnffkLF-YppfIrGUhHTNCxs4pxWENIV0xmf8bDXtHgyzzhdZAITpcty3wqsS_Hy4JjA36jS42PzyuVn5oEd5EvHXLsHd5eT24srv8vL4Bcx76gWQRWkBVlCqiRwo8jkyDEhuycjCzcjfJlhHI7QFFUW5AbDtKqC0JQGCX3kBTOm7cNa3dRmAEIWkSQTFDErCUoEZGsmBOGKQOYE5MI09-BXLxU9dfQbujdbuBM1d6K2nejBgKSmkXqs1Xc3IW_lEEChOUx5sG9FuXiFjBSngEw8OOplqzvdbTUTCKUEQ0exByeLx6R1fJSCtWnmXEalmYpkTJ91kv6qefrP9cTeHHy3wiH84J9xHoRHsPY8m5tjWG3L-dAO9qEN2OHr5HxofVrfAfzu-dE
link.rule.ids 315,782,786,808,814,843,1408,27933,27934,46064,46488,58024,58034,58037,58257,58267,58270
linkProvider Wiley-Blackwell
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEB58IOrBt1ifETx4qWzbtE2PoivrE0EFbyFtUxG0Xbau4r93JumW1YsI3gpN0jQzk3yTTL4BOOhwJaI84G4nVrHLUWlcFSbKNVQkUaojYW699-7im0dx2iWanPYujOWHaDfcyDLMfE0GThvSY1beBGhF_AjXKLp9Pc0jVEe6xhHcjhHv2nTyFIogcPFr6H0omudHA99WpslCVaMQxW_gcxzCmjXobPE_er8ECw0CZcdWZZZhQpcrMH_8NGhYOPQKzNgMlZ-rUFDKYlRRVhk2YpyJmcmdUzMEu6w_oGMeCpxmr_pN9dtkYCy3ie5rpsqcvT9bMvBPrPTyUn1Q-YF-phj53JLXrsHDWff-pOc2qRncLKRN1cwrvDhDZ0jkiG8Eeh2pitD1SdDJTRBiJir0O0pnReKlWvlxUXi-zrVCAJJmRJq2DlNlVeoNYDwLOHqhSiU5ogkP3c0IUVzm8RSxnB-nDhyOxCL7loFDjjwXGkRJgyjNIDqwgWKTCkeslg93Pu3mIEbBaUw4sG5k2TbBA0FZICMHtkfClY351pI4hGJEop3Qgf32NRoenaaoUldDKiPiRAQ8xM9aUf_WPXlx2zUPm3-tsAezvfvrK3l1fnO5BXP0YzagcBum3gZDvQOTdT7cNZr_BT_q-v0
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dS-QwEB_84A59UM9TrB9nDny4lx7bNm3Tx0V30VNkwRN8C2mTiqDtsnUV_3tnknZZfRHBt0KTNJ3JJL9JJr8BOOpxJRIdcb-XqtTnOGh8FWfKt1QkSW4SYW-9n16llzfiZEA0Of3uLozjh5htuJFl2PmaDHysyzkjb-OzEv4Xlyi6fL3MEYwTfX4UjeZ4d102eYpEELj2tew-FMzzroE3C9NiqeouQvEN9pxHsHYJGq5_Qec3YK3Fn6zvBswPWDDVJqz2byctB4fZhG8uP-XLTygpYTEOUFZbLmKch5nNnNMwhLpsPKFDHgqbZg_mUY1nqcCYdmnuG6YqzZ7uHBX4C1a6v6-fqfzE3FGEvHbUtVtwPRz8Pz7128QMfhHTlmoRlEFaoCskNKIbgT5HrhJ0fDJ0cTMEmJmKw54yRZkFuVFhWpZBaLRRCD_ygijTtmGpqiuzA4wXEUcfVKlMI5YI0NlMEMMVAc8RyYVp7sGfTity7Pg3ZOe3kBAlCVFaIXqwg1qTCiXWyOurkPZyEKHgJCY82LaqnDXBI0E5IBMP9jvdytZ4G0kMQini0F7swe_ZazQ7OktRlamnVEakmYh4jJ91mv6oe_LfaGAfdj9b4RC-j06G8uLs8nwPVui_XDThPiw9TqbmABYbPf1lx_0rHLL5ow
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spatial+occupancy+models+for+predicting+metapopulation+dynamics+and+viability+following+reintroduction&rft.jtitle=The+Journal+of+applied+ecology&rft.au=Chandler%2C+Richard+B.&rft.au=Muths%2C+Erin&rft.au=Sigafus%2C+Brent+H.&rft.au=Schwalbe%2C+Cecil+R.&rft.date=2015-10-01&rft.issn=0021-8901&rft.eissn=1365-2664&rft.volume=52&rft.issue=5&rft.spage=1325&rft.epage=1333&rft_id=info:doi/10.1111%2F1365-2664.12481&rft.externalDBID=10.1111%252F1365-2664.12481&rft.externalDocID=JPE12481
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-8901&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-8901&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-8901&client=summon