Support vector machines for prediction of dihedral angle regions

Motivation: Most secondary structure prediction programs target only alpha helix and beta sheet structures and summarize all other structures in the random coil pseudo class. However, such an assignment often ignores existing local ordering in so-called random coil regions. Signatures for such order...

Full description

Saved in:
Bibliographic Details
Published in:Bioinformatics Vol. 22; no. 24; pp. 3009 - 3015
Main Authors: Zimmermann, Olav, Hansmann, Ulrich H. E.
Format: Journal Article
Language:English
Published: Oxford Oxford University Press 15-12-2006
Oxford Publishing Limited (England)
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Motivation: Most secondary structure prediction programs target only alpha helix and beta sheet structures and summarize all other structures in the random coil pseudo class. However, such an assignment often ignores existing local ordering in so-called random coil regions. Signatures for such ordering are distinct dihedral angle pattern. For this reason, we propose as an alternative approach to predict directly dihedral regions for each residue as this leads to a higher amount of structural information. Results: We propose a multi-step support vector machine (SVM) procedure, dihedral prediction (DHPRED), to predict the dihedral angle state of residues from sequence. Trained on 20 000 residues our approach leads to dihedral region predictions, that in regions without alpha helices or beta sheets is higher than those from secondary structure prediction programs. Availability: DHPRED has been implemented as a web service, which academic researchers can access from our webpage Contact:u.hansmann@fz-juelich.de
AbstractList Motivation: Most secondary structure prediction programs target only alpha helix and beta sheet structures and summarize all other structures in the random coil pseudo class. However, such an assignment often ignores existing local ordering in so-called random coil regions. Signatures for such ordering are distinct dihedral angle pattern. For this reason, we propose as an alternative approach to predict directly dihedral regions for each residue as this leads to a higher amount of structural information. Results: We propose a multi-step support vector machine (SVM) procedure, dihedral prediction (DHPRED), to predict the dihedral angle state of residues from sequence. Trained on 20 000 residues our approach leads to dihedral region predictions, that in regions without alpha helices or beta sheets is higher than those from secondary structure prediction programs. Availability: DHPRED has been implemented as a web service, which academic researchers can access from our webpage http://www.fz-juelich.de/nic/cbb Contact: u.hansmann@fz-juelich.de
Motivation: Most secondary structure prediction programs target only alpha helix and beta sheet structures and summarize all other structures in the random coil pseudo class. However, such an assignment often ignores existing local ordering in so-called random coil regions. Signatures for such ordering are distinct dihedral angle pattern. For this reason, we propose as an alternative approach to predict directly dihedral regions for each residue as this leads to a higher amount of structural information. Results: We propose a multi-step support vector machine (SVM) procedure, dihedral prediction (DHPRED), to predict the dihedral angle state of residues from sequence. Trained on 20 000 residues our approach leads to dihedral region predictions, that in regions without alpha helices or beta sheets is higher than those from secondary structure prediction programs. Availability: DHPRED has been implemented as a web service, which academic researchers can access from our webpage Contact:  u.hansmann@fz-juelich.de
Motivation: Most secondary structure prediction programs target only alpha helix and beta sheet structures and summarize all other structures in the random coil pseudo class. However, such an assignment often ignores existing local ordering in so-called random coil regions. Signatures for such ordering are distinct dihedral angle pattern. For this reason, we propose as an alternative approach to predict directly dihedral regions for each residue as this leads to a higher amount of structural information. Results: We propose a multi-step support vector machine (SVM) procedure, dihedral prediction (DHPRED), to predict the dihedral angle state of residues from sequence. Trained on 20 000 residues our approach leads to dihedral region predictions, that in regions without alpha helices or beta sheets is higher than those from secondary structure prediction programs. Availability: DHPRED has been implemented as a web service, which academic researchers can access from our webpage Contact:u.hansmann@fz-juelich.de
MOTIVATION: Most secondary structure prediction programs target only alpha helix and beta sheet structures and summarize all other structures in the random coil pseudo class. However, such an assignment often ignores existing local ordering in so-called random coil regions. Signatures for such ordering are distinct dihedral angle pattern. For this reason, we propose as an alternative approach to predict directly dihedral regions for each residue as this leads to a higher amount of structural information. RESULTS: We propose a multi-step support vector machine (SVM) procedure, dihedral prediction (DHPRED), to predict the dihedral angle state of residues from sequence. Trained on 20 000 residues our approach leads to dihedral region predictions, that in regions without alpha helices or beta sheets is higher than those from secondary structure prediction programs. AVAILABILITY: DHPRED has been implemented as a web service, which academic researchers can access from our webpage http://www.fz-juelich.de/nic/cbb CONTACT: u.hansmannz-juelich.de
MOTIVATIONMost secondary structure prediction programs target only alpha helix and beta sheet structures and summarize all other structures in the random coil pseudo class. However, such an assignment often ignores existing local ordering in so-called random coil regions. Signatures for such ordering are distinct dihedral angle pattern. For this reason, we propose as an alternative approach to predict directly dihedral regions for each residue as this leads to a higher amount of structural information.RESULTSWe propose a multi-step support vector machine (SVM) procedure, dihedral prediction (DHPRED), to predict the dihedral angle state of residues from sequence. Trained on 20,000 residues our approach leads to dihedral region predictions, that in regions without alpha helices or beta sheets is higher than those from secondary structure prediction programs.AVAILABILITYDHPRED has been implemented as a web service, which academic researchers can access from our webpage http://www.fz-juelich.de/nic/cbb
Most secondary structure prediction programs target only alpha helix and beta sheet structures and summarize all other structures in the random coil pseudo class. However, such an assignment often ignores existing local ordering in so-called random coil regions. Signatures for such ordering are distinct dihedral angle pattern. For this reason, we propose as an alternative approach to predict directly dihedral regions for each residue as this leads to a higher amount of structural information. We propose a multi-step support vector machine (SVM) procedure, dihedral prediction (DHPRED), to predict the dihedral angle state of residues from sequence. Trained on 20,000 residues our approach leads to dihedral region predictions, that in regions without alpha helices or beta sheets is higher than those from secondary structure prediction programs. DHPRED has been implemented as a web service, which academic researchers can access from our webpage http://www.fz-juelich.de/nic/cbb
Author Hansmann, Ulrich H. E.
Zimmermann, Olav
Author_xml – sequence: 1
  givenname: Olav
  surname: Zimmermann
  fullname: Zimmermann, Olav
  organization: John v. Neumann Institute for Computing, FZ Jülich52425 Jülich, Germany
– sequence: 2
  givenname: Ulrich H. E.
  surname: Hansmann
  fullname: Hansmann, Ulrich H. E.
  organization: John v. Neumann Institute for Computing, FZ Jülich52425 Jülich, Germany
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18401829$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/17005536$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtv1TAQhS1URB_wE6iiSnQXaseP2LvCLaVIVZFKF4iN5WfrNrGDnVTl3-Ore0UFG1Yz0nznjGbOPtiJKToA3iL4HkGBT3RIIfqURzUHU070PBAuXoA9RBhsO0jFTu0x61vCId4F-6XcQ0gRIeQV2EV97Slme-D02zJNKc_NozNzys2ozF2IrjTVupmys8HMIcUm-caGO2ezGhoVbwfXZHdbB-U1eOnVUNybbT0AN-efblYX7eXXz19WHy5bQ4SYW8og74RX2nDDLUU9UtB5rpkmnfdWCYiEsRAK0htresisFppYhKtMM4YPwPHGdsrp5-LKLMdQjBsGFV1aimS8gxwR8V8QCbo-fQ0e_QPepyXHekNlOGM97dZr6QYyOZWSnZdTDqPKvySCcp2D_DsHucmh6g635osenX1WbR9fgXdbQBWjBp9VNKE8c5xAVB9WuXbDhTK7pz9zlR8k63FP5cX3H_Lj-fX11dnVSmL8G6hSpvQ
CODEN BOINFP
CitedBy_id crossref_primary_10_1002_prot_21940
crossref_primary_10_1371_journal_pone_0003400
crossref_primary_10_5936_csbj_201305001
crossref_primary_10_3389_fbioe_2022_788300
crossref_primary_10_4161_pri_22992
crossref_primary_10_1186_s12859_018_2065_x
crossref_primary_10_1261_rna_2550211
crossref_primary_10_1007_s10441_013_9203_7
crossref_primary_10_1038_s41598_021_00477_2
crossref_primary_10_1371_journal_pone_0002325
crossref_primary_10_1186_1471_2105_10_338
crossref_primary_10_1186_1471_2105_10_437
crossref_primary_10_1140_epjd_e2008_00086_2
crossref_primary_10_1039_c2mb25181g
crossref_primary_10_1007_s10852_011_9162_4
crossref_primary_10_1371_journal_pone_0105667
crossref_primary_10_1093_femsyr_fox093
crossref_primary_10_1016_j_bbapap_2007_10_010
crossref_primary_10_1002_slct_202203427
crossref_primary_10_1039_C8SC01423J
crossref_primary_10_1098_rsif_2013_1147
crossref_primary_10_1371_journal_pone_0030361
crossref_primary_10_3390_en14082332
crossref_primary_10_1002_jcc_23119
crossref_primary_10_1002_prot_22193
Cites_doi 10.1002/prot.340190108
10.1006/jmbi.1999.3091
10.1093/protein/gzg072
10.1093/bioinformatics/btg223
10.1016/j.jmb.2004.06.091
10.1006/jmbi.2001.4580
10.1016/0005-2795(75)90109-9
10.1016/S0076-6879(96)66034-0
10.1111/j.1399-3011.1988.tb01261.x
10.1006/jsbi.2001.4336
10.1093/nar/25.17.3389
10.1016/0167-4838(84)90312-1
10.1093/nar/28.1.235
10.1093/bioinformatics/18.4.608
10.1002/1097-0134(20001001)41:1<17::AID-PROT40>3.0.CO;2-F
10.1093/bioinformatics/bth476
10.1021/bi00699a002
10.1002/bip.360220105
10.1093/protein/14.8.525
10.1002/prot.340190207
10.1111/j.1399-3011.1988.tb01258.x
10.1016/0022-2836(88)90564-5
10.1093/nar/27.1.368
10.1110/ps.051479505
10.1016/0005-2795(73)90350-4
10.1016/j.jmb.2004.04.005
10.1006/jmbi.2000.3837
10.1016/0022-2836(78)90297-8
10.1002/prot.10286
10.1006/jmbi.1999.2829
ContentType Journal Article
Copyright 2007 INIST-CNRS
Copyright Oxford University Press(England) Dec 2006
Copyright_xml – notice: 2007 INIST-CNRS
– notice: Copyright Oxford University Press(England) Dec 2006
DBID BSCLL
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TM
7TO
7U5
8BQ
8FD
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1093/bioinformatics/btl489
DatabaseName Istex
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
AIDS and Cancer Research Abstracts
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Materials Research Database
Oncogenes and Growth Factors Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Materials Business File
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Biotechnology Research Abstracts
AIDS and Cancer Research Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList Materials Research Database
CrossRef

Engineering Research Database
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: ECM
  name: MEDLINE
  url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1460-2059
1367-4811
EndPage 3015
ExternalDocumentID 1246653681
10_1093_bioinformatics_btl489
17005536
18401829
ark_67375_HXZ_BFRRNDNC_3
Genre Evaluation Studies
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: GM62838
GroupedDBID -~X
.2P
.I3
482
48X
5GY
AAMVS
ABPTD
ACGFS
ACUFI
ADRIX
ADZXQ
ALMA_UNASSIGNED_HOLDINGS
BCRHZ
BSCLL
CZ4
EE~
F5P
F9B
H5~
HAR
HW0
IOX
KSI
KSN
NGC
Q5Y
RD5
ROX
ROZ
RXO
TLC
TN5
TOX
WH7
~91
---
-E4
.-4
.DC
.GJ
0R~
1TH
23N
2WC
4.4
53G
5WA
70D
AABJS
AABMN
AAESY
AAIJN
AAIMJ
AAIYJ
AAJKP
AAJQQ
AAKPC
AAMDB
AAOGV
AAPBV
AAPQZ
AAPXW
AAUQX
AAVAP
AAVLN
ABEFU
ABEUO
ABIXL
ABNKS
ABPTK
ABQLI
ABQTQ
ABWST
ABZBJ
ACIWK
ACPRK
ACYTK
ADBBV
ADEIU
ADEYI
ADEZT
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADOCK
ADORX
ADPDF
ADQLU
ADRDM
ADRTK
ADVEK
ADYVW
ADZTZ
AECKG
AEGPL
AEJOX
AEKKA
AEKSI
AELWJ
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFNX
AFFZL
AFGWE
AFIYH
AFOFC
AFRAH
AFXEN
AGINJ
AGKEF
AGQXC
AGSYK
AHMBA
AHXPO
AI.
AIJHB
AIKOY
AJEEA
AJEUX
AKHUL
AKWXX
ALTZX
ALUQC
APIBT
APWMN
AQDSO
ARIXL
ARQIP
ASPBG
ATTQO
AUCZF
AVWKF
AXUDD
AYOIW
AZFZN
AZQFJ
AZVOD
BAWUL
BAYMD
BHONS
BQDIO
BQUQU
BSWAC
BTQHN
BYORX
C1A
C45
CAG
CASEJ
CDBKE
COF
CS3
DAKXR
DIK
DILTD
DPORF
DPPUQ
DU5
D~K
EBD
EBS
EJD
ELUNK
EMOBN
FEDTE
FHSFR
FLIZI
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
GROUPED_DOAJ
GX1
H13
HZ~
IQODW
J21
KAQDR
KC5
KOP
KQ8
M-Z
M49
MK~
ML0
N9A
NLBLG
NMDNZ
NOMLY
NTWIH
NU-
NVLIB
O0~
O9-
OAWHX
ODMLO
OJQWA
OK1
OVD
OVEED
O~Y
P2P
PAFKI
PB-
PEELM
PQQKQ
Q1.
R44
RIG
RNI
RNS
ROL
RPM
RUSNO
RW1
RZF
RZO
SV3
TEORI
TJP
TR2
VH1
W8F
WOQ
X7H
XJT
YAYTL
YKOAZ
YXANX
ZGI
ZKX
~KM
ABXVV
CGR
CUY
CVF
ECM
EIF
HVGLF
JXSIZ
NPM
AAYXX
ABEJV
CITATION
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TM
7TO
7U5
8BQ
8FD
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c499t-560829fabc8c8d5171a0ef8b6b42ffda9019cd00947cdc706db9b4d13082b663
ISSN 1367-4803
IngestDate Thu Oct 24 23:51:17 EDT 2024
Fri Oct 25 11:34:41 EDT 2024
Thu Oct 10 17:02:54 EDT 2024
Thu Nov 21 22:09:04 EST 2024
Tue Oct 15 23:35:18 EDT 2024
Sun Oct 22 16:05:41 EDT 2023
Wed Oct 30 09:48:18 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 24
Keywords Order
Prediction
Web service
Support vector machine
Secondary structure
Premises
Original document
Angle
Aminoacid
Region
Dihedron
Random coil
Bioinformatics
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c499t-560829fabc8c8d5171a0ef8b6b42ffda9019cd00947cdc706db9b4d13082b663
Notes Associate Editor: Anna Tramontano
ark:/67375/HXZ-BFRRNDNC-3
To whom correspondence should be addressed.
istex:78FA97B0A51160A2BC6D4B59B77A59C472ABD4E9
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
PMID 17005536
PQID 198667526
PQPubID 36124
PageCount 7
ParticipantIDs proquest_miscellaneous_68208149
proquest_miscellaneous_19505539
proquest_journals_198667526
crossref_primary_10_1093_bioinformatics_btl489
pubmed_primary_17005536
pascalfrancis_primary_18401829
istex_primary_ark_67375_HXZ_BFRRNDNC_3
PublicationCentury 2000
PublicationDate 2006-12-15
PublicationDateYYYYMMDD 2006-12-15
PublicationDate_xml – month: 12
  year: 2006
  text: 2006-12-15
  day: 15
PublicationDecade 2000
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
– name: England
PublicationTitle Bioinformatics
PublicationTitleAlternate Bioinformatics
PublicationYear 2006
Publisher Oxford University Press
Oxford Publishing Limited (England)
Publisher_xml – name: Oxford University Press
– name: Oxford Publishing Limited (England)
References Matthews (2023012408504533800_b18) 1975; 405
Tsai (2023012408504533800_b30) 1999; 290
Klein (2023012408504533800_b15) 1984; 787
Lewis (2023012408504533800_b16) 1973; 303
Takano (2023012408504533800_b29) 2001; 14
Kawashima (2023012408504533800_b12) 1999; 27
Kihara (2023012408504533800_b13) 2005; 14
Jones (2023012408504533800_b11) 1999; 292
Oobatake (2023012408504533800_b21) 1985; 63
Bystroff (2023012408504533800_b5) 2000; 301
Robson (2023012408504533800_b25) 1996; 266
Kim (2023012408504533800_b14) 2003; 16
Garnier (2023012408504533800_b9) 1978; 120
Berman (2023012408504533800_b2) 2000; 28
Petersen (2023012408504533800_b22) 2000; 41
Ward (2023012408504533800_b33) 2003; 19
Camproux (2023012408504533800_b6) 2004; 339
Rost (2023012408504533800_b26) 1994; 19
Lovell (2023012408504533800_b17) 2003; 50
Mitaku (2023012408504533800_b19) 2002; 18
Qian (2023012408504533800_b24) 1988; 202
Vucetic (2023012408504533800_b32) 2005; 21
Betancourt (2023012408504533800_b3) 2004; 342
Schölkopf (2023012408504533800_b28) 2002
Altschul (2023012408504533800_b1) 1997; 25
Bhaskaran (2023012408504533800_b4) 1988; 32
Chou (2023012408504533800_b7) 1974; 13
Nguyen (2023012408504533800_b20) 2003; 14
Hua (2023012408504533800_b10) 2001; 308
Rost (2023012408504533800_b27) 2001; 134
Fauchere (2023012408504533800_b8) 1988; 32
Vihinen (2023012408504533800_b31) 1994; 19
Ptitsyn (2023012408504533800_b23) 1983; 22
References_xml – volume: 19
  start-page: 55
  year: 1994
  ident: 2023012408504533800_b26
  article-title: Combining evolutionary information and neural networks to predict protein secondary structure
  publication-title: Proteins
  doi: 10.1002/prot.340190108
  contributor:
    fullname: Rost
– volume: 292
  start-page: 195
  year: 1999
  ident: 2023012408504533800_b11
  article-title: Protein secondary structure prediction based on position specific matrices
  publication-title: J. Mol. Biol.
  doi: 10.1006/jmbi.1999.3091
  contributor:
    fullname: Jones
– volume: 16
  start-page: 553
  year: 2003
  ident: 2023012408504533800_b14
  article-title: Protein secondary structure prediction based on an improved support vector machines approach
  publication-title: Protein Eng.
  doi: 10.1093/protein/gzg072
  contributor:
    fullname: Kim
– volume: 19
  start-page: 1650
  year: 2003
  ident: 2023012408504533800_b33
  article-title: Secondary structure prediction with support vector machines
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btg223
  contributor:
    fullname: Ward
– volume: 342
  start-page: 635
  year: 2004
  ident: 2023012408504533800_b3
  article-title: Local propensities and statistical potentials of backbone dihedral angles in proteins
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2004.06.091
  contributor:
    fullname: Betancourt
– volume: 308
  start-page: 397
  year: 2001
  ident: 2023012408504533800_b10
  article-title: A novel method of protein secondary structure prediction with high segment overlap measure-support vector machine approach
  publication-title: J. Mol. Biol.
  doi: 10.1006/jmbi.2001.4580
  contributor:
    fullname: Hua
– volume: 405
  start-page: 442
  year: 1975
  ident: 2023012408504533800_b18
  article-title: Comparison of the predicted and observed secondary structure of T4 phage lysozyme
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/0005-2795(75)90109-9
  contributor:
    fullname: Matthews
– volume: 266
  start-page: 540
  year: 1996
  ident: 2023012408504533800_b25
  article-title: GOR method for predicting protein secondary structure from amino acid sequence
  publication-title: Meth. Enzymol.
  doi: 10.1016/S0076-6879(96)66034-0
  contributor:
    fullname: Robson
– volume-title: Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond
  year: 2002
  ident: 2023012408504533800_b28
  contributor:
    fullname: Schölkopf
– volume: 32
  start-page: 269
  year: 1988
  ident: 2023012408504533800_b8
  article-title: Amino acid side chain parameters for correlation studies in biology and pharmacology
  publication-title: Int. J. Pept. Protein Res.
  doi: 10.1111/j.1399-3011.1988.tb01261.x
  contributor:
    fullname: Fauchere
– volume: 134
  start-page: 204
  year: 2001
  ident: 2023012408504533800_b27
  article-title: Review: protein secondary structure prediction continues to rise
  publication-title: J. Struct. Biol.
  doi: 10.1006/jsbi.2001.4336
  contributor:
    fullname: Rost
– volume: 25
  start-page: 3389
  year: 1997
  ident: 2023012408504533800_b1
  article-title: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/25.17.3389
  contributor:
    fullname: Altschul
– volume: 787
  start-page: 221
  year: 1984
  ident: 2023012408504533800_b15
  article-title: Prediction of protein function from sequence properties: discriminant analysis of a data base
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/0167-4838(84)90312-1
  contributor:
    fullname: Klein
– volume: 28
  start-page: 235
  year: 2000
  ident: 2023012408504533800_b2
  article-title: The Protein Data Bank
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/28.1.235
  contributor:
    fullname: Berman
– volume: 18
  start-page: 608
  year: 2002
  ident: 2023012408504533800_b19
  article-title: Amphiphilicity index of polar amino acids as an aid in the characterization of amino acid preference at membrane-water interfaces
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/18.4.608
  contributor:
    fullname: Mitaku
– volume: 41
  start-page: 17
  year: 2000
  ident: 2023012408504533800_b22
  article-title: Prediction of protein secondary structure at 80% accuracy
  publication-title: Proteins
  doi: 10.1002/1097-0134(20001001)41:1<17::AID-PROT40>3.0.CO;2-F
  contributor:
    fullname: Petersen
– volume: 21
  start-page: 137
  year: 2005
  ident: 2023012408504533800_b32
  article-title: DisProt: a database of protein disorder
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bth476
  contributor:
    fullname: Vucetic
– volume: 13
  start-page: 222
  year: 1974
  ident: 2023012408504533800_b7
  article-title: Prediction of protein conformation
  publication-title: Biochemistry
  doi: 10.1021/bi00699a002
  contributor:
    fullname: Chou
– volume: 22
  start-page: 15
  year: 1983
  ident: 2023012408504533800_b23
  article-title: Theory of protein secondary structure and algorithm of its prediction
  publication-title: Biopolymers
  doi: 10.1002/bip.360220105
  contributor:
    fullname: Ptitsyn
– volume: 14
  start-page: 525
  year: 2001
  ident: 2023012408504533800_b29
  article-title: A new scale for side-chain contribution to protein stability based on the empirical stability analysis of mutant proteins
  publication-title: Protein Eng.
  doi: 10.1093/protein/14.8.525
  contributor:
    fullname: Takano
– volume: 19
  start-page: 141
  year: 1994
  ident: 2023012408504533800_b31
  article-title: Accuracy of protein flexibility predictions
  publication-title: Proteins
  doi: 10.1002/prot.340190207
  contributor:
    fullname: Vihinen
– volume: 32
  start-page: 241
  year: 1988
  ident: 2023012408504533800_b4
  article-title: Positional flexibilities of amino acid residues in globular proteins
  publication-title: Int. J. Peptide Protein Res.
  doi: 10.1111/j.1399-3011.1988.tb01258.x
  contributor:
    fullname: Bhaskaran
– volume: 63
  start-page: 82
  year: 1985
  ident: 2023012408504533800_b21
  article-title: Optimization of amino acid parameters for correspondence of sequence to tertiary structures of proteins
  publication-title: Bull. Inst. Chem. Res. Kyoto Univ.
  contributor:
    fullname: Oobatake
– volume: 202
  start-page: 865
  year: 1988
  ident: 2023012408504533800_b24
  article-title: Predicting the secondary structure of globular proteins using neural network models
  publication-title: J. Mol. Biol.
  doi: 10.1016/0022-2836(88)90564-5
  contributor:
    fullname: Qian
– volume: 27
  start-page: 368
  year: 1999
  ident: 2023012408504533800_b12
  article-title: AAindex: amino acid index database
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/27.1.368
  contributor:
    fullname: Kawashima
– volume: 14
  start-page: 1955
  year: 2005
  ident: 2023012408504533800_b13
  article-title: The effect of long-range interactions on the secondary structure formation of proteins
  publication-title: Protein Sci.
  doi: 10.1110/ps.051479505
  contributor:
    fullname: Kihara
– volume: 303
  start-page: 211
  year: 1973
  ident: 2023012408504533800_b16
  article-title: Chain reversals in proteins
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/0005-2795(73)90350-4
  contributor:
    fullname: Lewis
– volume: 339
  start-page: 591
  year: 2004
  ident: 2023012408504533800_b6
  article-title: A hidden Markov model derived structural alphabet for proteins
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2004.04.005
  contributor:
    fullname: Camproux
– volume: 301
  start-page: 173
  year: 2000
  ident: 2023012408504533800_b5
  article-title: HMMSTR: a hidden Markov model for local sequence-structure correlations in proteins
  publication-title: J. Mol. Biol.
  doi: 10.1006/jmbi.2000.3837
  contributor:
    fullname: Bystroff
– volume: 120
  start-page: 97
  year: 1978
  ident: 2023012408504533800_b9
  article-title: Analysis of the accuracy and implications of simple methods for predicting the secondary structure of globular proteins
  publication-title: J. Mol. Biol.
  doi: 10.1016/0022-2836(78)90297-8
  contributor:
    fullname: Garnier
– volume: 14
  start-page: 218
  year: 2003
  ident: 2023012408504533800_b20
  article-title: Multi-class support vector machines for protein secondary structure prediction
  publication-title: Genome Inform. Ser. Workshop Genome Inform.
  contributor:
    fullname: Nguyen
– volume: 50
  start-page: 437
  year: 2003
  ident: 2023012408504533800_b17
  article-title: Structure validation by Calpha geometry: phi,psi and Cbeta deviation
  publication-title: Proteins
  doi: 10.1002/prot.10286
  contributor:
    fullname: Lovell
– volume: 290
  start-page: 253
  year: 1999
  ident: 2023012408504533800_b30
  article-title: The packing density in proteins: standard radii and volumes
  publication-title: J. Mol. Biol.
  doi: 10.1006/jmbi.1999.2829
  contributor:
    fullname: Tsai
SSID ssj0051444
ssj0005056
Score 2.1137938
Snippet Motivation: Most secondary structure prediction programs target only alpha helix and beta sheet structures and summarize all other structures in the random...
Most secondary structure prediction programs target only alpha helix and beta sheet structures and summarize all other structures in the random coil pseudo...
MOTIVATION: Most secondary structure prediction programs target only alpha helix and beta sheet structures and summarize all other structures in the random...
MOTIVATIONMost secondary structure prediction programs target only alpha helix and beta sheet structures and summarize all other structures in the random coil...
SourceID proquest
crossref
pubmed
pascalfrancis
istex
SourceType Aggregation Database
Index Database
Publisher
StartPage 3009
SubjectTerms Algorithms
Amino Acid Sequence
Artificial Intelligence
Biological and medical sciences
Computer Simulation
Fundamental and applied biological sciences. Psychology
General aspects
Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects)
Models, Chemical
Models, Molecular
Molecular Sequence Data
Pattern Recognition, Automated - methods
Protein Structure, Secondary
Proteins - chemistry
Proteins - ultrastructure
Sequence Alignment - methods
Sequence Analysis, Protein - methods
Title Support vector machines for prediction of dihedral angle regions
URI https://api.istex.fr/ark:/67375/HXZ-BFRRNDNC-3/fulltext.pdf
https://www.ncbi.nlm.nih.gov/pubmed/17005536
https://www.proquest.com/docview/198667526
https://search.proquest.com/docview/19505539
https://search.proquest.com/docview/68208149
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfYKiReEN8rg-EHxEsV5jhOYr-xj1Z9mDppdFO1F8uOk62iS1E_JvjvOcdO00hMwAMvUXu17ObufL6zz79D6KM2RKV5HAZRwXTA4iINBE1EQCHaggVHGRHbu8PDr-lowk_7rN9U6Wto_1XSQANZ25uz_yDtTadAgM8gc3iC1OH5V3K3ZTrBpe7dV9vxvbsqWTKvUBcsIICZZrWPaKa3uVlUWAE3M1s95Wazd1ef8k7nHlh1tZUUfz21m913vrry-UzdN2asXNb0yxlY2NuexzNo9hVCGribld4URhYRnRNnfnJHYwkBbnsMb28_Kd3SE8q2rGFEiNhaWcGWxL-12g7RSrfeyRJWM8ZFs1DVh_Ojczm4PDuT4_5kvIM6FEwMWLjO0fHk6qpJ7yEWJMh9AaeQuerG_pXqq1wiOmyPeujGbDkpHTvfftikWbWEeVO4gicPRySVZzJ-hp76kAIfOV14jh7l5Qv02BUZ_fkSffEagZ1G4FojMPwd3GgEnhe41ghcaQT2GvEKjQf98ckw8HUzggzi11UATiynolA64xk3cZiGiuQF14lmtCiMAhdQZMbmlKaZyVKSGC00M6FFLtLggb5Gu-W8zPcQZrbwOzCS64LDPGY6iRTP04QpEmcx1130ueaT_O7QUaTLaohkm7HSMbaLPlXc3LRWi282tTCN5XByLY8HFxej09GJjLrooMXupnvOCMTE0NN-zX_pp99ShoInEAHTpIs-bH4Fe2kPwVSZz9e2CWhGHImHWyRgo3jIoMUbJ9Zm7NRC1kXJ2z_2vo-eNHPqHdpdLdb5e7SzNOsDr6i_AEmgnuQ
link.rule.ids 315,782,786,27933,27934
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Support+vector+machines+for+prediction+of+dihedral+angle+regions&rft.jtitle=Bioinformatics&rft.au=Zimmermann%2C+Olav&rft.au=Hansmann%2C+Ulrich+HE&rft.date=2006-12-15&rft.issn=1367-4803&rft.eissn=1460-2059&rft.volume=22&rft.issue=24&rft.spage=3009&rft.epage=3015&rft_id=info:doi/10.1093%2Fbioinformatics%2Fbtl489&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1367-4803&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1367-4803&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1367-4803&client=summon